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Abstract

Using the notions of scales and their gauge functions associated with
self-similar sets, we give a necessary and sufficient condition for two met-
rics on a self-similar set being quasisymmetric to each other. As an appli-
cation, we construct metrics on the Sierpinski carpet which is quasisym-
metric with respect to the Euclidean metrics and obtain an upper estimate
of the conformal dimension of the Sierpinski carpet.

1 Introduction

The main purpose of this paper is to give a characterization of quasisymmetry
for self-similar sets in terms of scales and related notions introduced in [5]. As
an application, we will construct a series of metrics on the Sierpinski carpet
which are quasisymmetric to the restriction of the Euclidean metric and give an
upper estimate of the quasiconformal dimension of the Sierpinski carpet.

Quasisymmetric maps have been introduced by Tukia and Väisälä in [8] as
a generalization of quasiconformal mappings in the complex plane.

Definition 1.1 (Quasisymmetry). (1) Let (X, d) and (X, ρ) be metric spaces.
ρ is said to be quasisymmetric, or QS for short, with respect to d if and only if
there exists a homeomorphism h from [0,+∞) to itself such that h(0) = 0 and,
for any t > 0, ρ(x, z) < h(t)ρ(x, y) whenever d(x, z) < td(x, y). We write ρ ∼

QS
d

if ρ is quasisymmetric with respect to d.
(2) Let (X, d) be a metric space. A homeomorphism f : X → X is called
quasisymmetric if and only if d ∼

QS
df , where df (x, y) is defined by df (x, y) =

d(f(x), f(y)).

The above definition immediately imply the following facts.

Proposition 1.2. Let (X, d) and (X, ρ) be metric spaces.
(1) If ρ ∼

QS
d, then the identity may of X is a homeomorphism from (X, d) to

(X, ρ).
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Figure 1: the Sierpinski carpet

(2) The relation ∼
QS

is an equivalence relation among metrics on X. In partic-

ular, ρ ∼
QS

d if and only if d ∼
QS

ρ.

Associated with the notion of quasisymmetry, the quasiconformal dimension
of a metric space has been introduced by Pansu in [7] as an invariant under
quasisymmetric modification of a metric.

Definition 1.3 (Quasiconformal dimension). Let (X, d) be a metric space. We
define the conformal dimension of (X, d), dimC(X, d), by

dimC(X, d) = inf{dimH(X, ρ)|ρ is a metric on X and d ∼
QS

ρ},

where dimH(X, ρ) is the Hausdorff dimension of (X, ρ).

Quasisymmetric maps on self-similar sets have been paid much attentions
in recent years as well as their conformal dimensions. For example, Bonk and
Merenkov have shown that any quasisymmetric homeomorphism from the Sier-
pinski carpet to itself is a composition of rotations and reflections in [1]. About
the conformal dimensions, Tyson and Wu have proven that the conformal di-
mension of the Sierpinski gasket is one in [9]. For the Sierpinski carpet, it is
known that

1 +
log 3
log 2

≤ dimC(SC, dE) < dimH(SC, dE) =
log 8
log 3

, (1.1)

where SC is the Sierpinski carpet and dE is the restriction of the Euclidean
metric. The strict inequality between the Hausdorff and the quasiconformal
dimensions in (1.1) has shown by Keith and Laakso [2]. See [6] for details.

The first problem we are going to study is to obtain a verifiable characteriza-
tion of quasisymmetric metrics. It will turn out that scales and related notions
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introduced in [5] are useful in dealing with such a problem. Let K be a con-
nected self-similar set associated with the family of contractions {F1, . . . , FN},
i. e. K = F1(K) ∪ . . . ∪ FN (K). Define Fw1...wm

= Fw1 ◦ . . . ◦ Fwm
and

Kw1...wm = Fw1...wm(K) for any w1, . . . , wm ∈ {1, . . . , N}. The notion of scales
has been introduced in order to study how to find a metric under which the con-
traction mappings {F1, . . . , FN} have prescribed values of contraction ratios. A
scale essentially gives “diameters” of Kw1...wm ’s and induces a family of assumed
“balls” Us(x) around x ∈ K with radius s > 0. See Section 2 for precise defini-
tions. In the language of scales, we are going to present an equivalent condition
in Theorem 3.4 for metrics being quasisymmetric to each other which is easy to
verify for concrete examples, in particular, in the case of “self-similar” metrics.

As an application, we will present a systematic way of constructing a self-
similar metric on the Sierpinski carpet which is quasisymmetric to dE and
Ahlfors regular. The main idea is to find an “invisible” set introduced in Sec-
tion 4. Roughly speaking, an invisible set is a collection of places where the
shortest paths between two separated boundary points will not visit. (We de-
fine the “boundary” of the Sierpinski carpet by the union of four line segments,
namely, the most upper, lower, right and left line segments of the square which
is the convex hull of the Sierpinski carpet.) Putting an arbitrary weight on
an invisible set, we will obtain a self-similar metric having the desired proper-
ties mentioned above with an explicit formula for its Hausdorff dimension in
Theorem 5.3. Constructing series of invisible sets and taking advantage of the
associated metrics, we will show that

dimC(SC, dE) ≤
log (9+

√
41

2 )
log 3

= 1.858183... <
log 8
log 3

= 1.892789....

in Section 6. Note that the conformal dimension in the above inequality can
be replaced by the Ahlfors regular conformal dimension since our metrics are
Ahlfors regular. See [6] for the definition of the Ahlfors regular conformal di-
mension.

The following is a convention in notations in this paper.
Let f and g be functions with variables x1, . . . , xn. We use “f ³ g for any
(x1, . . . , xn) ∈ A” if and only if there exist positive constants c1 and c2 such
that

c1f(x1, . . . , xn) ≤ g(x1, . . . , xn) ≤ c2f(x1, . . . , xn)

for any (x1, . . . , xn) ∈ A.

2 Basic Notions

This section is devoted to introducing fundamental notions and results regarding
scales and self-similar sets and scales.

The following is the standard definitions on (finite and infinite) sequences of
finite symbols.
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Definition 2.1. Let S be a finite set. For m ≥ 0, define Wm(S) = Sm =
{w|w = w1 . . . wm, wi ∈ S}, where W0(S) = {∅}. Define W∗ = ∪m≥0Wm. Also
Σ(S) = SN = {ω|ω = ω1ω2 . . . , ωi ∈ S}. For w = w1 . . . wm ∈ W∗(S), the length
|w| of w is defined by |w| = m. For w = w1 . . . wm and v = v1 . . . vn ∈ W∗(S),
we define w · v (or wv for short) by w·v = w1 . . . wmv1 . . . vn. For a subseteq
A,B ∈ W∗(S), A ·B (or AB for short) is defined by A·B = {wv|w ∈ A, v ∈ B}.

Remark. The notion of “gauge function” given in the above definition is not
related to the notion of “conformal gauge” which is commonly used in literatures
concerning the conformal dimension, for example, [6].

With the product topology, Σ(S) is compact, perfect and totally discon-
nected. In other words, Σ(S) is a Cantor set. A scale is defined by a gauge
function which assign a “diameter” to every w ∈ W∗(S).

Definition 2.2 (Scale). Let S be a finite set.
(1) A function g : W∗(S) → (0, 1] is called a gauge function if and only if
g(∅) = 1, g(w1 . . . wm) ≤ g(w1 . . . wm−1) and maxw∈Wm(S) g(w) → 0 as m → 0.
A gauge function g is said to be elliptic if and only if there exists c ∈ (0, 1) and
n such that gwi ≥ cg(w) for any i ∈ S and any w ∈ W∗(S) and gwv ≤ cg(w) for
any w ∈ W∗(S) and v ∈ Wn.
(2) Let g be a gauge function. Define

Λg
s = {w = w1 . . . wm|g(w1 . . . wm−1) ≥ s > g(w1 . . . wm)}

We call Sg = {Λg
s}s∈(0,1] a scale on Σ associated with the gauge function g.

If no confusion may occur, we omit S in Wm(S), W∗(S) and Σ(S) and simply
write Wm,W∗ and Σ respectively.

The notion of self-similar structure describes topological feature of self-
similar sets.

Definition 2.3. (K,S, {Fi}i∈S) is called a self-similar structure if the following
four conditions (S1), (S2), (S3) and (S4) are satisfied:
(S1) K is a compact metrizable set.
(S2) S is a finite set.
(S3) Fs : K → K is continuous for any s ∈ S.
(S4) There exists a continuous surjection π : Σ(S) → K such that Fs◦π = π◦σs

for any s ∈ K, where σs : Σ(S) → Σ(S) is defined by σs(ω1ω2 . . .) = sω1ω2 . . ..

Hereafter in this paper, (K,S, {Fs}s∈S) is always a self-similar structure.

Notation. Define Fw1...wm = Fw1 ◦ · · · ◦ Fwm and Kw = Fw(K). Moreover,
define K(A) = ∪w∈AKw for a subset A ⊆ W∗.

A scale S on Σ(S) induces a family of “balls” U (n)(x, s) around x ∈ X with
“radius” s. One of the main concerns is the existence of a metric under which
those “balls” are really balls, in other words, the existence of adapted metric
according to the following definition.
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Definition 2.4. Let S = {Λs}s∈(0,1] be a scale on Σ associated with a gauge
function g.
(1) For x ∈ K, define Λ(n)

s,x and U (n)(x, s) inductively by

Λ(0)
s,x = {w|w ∈ Λs, x ∈ Kw}

U (n)(x, s) = K(Λ(n)
s,x)

Λ(n)
s,x = {w|w ∈ Λs,Kw ∩ U (n−1)(x, s) 6= ∅}

(2) A metric d on K is said to be adapted to the scale S if and only if there
exist α, β > 0 and n ≥ 1 such that

Bd(x, αs) ⊆ U (n)(x, s) ⊆ Bd(x, βs)

for any x ∈ K and any s.

The notion of gentleness between scales is introduced in [5] as a part of the
equivalence condition for a measure being volume doubling with respect to a
scale. Roughly, if two scales are gentle with respect to each other, then the
transition to one scale to the other is smooth.

Definition 2.5. Let Sg and Sl be scales on Σ associated with gauge functions
g and l respectively. We say Sl is gentle with respect to Sg if and only if there
exists c > 0 such that l(w) ≤ cl(v) whenever w, v ∈ Λs for some s > 0 and
Kw ∩ Kv 6= ∅. We write Sg ∼

GE
Sl if Sl is gentle with respect to Sg.

Proposition 2.6. Among elliptic scales, i.e. scales whose gauge functions are
elliptic, ∼

GE
is an equivalent relation. In particular, if g and l are elliptic, then

Sg ∼
GE

Sl implies Sl ∼
GE

Sg.

There exists a natural “pseudo”metric associated with a scale which is de-
fined by the infimum of the “length” of paths between two points.

Definition 2.7. (1) A sequence (w(1), . . . , w(n)) is called a path in K if and
only if w(1), . . . , w(n) ∈ W∗, Kw(i) ∩ Kw(i+1) 6= ∅ for any i = 1, . . . , n − 1.
The collection of all the paths is denoted by CH. For U, V ⊆ K, a path
(w(1), . . . , w(n)) is called a path between U and V if and only if Kw(1) ∩
U 6= ∅ and Kw(n) ∩ V 6= ∅. We use CH(U, V ) to denote the collection of
paths between U and V . For two paths p1 = (w(1), . . . , w(n)) and p2 =
(v(1), . . . , v(m)), if Kw(n) ∩ Kv(1) 6= ∅, we define p1 ∨ p2 ∈ CH by p1 ∨ p2 =
(w(1), . . . , w(n), v(1), . . . , v(m)).
(2) Let S be a scale on Σ associated with a gauge function g. For any x, y ∈ K,
we define

DS(x, y) = inf{
n∑

i=1

g(w(i))|(w(1), . . . , w(n)) ∈ CH(x, y)}.

Remark. We identify a point x ∈ X and a set {x} if no confusion may occur.
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Remark. We often use Dg instead of DS if S is the scale associated with a gauge
function g.

Proposition 2.8. DS is a pseudometric, i.e. DS(x, y) = DS(y, x), DS(x, y) ≥
0, DS(x, x) = 0 and DS(x, y) ≤ DS(x, z) + DS(z, y).

By [5, Lemma 2.3.10], we have the following theorem, which says that a
metric adapted to a scale S, if such a metric exists at all, is essentially DS.

Theorem 2.9. Let S be a scale. There exists a metric d on K such that d is
adapted to S if and only if DS is a metric on K which is adapted to S.

3 Quasisymmetric metrics and scales

In this section, we give an equivalent condition for two metrics on a self-similar
set being quasisymmetric in terms of scales and related notions introduced in
Section BNS.

Let (K,S, {Fi}i∈S) be a self-similar structure. Assume that K 6= V0. Here-
after in this section, every metric on K is assumed to satisfy the following two
properties:
(1) It produces the same topology as the original topology of K.
(2) The diameter of K under it equals one.

The next lemma can be verified immediately by the definitions in the previ-
ous section.

Lemma 3.1. Let S1 = {Λ1
s} and S2 = {Λ2

s} be scales. If S1 ∼
GE

S2, then for any

n ≥ 1, there exists cn ∈ (0, 1) such that

U
(n)
1 (x, cnt) ⊆ U

(n)
2 (x, s) ⊆ U

(n)
1 (x, t/cn)

for any x ∈ K, any (s, t) with w ∈ Λ1
t,x ∩ Λ2

s,y.

First we define a scale associated with a metric.

Definition 3.2. Let d be a metric on K with diam(K, d) = 1. Define Sd = {Λd
s}

be the scale with the gauge function dw = diam(Kw, d).

Lemma 3.3. Let S = {Λs} be an elliptic scale and let d be a metric on K
which is adapted to S. Let l(w) be the gauge function of S. Then
(1) dw ³ l(w) for any w ∈ W∗.
(2) The pseudometric DS associated with S is a metric and DS(x, y) ³ d(x, y)
for any x, y ∈ K.
(3) Sd is elliptic and d is adapted to Sd.

Proof. Write U (n)(x, r) = U
(n)
S (x, r). Since d is adapted to S, we have

U (n)(x, βs) ⊆ Bd(x, s) ⊆ U (n)(x, αr) (3.2)
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(1) For w ∈ W∗, U (n)(x, l(w)) ⊆ Bd(x, αl(w)). Hence dw ≤ αl(w). Now by [5,
Lemma 1.3.12], there exists y ∈ Kw and γ ∈ (0, 1) such that U (n)(y, γl(w)) ⊆
Kw. Hence Bd(x, βγl(w)) ⊆ Kw. Since K is connected, we have βγl(w) ≤ dw.
(2) This is immediate from Theorem 2.9.
(3) These claims are immediate from (1) and Lemma 3.1.

Now we present the main theorem of this paper.

Theorem 3.4. Let d be a metric on K and let S = {Λs} be an elliptic scale.
Assume that d is adapted to S. Let ρ be a metric on K. Then d ∼

QS
ρ if and

only if Sρ is elliptic, S ∼
GE

Sρ and ρ is adapted to Sρ.

The rest of this section is devoted to the proof of Theorem 3.4.

Proof. First we show ⇒. Assume d ∼
QS

ρ. By Lemma 3.3, we may regard the

gauge function of S is dw and hence S = Sd.
By the results in [3, Part 2], d ∼

QS
ρ is equivalent to the facts that there exists

δ ∈ (0, 1) such that

Bd(x, r) ⊇ Bρ(x, δρd(x, s))

Bρ(x, r) ⊇ Bd(x, δdρ(x, r))
(3.3)

and

ρd(x, r/2) ≥ δρd(x, r)

dρ(x, r/2) ≥ δdρ(x, r),
(3.4)

where ρd(x, r) = supy∈Bd(x,r) ρ(x, y) and dd(x, r) = supy∈Bρ(x,r) d(x, y).
First we show the following claim.
Claim 1 Let w ∈ Λd

s . Then there exists z ∈ Kw such that ρw ≥ cρd(z, s),
where c is a constant which is independent of w and s.
Proof of Claim 1: By [5, Lemma 1.3.12] and (3.3), we may find z ∈ Kw such
that

Kw ⊇ U
(n)
d (z, γs) ⊇ Bd(z, γs/α) ⊇ Bρ(z, δρd(z, γs/α))

Hence by (3.4)
ρw ≥ δρd(z, γs/α) ≥ cρd(z, s).

Step 1: Sρ is elliptic.
Proof of “ρwi ≥ cρw for any w ∈ W∗ and any i ∈ S”:
By Claim 1, it follows that

ρwi ≥ c′ρd(z, dwi) ≥ c′ρd(z, 2dwi). (3.5)

for some z ∈ Kwi. On the other hand,

Kw ⊆ Bd(z, 2dw) ⊆ Bρ(z, ρd(x, 2dw)).
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Hence
ρw ≤ ρd(z, 2dw).

This with (3.5) suffices.
Proof of “there exists c ∈ (0, 1) and m such that ρwv ≤ cρw for any w ∈ W∗
and any v ∈ Wm.
Since Kwv ⊆ Bρ(x, ρd(x, 2dwv)), we have

ρwv ≤ ρd(x, 2dwv) ≤ δρd(x, dwv), (3.6)

where x ∈ Kwv. On the other hand, by [5, Lemma 1.3.12], there exists z ∈ Kw

such that
Kw ⊇ U

(n)
d (x, γdw) ⊇ Bρ(x, δρd(x, γdw)).

Hence
ρw ≥ δρd(x, γdw) ≥ δ′ρd(x, dw) (3.7)

Now, since Sd is elliptic, there exists a ∈ (0, 1) such that

dwv ≤ ca|v|dw

for any w and v. Hence by (3.6) and (3.7), the uniform decay of ρ with respect
to d, (See [3, Proposition 10.7]),

ρwv ≤ δρd(x, dwv) ≤ δρd(x, ca|v|dw) ≤ cb|v|ρd(x, dw) ≤ c′b|v|ρw,

where b ∈ (0, 1). Hence choosing sufficiently large m = |v|, we obtain the desired
inequality.
Thus we have shown that Sρ is elliptic.
Step 2: S ∼

GE
Sρ

Let w, v ∈ Λd
s with Kw∩Kv 6= ∅. Choose x ∈ Kw and y ∈ Kv. Then d(x, y) ≤ 2s

and hence Bd(x, 3s) ⊇ Bd(y, s). This implies ρd(x, 3s) ≥ ρd(y, s). By (3.4),

ρd(x, s) ³ ρd(y, s).

By Claim 1, choosing y ∈ Kv properly, we see that ρv ≥ cρd(y, s). Since
ρd(x, 2s) ≥ ρw, (3.4) shows that Sd ∼

GE
S.

Step 3: ρ is adapted to Sρ.
Let x ∈ K and let w ∈ Λd

r,x ∩ Λρ
s,x. Then by Lemma 3.1, (3.3) and (3.4),

U (n)
ρ (x, cs) ⊇ U

(n)
d (x, r) ⊇ Bd(x, r/α) ⊇ Bρ(x, δρd(x, r/α))

⊇ Bρ(x, δ′ρd(x, 2r)) ⊇ Bρ(x, δ′ρw) ⊇ Bρ(x, δ′′s).

On the other hand, let x ∈ K and let w ∈ Λρ
s ∩ Λd

t . Then

Bρ(x, s) ⊇ Bd(x, δdρ(x, s)) ⊇ U
(n)
d (x, βδdρ(x, s)) ⊇ U (n)

ρ (x, c′r), (3.8)

where wv ∈ Λd
βδdρ(x,s),x

∩ Λρ
r,x. Since Bρ(x, 2s) ⊇ Kw, we see that dρ(x, 2s) ≥

dw. Hence dρ(x, s) ≥ c1dw. Consequently, dwv ≥ c2dw, where c2 is independent
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of w and v. This implies that |v| is uniformly bounded. Since Sρ is elliptic,
ρwv ≥ c3ρw. This impliesU (n)

ρ (x, c′r) ⊇ U
(n)
ρ (x, c4s). By (3.8), it follows that

Bρ(x, s) ⊇ U
(n)
ρ (x, c5s). Thus we have shown that ρ is adapted to Sρ.

This concludes the proof of ⇒.

To show the converse direction of Theorem 3.4, we need the following lemma.

Lemma 3.5. Assume that d is adapted to Sd. Then, for any n and k, there
exists λ ∈ (0, 1) such that

U
(n)
d (x, r) ⊇ U

(n+k)
d (x, λr)

for any x ∈ K and any r.

Proof. Since d is adapted to Sd, there exists c > 0 such that U
(n)
d (x, r) ⊇

Bd(x, cr). Then Bd(x, cr) ⊇ U
(n+k)
d (x, cr/(n + k + 2)).

Proof of ⇐ of Theorem 3.4. Since d and ρ are adapted to Sd and Sρ respectively,

U
(n)
d (x, β1r) ⊆ Bd(x, r) ⊆ U

(n)
d (x, α1r)

U (m)
ρ (x, β2r) ⊆ Bρ(x, r) ⊆ U (m)

ρ (x, α2r).

First we show (3.3). By Lemma 3.1,

Bd(x, r) ⊆ U
(n)
d (x, α1r) ⊆ U (n)

ρ (x, cρw), (3.9)

where w ∈ Λd
α1r,x. Using Lemma 3.5 if necessary, we obtain

Bd(x, r) ⊆ U (m)
ρ (x, c1ρw) ⊆ Bρ(x, c2ρw).

Hence ρd(x, r) ≤ c2ρw. Now by Lemma 3.1,

Bd(x, r) ⊇ U
(n)
d (x, β1r) ⊇ U (n)

ρ (x, c′ρwv), (3.10)

where wv ∈ Λd
β1r,x. By making use of Lemma 3.5 if necessary, we have

Bd(x, r) ⊇ U (m)
ρ (x, c′′ρwv) ⊇ Bρ(x, c′′β2ρwv).

Since Sd is elliptic, the fact that w ∈ Λd
α1r,x and wv ∈ Λd

β1r,x implies that |v| is
uniformly bounded with respect to x and r. Since Sρ is also elliptic, we see that
ρwv ≥ c3ρw ≥ c4ρd(x, r). Hence (3.3) holds. (By exchanging ρ and d, we also
obtain the other one.)
Next we show (3.4). By (3.9),

ρd(x, r) ≤ c(n + 1)ρw,

where w ∈ Λd
α1r. Replacing r by λr for λ ∈ (0, 1) in (3.10), we have

Bd(x, λr) ⊇ U (n)(x, c′ρwv),
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where wv ∈ Λd
λβ1r,x. This implies ρd(x, λr) ≥ c′ρwv. The same arguments as

above show that |v| is uniformly bounded and ρwv ≥ cρw. Combining all these,
we obtain

ρd(x, λr) ≥ c′ρwv ≥ c′′ρw ≥ c′′′ρd(x, r).

Again the other one is obtained by exchanging d and ρ. Thus we have obtained
(3.4).

4 Sierpinski carpet and its invisible sets

In this and the following sections, we are going to apply Theorem 3.4 to the
Sierpinski carpet. First we give the definition of the Sierpinski carpet.

Definition 4.1. Let S = {↙, ↓,↘,→,↗, ↑,↖,←}. Define p↙ = −1 −
√
−1,

p↓ = −
√
−1, p↘ = 1−

√
−1, p→ = 1, p↗ = 1+

√
−1, p↑ =

√
−1, p↖ = −1+

√
−1

and p← = −1. Moreover, define Fs : C → C for s ∈ S by

Fs(z) =
(z − ps)

3
+ ps.

The Sierpinski carpet K is the unique non-empty compact set which satisfies

K =
∪
s∈S

Fs(K).

Let dE be the restriction of the Euclidean metric on the Sierpinski carpet K.

We consider dE as the standard metric on K and are going to construct
metrics which is quasisymmetric with respect to dE . Obviously, the scale SdE

associated with dE is elliptic and dE is adapted to the scale SdE . In fact, the
gauge function associated with dE is given by 3−|w| for any w ∈ W∗.

Next we introduce notions and notations regarding the boundary of the
Sierpinski carpet.

Definition 4.2. (1) Define L = K ∩ {z|Re z = −1}, R = K ∩ {z|Re z = 1},
T = K ∩ {z|Im z = 1} and B = K ∩ {z|Im z = −1}. Let Hw = Fw(H) for any
w ∈ W∗ and any H ∈ {L,R, T,B}. Moreover define ∂m = {Lw, Rw, Tw, Bw|w ∈
Wm}.
(2) Define Lm = {↙,←,↖}m, Rm = {↘,→,↗}m, Tm = {↖, ↑,↗}m, Bm =
{↙, ↓,↘}m and δm = Lm ∪ Rm ∪ Tm ∪ Bm.

Remark. Recall that K(A) = ∪w∈AKw for a subset A ⊆ W∗. The map A →
K(A) can be regarded as a map from the subsets of W∗ to the subsets of K.
In the case of the Sierpinski carpet, this map is injective, i.e. if A 6= B, then
K(A) 6= K(B). Therefore, if no confusion may occur, we identify A ⊆ W∗ with
K(A) ⊆ K.

Note that DdE (x, y) ≥ 1 for any (x, y) ∈ (L × R) ∪ (T × B). This fact may
remain true even if you put 0 as weights (length) of some pieces of w’s. Such a
collection of w’s is called an invisible set, whose precise definition is given below.
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Figure 2: Generation of the Sierpinski Carpet

Definition 4.3. (1) Let

CHm = {(w(1), . . . , w(n))|(w(1), . . . , w(n)) ∈ CH, w(i) ∈ Wm}

and let CHm(U, V ) = CH(U, V ) ∩ CHm for U, V ⊆ K.
(2) Let A ⊆ Wm. For p = (w(1), . . . , w(n)) ∈ CHm, define

`A(p) =
#{i|i = 1, . . . , n, w(i) /∈ A}

3m

(3) Let A ⊆ Wm. A is said to be an invisible set if and only if

inf
p∈CHm(L,R)∪CHm(T,B)

`A(p) ≥ 1

(4) Let A ⊆ Wm. A is said to be +-invariant if and only if K(A) is symmetric
with respect to both the real and imaginary axes.

Since Lm, Rm, Tm and Bm are the shortest paths, we have the following
proposition.

Proposition 4.4. Let A ⊆ Wm. If A is invisible, then A ∩ δm = ∅.

The next theorem is one of the fundamental property of an invisible set. It
will play a key role in constructing a metric associated with an invisible set in
the next section.
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Theorem 4.5. Let A ⊆ Wm be an invisible set and let X ⊆ Wn be an invisible
and +-invariant set. Then AWn ∪ WmX is an invisible set.

The rest of this section is devoted to the proof of Theorem 4.5.

Definition 4.6. (1) Let A ⊆ Wm. Define ∂mA = {F |F ∈ ∂m, F ⊆ K(A) ∩
K\K(A)}.
(2) Define fm,→(z) = z+3−m, fm,←(z) = z−3−m, fm,↑(z) = z+3−m

√
−1 and

fm,↓(z) = z−3−m
√
−1. Moreover, let fm,↙ = fm,↓ ◦fm,←, fm,↘ = fm,↓◦fm,→,

fm,↖ = fm,↑◦fm,← and fm,↗ = fm,↑◦fm,→.
(3) Let w ∈ Wm. For s ∈ S, if there exists w′ ∈ Wm such that fm,s(Kw) = Kw′ ,
then define (w)s = w′. Otherwise define (w)s = %, where % is used as the
symbol which represents non-existence.

Lemma 4.7. Let F ∈ ∂m and let G ∈ ∂m(Wm(F )). If X ⊆ Wn is invisible and
+-invariant, then `WmX(p) ≥ 3−m for any p ∈ CHm+n(F,G).

Proof. Note that #(Wm(F )) ≤ 6. Up to parallel translations, the reflections in
the real and the imaginary axes and the π/2-rotation, we may assume that F =
Bw for some w ∈ Wm. Then Wm(F ) ⊆ {w, (w)←, (w)↙, (w)↓, (w)↘, (w)→},
where some of them may be %. In fact there are 7 cases. (See Figure 4.)
Case 1 #(Wm(F )) = 6.
Case 2 #(Wm(F )) = 5 and (w)↘ = %.
Case 3 #(Wm(F )) = 5 and (w)↓ = %.
Case 4 #(Wm(F )) = 4 and (w)↓ = (w)↘ = %.
Case 5 #(Wm(F )) = 3 and (w)↓ = (w)↘ = (w)↙ = %.
Case 6 #(Wm(F )) = 3 and (w)← = (w)↙ = (w)↘ = %.
Case 7 #(Wm(F )) = 2 and (w)↓ = (w)↙ = (w)↘ = (w)← = %.

We consider the first case. The other cases can be treated by the simi-
lar discussion. If D = ∪U∈∂m(Wm(F ))U , then D = ∂K(Wm(F )). Let p =
(w(1), . . . , w(k)) ∈ CHm+n(F,G). The reflection in the line containing F in-
duces a natural bijection from Wm(F ) · Wn to itself, which is denoted by η.
Define θ : Wm(F ) · Wn → {(w)←, w, (w)→} · Wn by

θ(uv) =

{
uv if u ∈ {(w)←, w, (w)→} and v ∈ Wn,

η(uv) if u ∈ {(w)↙, (w)↓, (w)↘} and v ∈ Wn.

Define v(i) = θ(w(i)) and p̃ = (v(1), . . . , v(k)). Then the +-invariant property
of X implies that p̃ ∈ CHm+n(F,D1), where D1 = L(w)← ∪T(w)← ∪Tw∪T(w)→ ∪
R(w)→ , and

`WmX(p) = `WmX(p̃),

If v(k) ∩ L(w)← 6= ∅, then there exists j such that (v(j), v(j + 1), . . . , v(k)) ∈
CHm(R(w)← , L(w)←) and Kv(i) ⊆ (w)← · Wn for any i ∈ {j, j + 1, . . . , k}. Since
X is invisible, it follows that

`WmX(p) ≥ `WmX((v(j), . . . , v(k))) ≥ 3−m.

The same discussion shows that `WmX(p) ≥ 3−m if Kv(k) ∩ R(w)→ 6= ∅.
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Figure 3: Structures of Wm(F )

Next suppose v(K) ∩ (T(w)← ∪ Tw ∪ T(w)→) 6= ∅. Then using the reflec-
tions in the lines containing Lw and Rw, we may construct (u(1), . . . , u(k)) ∈
CHm+n(Bw, Tw) which satisfies u(i) ∈ w · · ·Wn for any i and `WmX(p) =
`WmX((u(1), . . . , u(k))). Since X is invisible, it follows that `WmX(p) ≥ 3−m.

Lemma 4.8. Let F,G ∈ ∂m with F ∩ G = ∅ and let p = (w(1), . . . , w(k)) ∈
CHm+n(F,G). If {w(i)}k

i=1 ∩AWn = ∅, then there exists p∗ ∈ CHm(F,G) such
that `A(p∗) ≤ `AWn∪WmX(p).

Proof. Let k1 = max{j|{w(i)}j
i=1 ⊆ Wm+n(F )}. Define v(1) = [w(k1)]m.

Note that v(1) /∈ A. There exists a unique F1 ∈ {Lv(1), Rv(1), Tv(1), Bv(1)} ∩
∂m(Wm(F )) such that Kw(k1) ⊆ F1. By Lemma 4.7,

`AWn∪WmX((w(1), . . . , w(k1))) ≥ 3−m = `A((v(1))).

Now, if F1∩G 6= ∅, (v(1)) ∈ CHm(F,G) and `AWn∪WmX(p) ≥ `A((v(1)). Hence
we have constructed p∗ = (v(1)). Otherwise, replacing (w(1), . . . , w(k)) and
F by (w(k1), . . . , w(k)) and F1 respectively, we repeat the same procedure as
above and obtain k2, v(2) and F2. Inductively, we have p∗ = (v(1), . . . , v(l))
with the desired properties.

Lemma 4.9. Let F,G ∈ ∂m with F ∩G = ∅. Then for any p ∈ CHm+n(F,G),
there exists p∗ ∈ CHm(F,G) such that `A(p∗) ≤ `AWn∪WmX(p).

Proof. Let p = (w(1), . . . , w(k)). If w(i) /∈ AWn for any i, then Lemma 4.8
suffices. Hence we assume that there exists i such that w(i) ∈ AWn.

13



Claim 1: Without loss of generality, we may assume that there exists p1 ≥ 1
and G1 ∈ ∂m such that w(1), . . . , w(p1) ∈ Wm+n\AWn, w(p1 + 1) ∈ AWn,
G1 ∩ F = ∅, G1 ⊆ K[w(p1+1)]m and (w(1), . . . , w(p1)) ∈ CHm+n(F,G1).
Proof of Claim 1. Case 1: F ∩ K(A) = ∅
In this case, define

p1 = min{i|w(i) ∈ AWn} − 1

and choose G1 ∈ ∂m so that G1 ∩ Kw(p1) ∩ Kw(p1+1) 6= ∅ and G1 ⊆ K[w(p1)]m .
Case 2: F ∩ K(A) 6= ∅
In this case, F intersects at most two connected components of K(A). Let C1

and C2 be those connected components of K(A). (It is possible that C1 = C2.)
Case 2.1: {i|Kw(i) ⊆ C1 ∪ C2} = ∅.
Define p1 and choose G1 as in Case 1. Then p1 and G1 satisfies the desired
property.
Case 2.2: {i|Kw(i) ⊆ C1 ∪ C2} 6= ∅.
Define

q = max{i|Kw(i) ∈ C1 ∪ C2}.

We may choose F0 ∈ ∂m so that F0 ∩ Kw(q) ∩ Kw(q+1) 6= ∅ and F0 ⊆ K[w(q)]m .
Moreover, we may choose p0 = (v(1), . . . , v(k0)) ∈ CHm(F, F0) so that v(i) ∈
AWn for any i = 1, . . . , k0 and v(k0) = [w(q)]m. Note that `A(p0) = 0. If
F0∩G 6= ∅, then Kv(k0)∩G 6= ∅ and p0 ∈ CHm(F,G). Hence letting p∗ = p0, we
have constructed p∗ which satisfies all the conditions. Assume that F0 ∩G = ∅.
Since (w(1), . . . , w(q)) ∈ CHm+n(F, F0) corresponds p0 ∈ CHm(F, F0), it is
enough to show the statement of the lemma in the case where F and p are
replaced by F0 and (w(q + 1), . . . , w(k)) respectively. In this situation, the
counterpart of Case 2.1 holds and so does Claim 1. (End of Proof of Claim 1)
Claim 2: Without loss of generality, we may assume that there exists k∗
and F∗ ∈ ∂m such that w(k∗), . . . , w(k) ∈ Wm+n\AWn, w(k∗ − 1) ∈ AWn,
F∗ ∩ G = ∅, F∗ ⊆ Kw(k∗) and (w(k∗), . . . , w(k)) ∈ CHm+n(F∗, G).
Proof of Claim 2. By considering the chain (w(k), w(k − 1), . . . , w(1)) ∈
CHm+n(G,F ), the same argument as in the proof of Claim 1 yields this claim.
(End of Proof of Claim 2)
Now under Claim 1 and Claim 2, we may choose p1, . . . , pj+1 and q0, q1, . . . , qj

which satisfy the following conditions (A), (B), (C) and (D):
(A) q0 = 0, pj+1 = k, qi < pi+1 < qi+1 for any i.
(B) {(w(qi−1 + 1), . . . , w(pi)} ∩ AWn = ∅ for any i = 1, . . . , j + 1
(C) Kw(pi+1) and Kw(qi) belong to the same connected component of K(A)
for any i = 1, . . . , j.
(D) Kw(qi) and Kw(pi+1+1) belong to the different connected components of
K(A) for any i = 1, 2, . . . , j − 1

Let pi = (w(qi−1 + 1), . . . , w(pi)) for i = 1, . . . , j + 1. Define F1 = F . For
i ≥ 2, we may choose Fi ∈ ∂m so that Fi ∩ Kw(qi−1) ∩ Kw(qi−1+1) 6= ∅ and
F ⊆ K[w(qi−1)]m . Moreover, for i = 1, . . . , j, we may choose Gi ∈ ∂m so that
Gi ∩ Kw(pi) ∩ Kw(pi+1) 6= ∅ and Gi ⊆ K[w(pi+1)]m . Also let Fj+1 = G. By the
condition (D), Fi∩Gi = ∅ for any i = 1, . . . , j+1. Hence letting F = Fi, G = Gi
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and p = pi and applying Lemma 4.8, we obtain p∗,i = (v(i, 1), . . . , v(i, ki)) ∈
CHm(Fi, Gi) which satisfies `A(p∗,i) ≤ `AWn∪WmX(pi).

Note that Gi and Fi belong to the same connected component of K(A) by
the condition (C). Hence there exists p1

i = (u(i, 1), . . . , u(i, li)) ∈ CHm(Gi, Fi)
such that u(i, 1), . . . , u(i, li) ∈ A.

Finally let p∗ = (p∗,1,p1
1,p∗,2, . . . ,p1

j ,p∗,j+1). Then p∗ ∈ CHm(F,G) and
`A(p∗) ≤ `AWn∪WmX(p).

Proof of Theorem 4.5. Let p = (w(1), . . . , w(k)) ∈ CHm+n(L,R). Set F =
L[w(1)]m and G = R[w(k)]m . By Lemma 4.9, there exists p∗ ∈ CHm(F,G) such
that `A(p∗) ≤ `AWn∪WmX(p). Since A is invisible, we have `A(p∗) ≥ 1. Hence
`AWn∪WmX(p) ≥ 1. In the same way, if p′ ∈ CHm+n(T,B), it follows that
`AWn∪WmX(p′) ≥ 1. Thus AWn ∪ WmX is invisible.

5 Metric associated with invisible set

In this section, we construct a metric associated with a +-invariant invisible
set and characterize the Hausdorff dimension and the Hausdorff measure with
respect to the metric.

Throughout this section, we fix a +-invariant invisible set A ⊆ Wm.

Notation. We write Wm,n = (Wm)n = Wmn, Wm,∗ = ∪n≥0Wm,n and Σ(m) =
(Wm)N.

Naturally Wm,∗ is regarded as a subset of W∗ and Σ(m) is identified with Σ.

Definition 5.1. (1) Let ε > 0. Define DA
ε (w) for w ∈ Wm by

DA
ε (w) =

{
3−m if w /∈ A,
ε if w ∈ A.

and DA
ε (∅) = 1 for ∅ ∈ W0. For any w = w(1) · · ·w(n) ∈ Wm,n, where w(i) ∈

Wm, define
DA

ε (w) = DA
ε (w(1))DA

ε (w(2))· · ·DA
ε (w(n)).

(2) Define

CH(m) = {(w(1), . . . , w(k))|
(w(1), . . . , w(k)) ∈ CH, w(i) ∈ Wm,∗ for any i = 1, . . . , k}.

and CH(m)(U, V ) = CH(U, V )∩CH(m) for U, V ⊆ K. Moreover, define `A,ε(p) =∑k
i=1 DA

ε (w(i)) for any p = (w(1), . . . , w(k)) ∈ CH(m) and, for x, y ∈ K,

dA
ε (x, y) = inf{`A,ε(p)|p ∈ CH(m)(x, y)}.

DA
ε (·) is a gauge function on Σ(m) and dA

ε is the associated pseudometric.
The next fact is obvious from the definition.
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Proposition 5.2. dA
0 (x, y) ≤ dA

ε (x, y) for any x, y ∈ K and any ε > 0.

The next theorem shows that da
ε is really a metric and dA

ε ∼
QS

dE .

Theorem 5.3. For any ε > 0, dA
ε is a metric on K which is quasisymmetric

with respect to dE. The Hausdorff dimension of K with respect to the metric
dA

ε , dimH(K, dA
ε ) is given by the unique α which satisfies

(8m − #(A))3−mα + #(A)εα = 1. (5.1)

Furthermore, let Hα be the α-dimensional Hausdorff measure on (X, dA
ε ). Then

the metric measure space (X, dA
ε ,Hα) is Ahlfors α-regular, i.e.

Hα(Bd(x, r)) ³ rα

for any x ∈ K and r ∈ [0,diam(X, dA
ε )).

Letting ε ↓ 0 in (5.1), we obtain the following corollary.

Corollary 5.4.

dimC(K, dE) ≤ log 8
log 3

+
1

m log 3
log

(
1 − #(A)

8m

)
.

In the rest of this section, we are going to prove the above theorem. Here-
after, we omit A in the notations DA

ε (w), `A,ε(p) and dA
ε (x, y) and write Dε(w),

`ε(p) and dε(x, y) respectively.

Lemma 5.5. Define An ⊆ Wmn inductively by A1 = A and

An+1 = AWmn ∪ WmAn.

Then An is +-invariant and invisible.

Proof. Letting X = An and applying Theorem 4.5, we see inductively that An+1

is +-invariant and invisible.

Lemma 5.6. dA
0 (x, y) ≥ 1 for any (x, y) ∈ (L × R) ∪ (T × B).

Proof. Define I(p) = maxi=1,...,k |w(i)|/m for any p = (w(1), . . . , w(k)) ∈
CH(m)(L, R). We are going to show that `0(p) ≥ 1 by an induction in I(p). If
I(p) = 0, then p = (∅) and `0(p) = D0(∅) = 1. Let J = {i|i = 1, . . . , k, |w(i)| =
I(p)m}. Then there exists k1, . . . , kl and j1, . . . , jl such that ki ≤ ji < ki+1 and
J = ∪i=1,...,l{j|ki ≤ j ≤ ji}. Let pi = (w(ki), . . . , w(ji)). Since |w(ki − 1)| ≤
(I(p) − 1)m and |w(ji + 1) ≤ (I(p) − 1)m, there exist F,G ∈ ∂M , where
M = (I(p) − 1)m, such that F ⊆ Kw(ki−1), F ∩ Kw(ki) 6= ∅, G ⊆ Kw(ji+1)

and G ∩ Kw(ji) 6= ∅. If F ∩ G = ∅, then Kw(ki−1) ∩ Kw(ji+1) 6= ∅. Hence
if p′ = (w(1), . . . , w(ki − 1), w(ji + 1), . . . , w(k)) ∈ CH(m)(L,R), then we de-
fine pi

∗ as the empty sequence. Note that `0(p) ≥ `0(p′). Now assume that
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F ∩ G = ∅. Set X = AM . Lemma 5.5 shows that X is +-invariant and invisi-
ble. Then by Lemma 4.9, there exists pi

∗ = (v(1), . . . , v(l)) ∈ CHM (F,G) such
that `AM

(pi
∗) ≤ `AM Wm∪WM A(pi). Note that AMWm ∪ WMA = AI(p)m, that

`AM
(pi

∗) = `0(pi
∗) and that `AM Wm∪WM A(pi) = `0(pi). Let p∗ be the chain

where pi is replaced by pi
∗ for all i. Then p∗ ∈ CH(m)(L, R), I(p∗) < I(p) and

`0(p) ≥ `0(p∗). Now we have `0(p) ≥ `0(p∗) ≥ 1 by induction hypothesis.
Now, dA

0 (x, y) ≥ inf{`0(p)|p ∈ CH(m)(x, y)} ≥ 1 for any x ∈ L and any
y ∈ R. In the same manner, it follows that dA

0 (x, y) ≥ 1 for any x ∈ T and any
y ∈ B as well.

Lemma 5.7. dA
ε (·, ·) is a metric on K for any ε > 0.

Proof. Let x, y ∈ K with x 6= y. Then Re x 6= Re y or Imx 6= Im y. Sup-
pose Re x < Re y. Then there exist n and i ∈ {0, 1, . . . , 3mn − 1} such that
Rex ≤ (2i − 3mn)3−mn < (2i + 2 − 3mn)3−mn ≤ Re y.
Claim: dA

ε (x, y) ≥ min{DA
ε (w)|w ∈ Wm,k, k = 0, 1, . . . , n}.

Proof of Claim. Define W i
m,n = {w|w ∈ Wm,n,Kw ⊆ {z|(2i − 3mn)3−mn ≤

Re z ≤ (2i + 2− 3mn)3−mn}. Let Dmn,i = min{Dε(w)|w ∈ W i
m,n}. We also de-

fine Lmn,i = ∪w∈W i
m,n

Lw and Rmn,i = ∪w∈W i
m,n

Rw. Let p = (w(1), . . . , w(k)) ∈
CH(m)(x, y). If |w(i)| ≤ mn for some i, then the claim is trivial. Hence as-
sume that |w(i)| < mn for any i = 1, . . . , k. Then p contains (w(p), w(p +
1), . . . , w(q)) ∈ CH(Lmn,i, Rmn,i) which satisfies w(i) ∈ ∪w∈W i

m,n
wWm,∗. Let

w(i) = u(i)v(i) for i = p, . . . , q, where u(i) ∈ W i
m,n and v(i) ∈ Wm,∗. It follows

that

`A,ε(p) ≥ `A,ε((w(p), w(p + 1), . . . , w(q))) ≥ Dmn,i

q∑
i=p

Dε(v(i)). (5.2)

Now the reflection ψ in the real axis induces a natural bijection ϕ↔ : W∗ → W∗
defined by ψ(Kw) = Kϕ↔(w) which satisfies ϕ↔(ϕ↔(w)) = w. Hereafter in this
section, we write ϕ = ϕ↔. There exist p1, p2, . . . pl such that p1 = p, pl = q + 1,
pi < pi+1, u(pi) = u(pi + 1) = . . . = u(pi+1 − 1) and u(pi) 6= u(pi+1) for any i.
Let v̄(j) = ϕi(v(j)) for j = pi, pi +1, . . . , pi+1 −1, where ϕj is the j-th iteration
of ϕ. Then (v̄(p), v̄(p + 1), . . . , v̄(q)) ∈ CH(m)(L,R). Since A is +-invariant,∑q

i=p Dε(v(i)) =
∑q

i=p Dε(v̄(i)). Hence Lemma 5.6 implies that

q∑
i=p

Dε(v(i)) =
q∑

i=p

Dε(v̄(i)) ≥
q∑

i=p

D0(v̄(i)) ≥ 1.

Combining this with (5.2), we have `A,ε(p) ≥ Dmn,i. Hence the claim holds.
(End of Proof of Claim)
The claim shows that dA

ε (x, y) > 0 if Re x 6= Re y. Similar discussion implies
dA

ε (x, y) > 0 if Im x 6= Im y.

Proof of Theorem 5.3. Let S(m)(A, ε) = {Λ(m)
s (A, ε)}s∈(0,1] be the scale on Σ(m)

whose gauge function is DA
ε and let S(m) by the scale on Σ(m) whose gauge
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function g is given by g(w(1) . . . w(k)) = 3−mk for w(1) . . . w(k) ∈ Wm,∗ with
w(1), . . . , w(k) ∈ Wm. Obviously Σ(m) is adapted to the Euclidean metric on
K. Also since S(m)(A, ε) and S(m) are self-similar, they are elliptic.

Note that (K,Wm, {Fw}w∈Wm) is a rationally ramified self-similar structure.
(See [5, Section 1.5] for the definition of rationally ramified self-similar struc-
tures.) In fact, define h : L1 → R1 by h(↖) =↗, h(←) =→, h(↙) =↘ and
g : T 1 → B1 by g(↖) =↙, g(↑) =↓, g(↗) =↘. Then define hm : Lm → Rm by
hm(w1 . . . wm) = h(w1) . . . h(wm) for w1 . . . wm ∈ Lm and gm : Tm → Bm by
gm(w1. . .wm) = g(w1). . .g(wm) for w1 . . . wm ∈ Tm. Then a relation set Rm of
(K,Wm, {Fw}w∈Wm) is given by

Rm = {(Lm, Rm, hm, w, v)|w, v ∈ Wm, Lw = Rv}∪
{(Tm, Bm, gm, w, v)|w, v ∈ Wm, Tw = Bv}

By Proposition 4.4, DA
ε (w) = 3−m for any w ∈ Lm ∪Rm ∪ Tm ∪Bm. Using [5,

Theorem 1.6.6], we see that S(m)(A, ε) ∼
GE

S(m).

Theorems 1.6.1 and 2.2.7 in [5] imply that S(m)(A, ε) is intersection type fi-
nite. Since dA

ε is a metric on K by Lemma 5.7, we may apply [5, Theorem 2.3.16]
and show that dA

ε is adapted to the scale S(m)(A, ε). Thus we have obtained all
the conditions in Theorem 3.4 and hence shown that dA

ε is quasisymmetric with
respect to the Euclidean metric.

The Hausdorff dimension and Ahlfors regularity of the Hausdorff measure of
(K, dA

ε ) are immediately obtained by [4, Theorem 1.5.7].

6 Construction of invisible sets

Under the existence of an invisible set, we have constructed a corresponding
metric which is quasisymmetric with respect to dE and characterized the asso-
ciated Hausdorff dimension in the previous two sections. In this section, it is
shown that invisible sets do exist. In fact, we construct a series of invisible sets
inductively.

Definition 6.1. Let ψl and ψ↔ be the reflections in the real and complex axes
respectively. Then ψl induces a natural bijection ϕl from W∗ to itself defined
by ψl(Kw) = Kϕl(w) . In the same way, we define a bijection ϕ↔ from W∗ to
itself by ψ↔(Kw) = Kϕ↔(w). Moreover, let R be the π/2-rotation around the
origin 0 and let ρ : W∗ → W∗ be the bijection defined by R(Kw) = Kρ(w).

The idea to have invisible sets is to divide the notion of a invisible set into
a vertically invisible set and a horizontally invisible set. The final existence of
invisible sets are established by taking intersections of vertically invisible set
and horizontally invisible set in Theorem 6.4.
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Figure 4: Construction of mn, ⇑n and ↙↙n

Definition 6.2. Define mn,⇑n and ↙↙n as subsets of Wn inductively by

mn+1 = {↖,←,↙,↗,→,↘}· mn ∪ ↑ · ⇑n ∪ ↓ · ⇓n (6.1)
⇑n+1 = {↗,←,↖,→}· mn ∪ ↑ · ⇑n ∪ ↙ · ↙↙n∪ ↓ ·Wn∪ ↘ · ↘↘n (6.2)

↙↙n+1 = {↖,←}· mn ∪{↓,↘}· ⇔n ∪{↑,→,↙}· ↙↙n∪ ↗ ·Wn (6.3)

and m0=⇑0=↙↙0 = ∅, where ⇓n= ϕl(⇑n), ↘↘n= ϕ↔(↙↙n) and ⇔n= ρ(mn).

Lemma 6.13 will show that mn and ⇔n are vertically and horizontally invis-
ible sets respectively.

Lemma 6.3.

#(mn) = 8n − 7 +
√

41
2
√

41

(
9 +

√
41

2

)n

+
7 −

√
41

2
√

41

(
9 −

√
41

2

)n

Proof. Write an = #(mn), bn = #(⇑n) and cn = #(↙↙n). By (6.1), (6.2) and
(6.3), it follows that

an+1 = 6an + 2bn

bn+1 = 4an + bn + 2cn + 8n

cn+1 = 4an + 3cn + 8n.

Solving these with a0 = b0 = c0 = 0, we obtain an as in the statement of the
lemma.

Now we have the main theorem of this section.

Theorem 6.4. Let An =mn ∩ ⇔n. Then An is a +-invariant invisible set and

αn ≤ 8n − #(An) ≤ 2αn,
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where

αn =
7 +

√
41

2
√

41

(
9 +

√
41

2

)n

− 7 −
√

41
2
√

41

(
9 −

√
41

2

)n

.

Example 6.5. A0 = A1 = A2 = A3 = ∅.

A4 = {↑↓←→, ↑↓→←, ↓↑←→, ↓↑←→,←→↑↓,←→↓↑,→←↑↓,→←↓↑}.

Applying Corollary 5.4 and letting n → ∞, we obtain the following upper
estimate of the conformal dimension of the Sierpinski carpet.

Corollary 6.6.

dimC(K, dE) ≤
log ( 9+

√
41

2 )
log 3

= 1.858183... <
log 8
log 3

= 1.892789....

Remark. The known lower bound of dimC(K, dE) given in (1.1) is log 6
log 3 =

1.630929....

The rest of this section is devoted to proving Theorem 6.4.

Lemma 6.7. (1) ϕ↔(mn) = mn and ϕl(mn) = mn.
(2) ϕ↔(⇑n) = ⇑n.
(3) ϕ↔ ◦ ρ(↙↙n) = ↙↙n.

Definition 6.8. Define the vertical index In
l : Wn → {1, . . . , 3n} by

In
l (w) =

3n(Im (Fw(
√
−1)) + 1)

2

For H ∈ {L,R}, define wn
H(i) for i = 1, . . . , 3n as the unique w ∈ Hn which

satisfies In
l (w) = i. Moreover, for w, v ∈ Wn, define pn

H(w, v) ∈ CHn by

pn
H(w, v) =

{
(wn

H(In
l (w)), wn

H(In
l (w) + 1), . . . , wn

H(In
l (v))) if In

l (w) ≤ In
l (v),

(wn
H(In

l (w)), wn
H(In

l (w) − 1), . . . , wn
H(In

l (v))) if In
l (v) ≤ In

l (w).

In the same way, we define the horizontal index In
↔ : Wn → {1, . . . , 3n},

wn
T (i), wn

B(i), pn
T (w, v) and pn

B(w, v).

Lemma 6.9. Let A ⊆ Wn. Assume that

inf{`A(p∗)|p∗ ∈ CHn(T, p↙)} ≥ 1 (6.4)

Let p = (w(1), . . . , w(k)) ∈ CHn. If (w(1), w(k)) ∈ (Tn ∪ Ln) × Ln, then

`A(p) ≥
|In

l (w(1)) − In
l (w(k))| + 1

3n
= `A(pn

L(w(1), w(k))). (6.5)

Remark. Using the symmetries, we may exchange (T,L, p↙) in the statement
of Lemma 6.9 by (T,R, p↘), (B,L, p↖) and (B,R, p↗).
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Proof. Since `A((wn
L(i))i=1,...,3n) ≥ 1, it follows that {wn

L(i)|i = 1, . . . , 3n}∩A =
∅. Let p = (w(1), . . . , w(k)) ∈ CHn.

Suppose that (w(1), w(k)) ∈ Tn × Ln. Note that w(k) = wn
L(i) for some i.

Then pn
L(w(1), w(k)) = (wn

L(3n), wn
L(3n−1), . . . , wn

L(i)) and `A(pn
L(w(1), w(k)))

= 1 − (i − 1)/3n. Since p ∨ pn
L(wn

L(i − 1), wn
L(1)) ∈ CHn(T, p↙), (6.4) implies

`A(p) + `A(pn
L(wn

L(i − 1), wn
L(1))) = `A(p ∨ pn

L(wn
L(i − 1), wn

L(1))) ≥ 1.

This shows (6.5) in this case.
Suppose that (w(1), w(k)) ∈ Ln × Ln. Set w(1) = wn

L(j) and w(k) =
wn

L(i). If j < i, then we consider (w(k), . . . , w(1)) in place of (w(1), . . . , w(k)).
In this way, we may assume that j ≥ i without loss of generality. Let p̃ =
pn

L(wn
L(3n), wn

L(j + 1)) ∨ p ∨ pn
L(wn

L(j − 1), wn
L(1)). Since p̃ ∈ CHn(T, p↙), we

have
3n − j

3n
+ `A(p) +

i − 1
3n

= `A(p̃) ≥ 1

This immediately implies (6.5) in this case.

Lemma 6.10. Let X,Y ⊆ Wn. Assume that

inf{`X(p)|p ∈ CHn(T,B)} ≥ 1

and that
inf{`Y (p)|p ∈ CHn(T, p↙)} ≥ 1.

Define A = ↖ ·X ∪ ↑ ·Y . If p = (w(1), . . . , w(k)) ∈ CHn+1(T,B↖) and
{w(1), . . . , w(k)} ⊆ {↖, ↑}·Wn, then

`A(p) ≥ 1
3
.

Proof. Let w(i) = s(i)v(i), where s(i) ∈ {↖, ↑} and v(i) ∈ Wn.
First assume that s(1) =↖. Then there exist j1, j2, . . . , j2p+2 which satisfies

the following three conditions (C1), (C2) and (C3):
(C1) j1 = 1, j2p+2 = k + 1 and j1 < j2 < . . . < j2p+2

(C2) s(i) = ↖ for i = j2q−1, . . . , j2q − 1 and q = 1, . . . , p + 1
(C3) s(i) = ↑ for i = j2q, . . . , j2q+1 − 1 and q = 1, . . . , p.
Set p1,q = (w(j2q−1), . . . , w(j2q−1)) and p̃1,q = (v(j2q−1), . . . , v(j2q−1)). Since
(v(j2q−1), v(j2q − 1)) ∈ (Tn ×Rn)∪ (Rn ×Rn)∪ (Rn ×Bn), Lemma 6.9 and its
variants explained in the remark imply

`A(p1,q) =
1
3
`X(p̃1,q) ≥

1
3
`X(pn

R(v(j2q−1), v(j2q − 1))). (6.6)

Set p2,q = (w(j2q), . . . , w(j2q+1−1)) and p̃2,q = (v(j2q), . . . , v(j2q+1−1)). Since
(v(j2q), v(j2q+1 − 1)) ∈ Ln × Ln, Lemma 6.9 shows that

`A(p2,q) =
1
3
`Y (p̃2,q) ≥

1
3
`Y (pn

L(v(j2q), v(j2q+1 − 1))). (6.7)
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Note that for any i = 1, . . . , 3n, there exists l = 1, 2, . . . , 2q + 1 such that
In
l (v(jl)) ≤ i ≤ In

l (v(jl+1 − 1)) or In
l (v(jl)) ≥ i ≥ In

l (v(jl+1 − 1)). Hence

p+1∑
q=1

`X(pn
R(v(j2q−1), v(j2q − 1))) +

p∑
q=1

`Y (pn
L(v(j2q), v(j2q+1 − 1))) ≥ 1.

Combining this with (6.6) and (6.7), we obtain

`A(p) =
p+1∑
q=1

`A(p1,q) +
p∑

q=1

`A(p2,q) ≥
1
3
.

Thus we have shown the desired statement in the case when s(1) =↖.
If s(1) = ↑, slight modification of the above arguments yields the lemma as

well.

Definition 6.11. Define π : W∗ → W∗ by

π(w) =

{
w if ReFw(0) ≤ 0,
ϕ↔(w) if Re Fw(0) > 0.

For p = (w(1), . . . , w(k)) ∈ CHn, we define πn(p) = (π(w(1)), . . . , π(w(k)).
Also define ξ : W∗ → W∗ by

ξ(w) =

{
w if ReFw(0) ≤ Im Fw(0),
ϕ↔(ρ(w)) if ReFw(0) > Im Fw(0).

For p = (w(1), . . . , w(k)) ∈ CHn, we define ξn(p) = (ξ(w(1)), . . . , ξ(w(k)).

By the symmetry of mn, ⇑n and ↙↙n given in Lemma 6.7, we have the
following lemma.

Lemma 6.12. (1) πn : CHn → CHn, `mn
(πn(p)) = `mn

(p) and `⇑n(πn(p)) =
`⇑n(p).
(2) ξn : CHn → CHn and `↙↙n(ξn(p)) = `↙↙n(p).

Lemma 6.13. Suppose that

inf{`mn
(p)|p ∈ CHn(T,B)} ≥ 1 (6.8)

and
inf{`⇑n(p)|p ∈ CHn(T, {p↙, p↘}) ≥ 1. (6.9)

If p = (w(1), . . . , w(k)) ∈ CHn+1(T,B↖∪B↗) and {w(i)}k
i=1 ⊆ {↖, ↑,↗}·Wn,

then `mn+1(p) ≥ 1/3.

Proof. Replacing p by πn+1(p), we may assume that w(1), . . . , w(k) ∈ {↖, ↑
}·Wn and w(k) ∈↖ ·Bn without loss of generality. Set X =mn and Y =⇑n.
Then the assumptions (6.8) and (6.9) of Lemma 6.10 follows. Hence `mn+1(p) ≥
1/3.
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Lemma 6.14. Suppose that (6.8) holds and that

inf{`↙↙n(p)|p ∈ CHn(T ∪ R, p↙) ≥ 1. (6.10)

Let p = (w(1), . . . , w(k)) ∈ CHn+1(T,B↙). If {w(1), . . . , w(k)} ⊆ {↖, ↑,↗
}·Wn, then `↙↙n+1(p) ≥ 1/3.

Proof. First assume that {w(1), . . . , w(k)} ⊆ {↖, ↑}·Wn. By (6.3), applying
Lemma 6.10 with X = mn and Y = ↙↙n, we have `↙↙n+1(p) ≥ 1/3.

Next, suppose that w(i) ∈↗ ·Wn for some i. Let

i∗ = max{i|w(i) ∈ ↗·Wn} + 1.

and let
j∗ = min{j|w(j) ∈ ↖·Wn, j ≥ i∗} − 1.

Then, for i = {i∗, . . . , j∗}, there exists v(i) ∈ Wn such that w(i) =↑ ·v(i). Define

p∗ = (↑ ·ξ(v(i∗)), ↑ ·ξ(v(i∗ + 1)), . . . , ↑ ·ξ(v(j∗)), w(j∗ + 1), . . . , w(k)).

By (6.3) and Lemma 6.12,

`↙↙n+1((w(i∗), . . . , w(j∗))) =
1
3
`↙↙n(v(i∗), . . . , v(j∗)))

=
1
3
`↙↙n(ξ(v(i∗)), . . . , ξ(v(j∗))) = `↙↙n+1(↑ ·ξ(v(i∗)), . . . , ↑ ·ξ(v(j∗))).

Hence `↙↙n+1(p) ≥ `↙↙n+1(p∗). Let p∗ = (w∗(1), w∗(2), . . . , w∗(l)). Then w∗(i) ∈
{↖, ↑}·Wn for any i = 1, . . . , l. Now replacing p by p∗, we are exactly in the
first case and hence the desired inequality is satisfied.

Lemma 6.15. (6.8), (6.9) and (6.10) hold for any n ≥ 0.

Proof. We use induction on n. Obviously (6.8), (6.9) and (6.10) holds for n = 0
since mn,⇑n and ↙↙n are the empty sets. Assume that (6.8), (6.9) and (6.10)
are true for n = m.

First we show (6.8) holds for n = m + 1. Let p = (w(1), . . . , w(k)) ∈
CHm+1(T,B). Note that by Lemma 6.7-(1), πn+1(p) ∈ CHm+1(T,B) and
`mm+1(p) = `mm+1(πn+1(p)). Hence replacing p by πn+1(p), we may assume
that w(i) ∈ {↖, ↑,←,↙, ↓}·Wm for any i = 1, . . . , k without loss of generality.
Set w(i) = s(i)v(i), where s(i) ∈ {↖, ↑,←,↙, ↓} and v(i) ∈ Wm. We may
choose i1, i2, i3 and i4 which satisfies i1 < i2 < i3 < i4 and the following tree
conditions (a1), (b1) and (c1):
(a1) s(1), . . . , s(i1) ∈ {↖, ↑}, (v(1), . . . , v(i1)) ∈ CHm(T,B↙),
(b1) s(i) = ← for i = i2, . . . , i3, (v(i2), . . . , v(i3)) ∈ CHm(T,B),
(c1) s(i4), . . . , s(k) ∈ {↙, ↓}, w∗(i4) ∈ ↙·Tm.

Let p1 = (w(1), . . . , w(i1)). Then by the induction hypothesis, we may apply
Lemma 6.13 and see that `mm+1(ψ1) ≥ 1/3.
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Let p2 = (w(i2), . . . , w(i3)). Since (v(i2), . . . , v(i3)) ∈ CHm(T,B), the in-
duction hypothesis implies

`mm+1(p2) =
1
3
`mm

((v(i2), . . . , v(i3))) ≥
1
3
.

Set p3 = (w(i3), . . . , w(k)) and p̃3 = (ϕl(w(k)), ϕl(w(k − 1)), . . . , ϕl(w(i3))).
Then `mm+1(p3) = `mm+1(p̃3). As p1, we may apply Lemma 6.13 to p̃3 and
obtain `mm+1(p̃3) ≥ 1/3. Combining all the estimates on `mm+1(pi) for i =
1, 2, 3, we have `mm+1(p) ≥ 1.

Secondly, we show that (6.9) holds for n = m+1. Let p = (w(1), . . . , w(k)) ∈
CHm+1(T, {p↙, p↘}). As in the first case, we may assume that w(i) ∈ {↖, ↑
,←,↙, ↓} for any i = 1, . . . , k without loss of generality. Set w(i) = s(i)v(i),
where s(i) ∈ {↖, ↑,←,↙, ↓} and v(i) ∈ Wm. We may choose i1, i2, i3 and i4
which satisfies i1 < i2 < i3 < i4 and the following tree conditions (a2), (b2) and
(c2):
(a2) s(1), . . . , s(i1) ∈ {↖, ↑}, (v(1), . . . , v(i1)) ∈ CHm(T,B↙),
(b2) s(i) = ← for i = i2, . . . , i3, (v(i2), . . . , v(i3)) ∈ CHm(T,B),
(c2) s(i) =↙ for i = i4, . . . , k. (v(i4), . . . , v(k)) ∈ CHm(T ∪ R, p↙).

Define p1,p2 and p3 as in the first case. Then using the same discus-
sion as in the first case, we obtain `⇑m+1(pj) ≥ 1/3 for j = 1, 2. Since
(v(i4), . . . , v(k)) ∈ CHm(T ∪R, p↙), The induction hypothesis and Lemma 6.14
yield that `↙↙m((v(i4), . . . , v(k))) ≥ 1. By (6.2), it follows that

`⇑m+1(p3) =
1
3
`↙↙m((v(i4), . . . , v(k))) ≥ 1/3.

Thus, we have shown that `⇑m+1(p) ≥ 1.
Finally we show that (6.10) holds for n = m+1. Let p = (w(1), . . . , w(k)) ∈

CHm+1(T ∪ R, p↙). Note that ξm+1(p) ∈ CHm+1(T, p↙) and `↙↙m+1(p) =
`↙↙m+1(ξm+1(p)). Hence replacing p by ξm+1(p), we may assume that w(i) ∈
{↖, ↑,↗,←,↙}·Wm for any i = 1, . . . , k without loss of generality. Set w(i) =
s(i)v(i), where s(i) ∈ {↖, ↑,↗,←,↙} and v(i) ∈ Wm. We may choose i1, i2, i3
and i4 which satisfies i1 < i2 < i3 < i4 and the following tree conditions (a3),
(b3) and (c3):
(a3) s(1), . . . , s(i1) ∈ {↖, ↑}, (v(1), . . . , v(i1)) ∈ CHm(T,B↙),
(b3) s(i) = ← for i = i2, . . . , i3, (v(i2), . . . , v(i3)) ∈ CHm(T,B),
(c3) s(i) =↙ for i = i4, . . . , k. (v(i4), . . . , v(k)) ∈ CHm(T ∪ R, p↙).

Define p1,p2 and p3 as in the above two cases. Then by the induction
hypothesis and (6.3), it follows that `↙↙m+1(pj) ≥ 1/3 for j = 2, 3. Furthermore,
Lemma 6.14 implies `↙↙m+1(p1) ≥ 1/3. Hence we have `↙↙m+1(p) ≥ 1.

Thus we have obtained (6.8), (6.9) and (6.10) for n = m + 1.

Proof of Theorem 6.4. Since An ⊆ mn, `An(p) ≥ 1 for any p ∈ CHn(T,B). By
the fact that ⇔n= ρ(mn), it follows that `⇔n(p) ≥ 1 for any p ∈ CHn(L,R).
Hence `An(p) ≥ 1 for any p ∈ CHn(L, R). Thus An is invisible. By Lemma 6.7-
(1), it follows that An is +-invariant.

Lemma 6.3 shows that 8n − #(mn) = #(Wn\ mn) = αn. Since Wn\ mn⊆
Wn\An ⊆ (Wn\ mn) ∪ (Wn\ ⇔n), we have αn ≤ 8n − #(An) ≤ 2αn.
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∪

w∈W2

Fw([−1, 1]2)

Figure 5: Construction of K(4)

7 Generalized Sierpinski carpet

The idea of invisible sets can be exploited for the generalized Sierpinski carpets.
We will present results for a special class of the generalized Sierpinski carpet in
this section. We fix N ≥ 3. The complex plane C is identified with R2 in the
usual manner.

Definition 7.1. (1) For any (i, j) ∈ {1, . . . , N}2, we define J(i,j) = [−1 +
2(i − 1)/N,−1 + 2i/N ] × [−1 + 2(j − 1)/N,−1 + 2j/N ] and F(i,j) : R2 → R2

by F(i,j)(x, y) = (x/N + a(i,j), y/N + b(i,j)), where a(i,j) = −1 + (2i− 1)/N and
b(i,j) = −1 + (2j − 1)/N .
(2) Define S(N) = {(i, j)|(i, j) ∈ {1, . . . , N}2, i ∈ {1, N} or j ∈ {1, N}}. Let
K(N) be the unique compact set which satisfies

K(N) =
∪

(i,j)∈S(N)

F(i,j)

(
K(N)

)
.

When N = 3, K(3) is the Sierpinski carpet.

Proposition 7.2. #(S(N)) = 4N − 4 and dimH (K(N), dE) =
log (4N − 4)

log N
,

where dE is the restriction of the Euclidean metric.

In the following, we occasionally omit N in S(N) and K(N) and write them S
and K respectively. Also we use Wm,W∗ and Σ in place of Wm(S(N)),W∗(S(N))
and Σ(S(N)).

Definition 7.3. Let A ⊆ Wm.
(1) Let A ⊆ Wm. For p = (w(1), . . . , w(k)) ∈ CHm, define

`A(p) =
#({i|i = 1, . . . , k, w(i) /∈ A})

Nm
.
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(2) A is called an invisible set if and only if

inf
p∈CHm(T,B)∪CHm(L,R)

`A(p) ≥ 1,

where T,B,L and R are the same as in the last tree sections.

We also define the notion of +-invariance exactly same as in the previous
sections. Then the analogous results as Theorems 4.5 and 5.3 hold. As a
consequence we have the following statement.

Theorem 7.4. Let A ⊂ Wm be a +-invariant invisible set. Then

dimC(K(N), dE) ≤ log ((4N − 4)m − #(A))
m log N

.

A procedure which is similar to that in Section 6 produces a sequence of
invisible sets. We assume N ≥ 4 hereafter. The maps ϕ↔, ϕl and ρ from W∗
to itself associated with symmetries can be defined in the same way as in the
last section.

Definition 7.5. Define mn⊆ Wn and ↘↘n⊆ Wn inductively by

mn+1= {(i, j)|(i, j) ∈ S.i ∈ {1, N}}· mn

∪ (2, 1)· ↘↘n ∪(2, N)· ↗↗n ∪(N − 1, 1)· ↙↙n ∪ (N − 1, N)· ↖↖n

∪ {(i, j)|(i, j) ∈ S, j ∈ {1, N}, i /∈ {1, 2, N − 1, N}}·Wn,

↘↘n+1= {(1, N), (2, 1), (N − 1, N)}· ↘↘n

∪ {(1, j)|j = 1, . . . , N − 1}· mn ∪{(i,N)|i = 2, . . . , N}· ⇔n

∪ {(1, j)|j = 3, . . . , N}·Wn ∪ {(i,N)|i = 1, . . . , N − 2}·Wn,

m0= ∅ and ↘↘0= ∅, where ⇔n= ρ(mn), ↙↙n = ϕ↔(↘↘n), ↗↗n= ϕl(↘↘n) and
↖↖n= ϕ↔(↗↗n).

By the above definition, it follows that

xn+1 = 2Nxn + 4yn + 2(N − 4)(4N − 4)n

yn+1 = 2(N − 1)xn + 3yn + (2N − 5)(4N − 4)n,

where xn = #(mn) and yn = #(↘↘n). Define

τN =
√

4N2 + 20N − 23.

Then we have

xn =

(4N−4)n−
(2N + 5

2τN
+

1
2

)(2N + 3 + τN

2

)n

+
(2N + 5

2τN
− 1

2

)(2N + 3 − τN

2

)n
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Figure 6: Construction of mn and ↘↘n for N = 5

The same discussion as in the last section shows

inf
p∈CHn(T,B)

`mn
(p) ≥ 1.

Hence we obtain the counterpart of Theorem 6.4.

Theorem 7.6. Let An = mn ∩ ⇔n. Then An is +-invariant invisible set and
there exist c1, c2 > 0 such that

c1

(2N + 3 + τN

2

)n

≤ (4N − 4)n − #(An) ≤ c2

(2N + 3 + τN

2

)n

for sufficiently large n.

As an corollary, we obtain the following estimate of the conformal dimension
of K(N). The lower estimate is shown by applying [6, Example 4.1.9].

Corollary 7.7.

log (2N)
log N

≤ dimC(K(N), dE) ≤
log 2N+3+τN

2

log N

<
log (4N − 4)

log N
= dimH (K(N), dE).

Remark.
2N + 3 ≤ 2N + 3 + τn

2
< 2N + 4.
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