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1 Introduction

Originally, the main purpose of this paper is to give answers to the following two
questions on heat kerenels associated with resistance forms or, in other words,
strongly recurrent Hunt processes.

(I) When and how can we find a metric which is suitable for describing asymp-
totic behaviors of a given heat kernel?

(II) What kind of requirement for jumps of a process is necessary to ensure a
good asymptotic behavior of the heat kernel associated with the process?

Eventually we are going to make these questions more precise. For the mo-
ment, let us explain what a heat kernel is. Assume that we have a regular
Dirichlet form (E ,F) on L2(X,µ), where X is a metric space and µ is a Borel
regular measure on X. Let L be the “Laplacian” associated wiht this Dirichlet
form, i.e. Lv is characterized by the unique element in L2(X,µ) which satisfies

E(u, v) = −
∫

X

u(Lu)dµ
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for any u ∈ F . A nonnegative measurable functon p(t, x, y) on (0,∞) × X × X
is called the heat kernel associated with the Dirichlet form (E ,F) on L2(X,µ)
if

u(t, x) =
∫

X

p(t, x, y)u(y)µ(dy)

for any initial value u ∈ L2(X,µ), where u(t, x) is the solution of the heat
equation associated with the Laplacian L:

∂u

∂t
= Lu.

The heat kernel may not exist in general. However, it is know to exist in many
cases like the Browinan motions on the Euclidean spaces, Reimannian manifolds
and certain classes of fractals.

If the Dirichlet form (E ,F) has the local property, in other words, the cor-
rresponding stochastic process is diffusion, then one of the preferable goals on
an asymptotic estimate of a heat kernel is to show the so-called Li-Yau type
(sub-)Gaussian estimate, which is

p(t, x, y) ≃ c1

Vd(x, t1/β)
exp

(
− c2

(
d(x, y)β

t

)1/(β−1)
)

, (1.1)

where d is a metric on X, Vd(x, r) is the volume of a ball Bd(x, r) = {y|d(x, y) <
r} and β ≥ 2 is a constant. It is well-known that the heat kernel of the Brownian
motion on Rn is Gaussian which is a special case of (1.1) with d(x, y) = |x− y|,
β = 2 and Vd(x, r) = rn. Li and Yau have shown in [38] that, for a complete
Riemannian manifold with non-negative Ricci curvature, (1.1) holds with β = 2,
where d is the geodesic metric and Vd(x, r) is the Riemannian volume. In this
case, (1.1) is called the Li-Yau type Gaussian estimate. Note that Vd(x, t1/β)
may have inhomogeneity with respect to x in this case. On the other hand, for
fractals, Barlow and Perkins have shown in [9] that the Brownian motion on the
Sierpinski gasket satisfies sub-Gaussian estimate, that is, (1.1) with d(x, y) =
|x−y|, β = log 5/ log 2 and Vd(x, r) = rα, where α = log 3/ log 2 is the Hausdorff
dimension of the Sierpinski gasket. Note that Vd(x, r) is homogeneous in this
particular case. Full generality of (1.1) is realized, for example, by a certain
time change of the Brownian motion on [0, 1], whose heat kernel satisfies (1.1)
with β > 2 and inhomogeneous Vd(x, r). See [35] for details.

There have been extensive studies on the conditions which is equivalent to
(1.1). For Riemannian manifolds, Gregor’yan [19] and Saloff-Coste [42] have
independently shown that the Li-Yau type Gaussian esitmate is equivalent to
the Poincaré inequality and the voulme doubling property. For random walks
on weighted graphs, Grigor’yan and Telcs have obtained several equivalent con-
ditions for general Li-Yau type sub-Gaussian estimate, for example, the combi-
nation of the volume doubling property, the elliptic Harnack inequality and the
Poincaré inequality in [21, 22]. Similar results have been obtained for diffusions.
See [27] and [10] for example.
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The importance of the Li-Yau type (sub-)Gaussian estimate (1.1) is that it
describe the asymptotic behavior of analytical object, namely, the heat kernel
p(t, x, y) in terms of the geometrical objects like the metric d and the volume
of a ball Vd(x, r). Such an interpaly of analysis and geometry makes the study
of heat kernels interesting. In this paper, we have resistance forms on the side
of analysis and quasisymmetric maps on the side of geometry. To establish a
foundation in studying heat kernel estimates, we first need to do considarable
works on both sides, i.e. resistance forms and quasisymmetric maps. Those two
subjects come to the other main parts of this paper as a consequence.

The theory of resistance forms has been developed to study analysis on
“low-dimensional” fractals including the Sierpinski gasket, the 2-dimensional
Sierpinski carpet, random Sierpinski gaskets and so on. Roughly, a non-negative
quadratic form E on a subspace F of real-valued functions on a set X is called
a resistance form on X if it has the Markov property and

min{E(u, u)|u ∈ F , u(x) = 1 and u(y) = 0}

exists and is positive for any x ̸= y ∈ X. The reciprocal of the above minimum,
denoted by R(x, y), is known to be a metric (distance) and is called the resis-
tance metric associated with (E ,F). See [33] for details. In Part I, we are going
to establish fundamental notions on resistance forms, for instance, the existence
and properties of the Green function with an infinite set as a boundary, regu-
larity of a resistance form, traces, the existence and continuity of heat kernels.
More precisely, let µ be a Borel regular measure on (X,R). In Section 8, (E ,F)
is shown to be a regular Dirichlet form on L2(X,µ) under weak assumptions.
We also prove that the associated heat kernel p(t, x, y) exists and is continuous
on (0,∞) × X × X in Section 9.

The notion of quasisymmetric maps has been introduced by Tukia and
Väisälä in [45] as a generalization of qusiconformal mappings in the complex
plane. Soon its importance has been recognized in wide area of analysis and
geometry. There have been many works on quasisymmetric maps since then.
See Heinonen [28] and Semmes [43] for references. In this paper, we are going
to modify the resistance metric R quasisymmetrically to obtain a new metric
which is more suitable for describing an asymptotic behavior of the heat kernel.
The key will be to realize the following relation:

Resistance × Volume ≃ (Distance)β , (1.2)

where “Volume” is the volume of a ball and “Distance” is the distance with
repsect to the new metric. Quasisymmetric modification of a metric has many
advantages. For example, it preserves the volume doubling property of a mea-
sure. In Part II, we will study quasisymmetric homeomorphisms on a metric
space. In particular, we are going to establish relations between properties such
as (1.2) concerning the original metric D, the quasisymmetrically modified met-
ric d and the volume of a ball Vd(x, r) = µ(Bd(x, r)) and show how to construct
a metric d which is quasisymmetric to original metric D and satisfy a required
property like (1.2).
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Let us return to question (I). We will confine ourselves to the case of diffusion
processes for simplicity. The lower part of the Li-Yau type (sub-)Gaussian
estimate (1.1) is known to hold only when the distance is geodesic, i.e. any
two points are connected by a geodesic curve. This is not the case for most of
general metric spaces. So, we use an adequate substitute called near diagonal
lower estimate, (NDL)β,d for short. We say that (NDL)β,d holds if and only if

c3

Vd(x, t1/β)
≤ p(t, x, y) (1.3)

when d(x, y)β ≤ c4t. For upper estimate, the Li-Yau type (sub-)Gaussian upper
estimate of order β, (LYU)β,d for short, is said to hold if and only if

p(t, x, y) ≤ c5

Vd(x, t1/β)
exp

(
− c6

(
d(x, y)β

t

)1/(β−1)
)

. (1.4)

Another important property is the doubling property of a heat kernel, (KD) for
short, that is,

p(t, x, x) ≤ c7p(2t, x, x). (1.5)
Note that p(t, x, x) is monotonically decreasing with respect to t. If is known
that the Li-Yau type (sub-)Gaussian heat kernel estimate togother with the vol-
ume doublling property implies (KD). Let p(t, x, y) be the heat kernel associated
with a diffusion process. Now, the question (I) can be rephrased as follows:

Question When and how can we find a metric d under which p(t, x, y) satisfy
(LYU)β,d, (NDL)β,d and (KD)?
In Corollary 14.12, we are going to answer this if the Dirichlet form associated
with the diffusion process is derived from a resistance form. Roughly speaking,
our answer is the following.

Answer The underlying measure µ has the volume doubling property with
respect to the resistance metric R if and only if there exist β > 1 and a metric
d which is quaisymmetric with respect to R such that (LYU)β,d, (NDL)β,d and
(KD) hold.

Of course, one can ask the same question for general diffusion process with a
heat kernel. Such a problem is very interesting. In this paper, however, we only
consider the case where the process is associate with a resistance form.

Next, we are going to explain the second problem, the question (II). Re-
cently, there have been many results on an asymtotic behavior of a heat kernel
associated with a jump process. See [11, 13, 14, 5] for example. They have dealt
with a specific class of jump processes and studied a set of conditions which is
equivalent to certain kind of (off-diagonal) heat kernel estimate. For example,
in [13], they have shown the existence of jointly continuous heat kernel for an
generalization of α-stable process on an Ahlfors regular set and give a condition
for best possible off-diagonal heat kernel estimate. In this paper, we will only
consider the following Li-Yau type on-diagonal estimate, (LYD)β,d for short,

p(t, x, x) ≃ 1
Vd(x, t1/β)

(1.6)
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which is the diagonal part of (1.1). Our question is

Question When and how can we find a metric d with (LYD)β,d for a given
(jump) process which posesses a heat kernel?

In this case, the “when” part of the question includes the study of the require-
ment on jumps. In this paper, again we confine our selves to the case when
a process is associated with a resistance form. Our proposal for a condition
on jumps is the annulus comparable condition, (ACC) for short, which says
that the resistance between a point and the complement of a ball is comparable
with the resistance between a point and an annulus. More exactly, (ACC) is
formulated as

R(x,BR(x, r)c) ≃ R(x,AR(x, r, (1 + ϵ)r)) (1.7)

for some ϵ > 0, where R is a resistance metric, BR(x, r) is a resistance ball
and AR(x, r, (1 + ϵ)r) = BR(x, (1 + ϵ)r)\BR(x, r) is an annulus. If the process
in question has no jump, i.e. is a diffusion process, then the quantities in the
both sides of (1.7) coincide and hence (ACC) holds. As our answer to the above
question, we obtain the following statement in Theorem 14.11:

Theorem 1.1. The following three conditions are equivalent:
(C1) The underlying measure µ has the volume doubling property with respect
to R and (ACC) holds.
(C2) The underlying measure µ has the volume doubling property with respect
to R and the so-called “Einstein relation”:

Resistance × Volume ≃ Average escape time

holds for the resistance metric.
(C3) (ACC) and (KD) is satisfied and there exist β > 1 and a metric d which
is quasisymmetric with respect to R such that (LYD)β,d holds.

See [22, 44] on the Einstein relation, which is known to be implied by the
Li-Yau type (sub-)Gaussian heat kernel estimate.

Our work on heat kernel estimates is largely inspired by the previous two
papers [6] and [37]. In [6], the strongly recurrent random walk on infinite graph
has been studied by using two different metrics, one is the shortest path metric
d on a graph and the other is the resistance metric R. It has shown that the
condition R(β), that is,

R(x, y)Vd(x, d(x, y)) ≃ d(x, y)β

is essentially equivalent to the random walk version of (1.1). Note the resem-
blance between (1.2) and R(β). The metric d is however fixed in their case. In
[37], Kumagai has studied the (strongly recurrent) diffusion process associated
with a resistance form using the resistance metric R. He has shown that the
uniform doubling property with respect to R is equivalent to the combination
of natural extensions of (LYU)β,d and (NDL)β,d with respect to R. Examin-
ing those results carefully from geometrical view point, we have realized that
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quasisymmetric change of metrics (implicitly) plays an important role. In this
respect, this paper can be though of an extension of those works.

There is another closely related work. In [30], a problem which is very
similar to our question (I) has been investigated for a heat kernel associated
with a self-similar Dirichlet form on a self-similar set. The result in [30] is also
quite similar to ours. It has been shown that the volume doubling property of
the underlying measure is equivalent to the existence of a metric with (LYD)β,d.
Note that the results in [30] include higher dimensional Sierpinski carpets where
the self-similar Dirichlet forms are not resistance forms. The processes studied
in [30], however, have been all diffusions

Finally, we present one application of our results to an α-stable process on
R for α ∈ (1, 2]. Define

E(α)(u, u) =
∫

R2

(u(x) − u(y))2

|x − y|1+α
dxdy

and F = {u|E(α)(u, u) < +∞} for α ∈ (1, 2) and (E(2),F (2)) is the ordinary
Dirichlet form associated with the Brownian motion on R. Then (E(α),F (α)) is a
resistance form for α ∈ (1, 2] and the associated resistance metric is c|x−y|α−1.
If α ̸= 2, then the corresponding process is not a diffusion but has jumps. If
p(α)(t, x, x) is the associated heat kernel, it is well known that p(α)(t, x, x) =
ct1/α. Let (E(α)|K ,F (α)|K) be the trace of (E(α),F (α)) onto the ternary Cantor
set K. Let p

(α)
K (t, x, y) be the heat kernel associated with the Dirichlet form

(E(α)|K ,F (α)|K) on L2(K, ν), where ν is the normalized Hausdorff measure of
K. By Theorem 14.13, we may confirm that (ACC) holds and obtain

p
(α)
K (t, x, x) ≃ t−η,

where η = log 2
(α−1) log 3+log 2 . See Section 15 for details.

This paper consists of four parts. In Part I, we will develop basic theory
of resistance forms regarding the Green function, trace of a form, regularity
and heat kerenels. This part is the foundation of the discussion in Part III.
Part II is devoted to studying quasisymmetric homeomorphisms. This is another
foundation of the discussion in Part III. After preparing those basics, we will
consider heat kernel estimates in Part III. Finally in Part IV, we consider
estimates of heat kernels on random Sierpinski gaskets as an application of the
theorems in Part III.

The followings are conventions in notations in this paper.
(1) Let f and g be functions with variables x1, . . . , xn. We use “f ≃ g for any
(x1, . . . , xn) ∈ A” if and only if there exist positive constants c1 and c2 such
that

c1f(x1, . . . , xn) ≤ g(x1, . . . , gn) ≤ c2f(x1, . . . , xn)

for any (x1, . . . , xn) ∈ A.
(2) The lower case c (with or without a subscript) represents a constant which
is independent of the variables in question and may have different values from
place to place (even in the same line).
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2 List of frequently used abbreviations

(ACC): Annulus comparable condition, Definition 6.1.
(VD)d: Volume doubling property with respect to d, Definition 6.5-(2).
(RES): Resistance estimate, Definition 6.9.
(SQS)d: Semi-quasisymmetric, Definition 10.1.
(SQC)d: Semi-quasiconformal, Definition 10.4-(2).
(ASQC)d: Annulus semi-qausiconformal, Definition 10.4-(3).
d ∼

QS
ρ: quasisymmetric, Definition 11.1.

(DM1): Definition 12.1-(1).
(DM2): Definition 12.1-(2).
(DM3): Definition 12.1-(3).
(EIN)d: the Einstein relation, Definition 14.3-(2).
(DHK)g,d: on-diagonal heat kernel estimate, Definition 14.9-(1).
(KD): Doubling property of the heat kernel, Definition 14.9-(2).
(DM1)g,d: Definition 14.9-(3).
(DM2)g,d: Definition 14.9-(4).
(HK)g,d: Theorem 14.10.
(EL): Theorem 22.2.
(GE): Theorem 22.2.

Part I

Resistance forms and heat kernels
In this part, we will establish basics of resistance forms such as the Green
function, harmonic functions, traces and heat kernels. In the previous papers
[33, 31, 34], we have established the notions of the Green function, harmonic
functions and traces if a boundary is a finite set. One of the main subjects is
to extend those results to the case where a boundary is an infinite set. In fact,
this is more than a matter of extesion but at first we should determine what
kind of an infinite set can be regarded as a proper boundary. Moreover, we
will establish the existence of jointly continuous heat kernel associated with the
Dirichlet form derived from a resistance form under several mild assumptions,
which do not include the ultracontractivity.

The followings are basic notations used in this paper.

Notation. (1) For a set V , we define ℓ(V ) = {f |f : V → R}. If V is a finite
set, ℓ(V ) is considered to be equipped with the standard inner product (·, ·)V

defined by (u, v)V =
∑

p∈V u(p)v(p) for any u, v ∈ ℓ(V ). Also |u|V =
√

(u, u)V

for any u ∈ ℓ(V ).
(2) Let V be a finite set. The characteristic function χV

U of a subset U ⊆ V is
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defined by

χV
U (q) =

{
1 if q ∈ U ,
0 otherwise.

If no confusion can occur, we write χU instead of χV
U . If U = {p} for a point

p ∈ V , we write χp instead of χ{p}. If H : ℓ(V ) → ℓ(V ) is a linear map, then
we set Hpq = (Hχq)(p) for p, q ∈ V . For f ∈ ℓ(V ), (Hf)(p) =

∑
q∈V Hpqf(q).

(3) Let (X, d) be a metric space. Then

Bd(x, r) = {y|y ∈ X, d(x, y) < r}

for x ∈ X and r > 0.

3 Topology associated with a subspace of func-
tions

In this section, we will introduce the operation B → BF from subsets of a space
X to itself associated with a linear subspace F of real valued functions ℓ(X).
This operation will turn out to be essential in describing whether a set can be
treated as a boundary or not.

Definition 3.1. Let F be a linear subspace of ℓ(X) for a set X. For a subset
B ⊆ X, define

F(B) = {u|u ∈ F , u(x) = 0 for any x ∈ B}.

and
BF =

∩
u∈F(B)

u−1(0)

The following lemma is immediate from the definition.

Lemma 3.2. Let F be a linear subspace of ℓ(X) for a set X.
(1) For any B ⊆ X, B ⊆ BF , F(B) = F(BF ) and (BF )F = BF .
(2) XF = X.
(3) ∅F = ∅ if and only if {u(x)|u ∈ F} = R for any x ∈ X.

The above lemma suggests that the operation B → BF satisfy the axiom of
closure and hence it defines a topology on X. Indeed, this is the case if F is
stable under the unit contraction.

Theorem 3.3. Let F be a linear subspace of ℓ(X) for a set X. Assume that
{u(x)|u ∈ F} = R for any x ∈ X and that u ∈ F for any u ∈ F , where u is
defined by

u(p) =


1 if u(p) ≥ 1,
u(p) if 0 < u(p) < 1,
0 if u(p) ≤ 0.
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Then CF = {B|B ⊆ X,BF = B} satisfies the axiom of closed sets and it defines
a topology of X. Moreover, the T1-axiom of separation holds for this topology,
i.e. {x} is a closed set for any x ∈ X, if and only if, for any x, y ∈ X with
x ̸= y, there exists u ∈ F such that u(x) ̸= u(y).

F is said to be stable under the unit contraction if u ∈ F for any u ∈ F .

Lemma 3.4. Under the assumptions of Theorem 3.3, if x ∈ X,B ∈ CF and
x /∈ B, then there exists u ∈ F such that u ∈ F(B), u(x) = 1 and 0 ≤ u(y) ≤ 1
for any y ∈ X.

Proof. Since BF = B, there exists v ∈ F(B) such that v(x) ̸= 0. Let u =
v/v(x). Then u satisfies the required properties.

Proof of Theorem 3.3. First we show that CF satisfies the axiom of closed sets.
Since F(X) = {0}, XF = 0. Also we have ∅F = ∅ by Lemma 3.2-(3). Let
Bi ∈ CF for i = 1, 2 and let x ∈ (B1 ∪ B2)c, where Ac is the complement of A
in X, i.e. Ac = X\A. By Lemma 3.4, there exists ui ∈ F(Bi) such that ui = ui

and ui(x) = 1. Let v = u1 + u2 − 1. Then v(x) = 1 and v(y) ≤ 0 for any
y ∈ B1 ∪B2. If u = v, then u ∈ F(B1 ∪B2) and u(x) = 1. Hence B1 ∪B2 ∈ CF .
Let Bλ ∈ CF for any λ ∈ Λ. Set B = ∩λ∈ΛBλ. If x /∈ B, then there exists
λ∗ ∈ Λ such that x /∈ Bλ∗ . We have u ∈ F(Bλ) ⊆ F(B) satisfying u(x) ̸= 0.
Hence x /∈ BF . This shows B ∈ CF . Thus we have shown that CF satisfies the
axiom of closed sets.

Next define Ux,y =
{(

f(x)
f(y)

) ∣∣∣∣f ∈ F
}

. We will show that Ux,y = R2 if

there exists u ∈ F such that u(x) ̸= u(y). Suppose that u(x) ̸= 0. Considering

u/u(x), we see that
(

1
a

)
∈ Ux,y, where a ̸= 1. Since there exists v ∈ F with

v(y) ̸= 0, it follows that
(

b
1

)
∈ Ux,y for some b ∈ R. Now we have five cases.

Case 1: Assume that a ≤ 0. Considering the operation of u for u ∈ F , we have(
1
0

)
∈ Ux,y. Also

(
b
1

)
∈ Ux,y. Since Ux,y is a linear subspace of R2, Ux,y

coincides with R2.
Case 2: Assume that b ≤ 0. By the similar argument as Case 1, we have
Ux,y = R2.

Case 3: Assume that b ≥ 1. The u-operation shows that
(

1
1

)
∈ Ux,y. Since((

1
1

)
,

(
1
a

))
is independent, Ux,y = R2.

Case 4: Assume that a ∈ (0, 1) and b ∈ (0, 1). Then
((

1
a

)
,

(
b
1

))
is indepen-

dent. Hence Ux,y = R2.

Case 5: Assume that a > 1 and b ∈ (0, 1). The u-operation shows
(

1
1

)
∈ Ux,y.

Then
((

1
1

)
,

(
b
1

))
is independent and hence Ux,y = R2.
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Thus Ux,y = R2 in all the cases. Exchanging x and y, we also deduce the same
conclusion even if u(x) = 0. In particular, the fact that Ux,y = R2 implies
that y /∈ {x}F . Hence if there exists u ∈ F such that u(x) ̸= u(y) for any
x, y ∈ X with x ̸= y, then {x} ∈ CF for any x ∈ X. The converse direction is
immediate.

4 Resistance forms and the Green functions

In this section, we first introduce definition and basics on resistance forms and
then study the Green function associated with an infinite set as a boundary. In
the course of discussion, we will show that a set B is a suitable boundary if and
only if BF = B.

Definition 4.1 (Resistance form). Let X be a set. A pair (E ,F) is called
a resistance form on X if it satisfies the following conditions (RF1) through
(RF5).
(RF1) F is a linear subspace of ℓ(X) containing constants and E is a non-
negative symmetric quadratic form on F . E(u, u) = 0 if and only if u is constant
on X.
(RF2) Let ∼ be an equivalent relation on F defined by u ∼ v if and only if
u − v is constant on X. Then (F/∼, E) is a Hilbert space.
(RF3) If x ̸= y, then there exists u ∈ F such that u(x) ̸= u(y).
(RF4) For any p, q ∈ X,

sup{ |u(p) − u(q)|2

E(u, u)
: u ∈ F , E(u, u) > 0}

is finite. The above supremum is denoted by R(E,F)(p, q).
(RF5) u ∈ F and E(ū, ū) ≤ E(u, u) for any u ∈ F .

By (RF3) and (RF5) along with Theorem 3.3, the axiom of closed sets holds
for CF and the associated topology satisfies the T1-separation axiom.

Proposition 4.2. Assume that u ∈ F for any u ∈ F . Then (RF3) in the above
definition is equivalent to the following conditions:
(RF3-1) FF = F for any finite subset F ⊆ X.
(RF3-2) For any finite subset F ⊂ X and any v ∈ ℓ(F ), there exists u ∈ F
such that u|F = v.

Proof. (RF3) ⇒ (RF3-1) By Theorem 3.3, (RF3) implies that {x}F = {x} for
any x ∈ X. Let F be a finite subset of X. Again by Theorem 3.3, FF =
(∪x∈F {x})F = ∪x∈F {x}F = F .
(RF3-1) ⇒ (RF3-2) Let F be a finite subset of X. Set Fx = F\{x} for x ∈ F .
Since (Fx)F = Fx, there exists ux ∈ F such that ux|Fx ≡ 0 and ux(x) = 1. For
any v ∈ ℓ(F ), define u =

∑
x∈F v(x)ux. Then u|F = v and u ∈ F .

(RF3-2) ⇒ (RF3) This is obvious.
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Remark. In the previous literatures [33, 31, 34], (RF3-2) was employed as a part
of the definition of resistance forms in place of the current (RF3).

It is known that the supremum in (RF4) is the maximum for a resistance
form and R(E,F) is a metric on X. See [33] for example. We use R to denote
R(E,F) and call it the resistance metric associated with (E ,F). By (RF4), we
immediately obtain the following fact.

Proposition 4.3. Let (E , F ) be a resistance form on X and let R be the asso-
ciated resistance metric. For any x, y ∈ X and any u ∈ F ,

|u(x) − u(y)|2 ≤ R(x, y)E(u, u). (4.1)

In particular, u ∈ F is continuous with respect to the resistance metric.

Next we recall the notion of Laplacians on a finite set and harmonic functions
with a finite set as a boundary. See [33, Section 2.1] for details, in particular,
the proofs of Proposition 4.5 and 4.6.

Definition 4.4. Let V be a non-empty finite set. Recall that ℓ(V ) is equipped
with the standard inner-product (·, ·)V . A symmetric linear operator H :
ℓ(V ) → ℓ(V ) is called a Laplacian on V if it satisfies the following three condi-
tions:

(L1) H is non-positive definite,

(L2) Hu = 0 if and only if u is a constant on V ,

(L3) Hpq ≥ 0 for all p ̸= q ∈ V .
We use LA(V ) to denote the collection of Laplacians on V .

The next proposition says that a resistance form on a finite set corresponds
to a Laplacian.

Proposition 4.5. Let V be a non-empty finite set and let H be a linear operator
form ℓ(V ) to itself. Define a symmetric bilinear form EH on ℓ(V ) by EH(u, v) =
−(u,Hv)V for any u, v ∈ ℓ(V ). Then, EH is a resistance from on V if and only
if H ∈ LA(V ).

The harmonic function with a finite set as a boundary is defined as the
energy minimizing function.

Proposition 4.6. Let (E ,F) be a resistance from on X and let V be a finite
subset of X. Let ρ ∈ ℓ(V ). Then there exists a unique u ∈ F such that u|V = ρ
and u attains the following minimum:

min{E(v, v)|v ∈ F , v|V = ρ}.

Moreover, the map from ρ to u is a linear map from ℓ(V ) to F . Denote this
map by hV . Then there exists a Laplacian H ∈ LA(V ) such that

EH(ρ, ρ) = E(hV (ρ), hV (ρ)). (4.2)
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Definition 4.7. hV (ρ) defined in Proposition 4.6 is called the V -harmonic
function with the boundary value ρ. Also we denote the above H ∈ LA(V ) by
H(E,F),V .

Hereafter in this section, (E ,F) is always a resistance form on a set X and
R(·, ·) is the resistance metric associated with (E ,F).

Proposition 4.8. BF is a closed set with respect to the resistance metric R.
In other word, the topology associated with CF is weaker than that given by the
resistance metric.

Proof. Let {xn}n≥1 ⊂ BF . Assume limn→∞ R(x, xn) = 0. If u ∈ F(B), then
u(x) = limn→∞ u(xn) = 0 for any u ∈ F(B). Hence x ∈ BF .

The next theorem establishes the existence and basic properties of the Green
function with an infinite set as a boundary.

Theorem 4.9. Let B ⊆ X be non-empty. Then (E ,F(B)) is a Hilbert space
and there exists a unique gB : X ×X → R that satisfies the following condition
(GF1):
(GF1) Define gx

B(y) = gB(x, y). For any x ∈ X, gx
B ∈ F(B) and E(gx

B , u) =
u(x) for any u ∈ F(B).

Moreover, gB satisfies the following properties (GF2), (GF3) and (GF4):
(GF2) gB(x, x) ≥ gB(x, y) = gB(y, x) ≥ 0 for any x, y ∈ X. gB(x, x) > 0 if
and only if x /∈ BF .
(GF3) Define R(x,B) = gB(x, x) for any x ∈ X. If x /∈ BF , then

R(x,B) =
(
min{E(u, u)|u ∈ F(B), u(x) = 1}

)−1

= sup
{
|u(x)|2

E(u, u)

∣∣∣∣u ∈ F(B), u(x) ̸= 0
}

.

(GF4) For any x, y, z ∈ X, |gB(x, y) − gB(x, z)| ≤ R(y, z).

By (GF2), if B ̸= BF , then gx
B ≡ 0 for any x ∈ BF\B. Such a set B is not

a good boundary.
We will prove this and the next theorem at the same time.

Definition 4.10. The function gB(·, ·) given in the above theorem is called the
Green function associated with the boundary B or the B-Green function.

The next theorem assures another advantage of being B = BF . Namely, if
B = BF , we may reduce B to a one point, consider the “shorted” resistance form
(E ,FB) and obtain a expression of the Green function (4.3) by the “shorted”
resistance metric RB(·, ·).

Theorem 4.11. Let (E ,F) be a resistance form and let B ⊆ X be non-empty.
Suppose that BF = B. Set

FB = {u|u ∈ F , u is a constant on B}
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and XB = {B} ∪ (X\B). Then (E ,FB) is a resistance form on XB. Further-
more, if RB(·, ·) is the resistance metric associated with (E ,FB), then

gB(x, y) =
RB(x,B) + RB(y,B) − RB(x, y)

2
(4.3)

for any x, y ∈ X. In particular, R(x,B) = RB(x,B) for any x ∈ X\B.

Remark. In [40, Section 3], V. Metz has shown (4.3) in the case where B is a
one point.

The proofs of the those two theorems are divided into several parts.
Note that B is closed with respect to R if BF = B.

Proof of the first half of Theorem 4.9. Let x ∈ B. By (RF2), (E ,F(x)) is a
Hilbert space, where F(x) = F({x}). Note that F(B) ⊆ F(x). If {um}m≥1 is
a Cauchy sequence in F(B), there exists the limit u ∈ F(x). For y ∈ B,

|um(y) − u(y)|2 ≤ R(x, y)E(um − u, um − u).

Letting m → ∞, we see that u(y) = 0. Hence u ∈ F(B). This shows that
(E ,F(B)) is a Hilbert space. For any z ∈ X and any u ∈ F(B), |u(z)|2 ≤
R(x, y)E(u, u). The map u → u(z) is continuous linear functional and hence
there exists a unique ϕz ∈ F(B) such that E(ϕz, u) = u(z) for any u ∈ F(B).
Define gB(z, w) = ϕz(w). Since E(ϕz, ϕw) = ϕz(w) = ϕw(z), we have (GF1)
and gB(z, w) = gB(w, z). If z ∈ BF , then u(z) = 0 for any u ∈ F(B). Hence
gB(z, z) = gz

B(z) = 0. Conversely, assume gB(z, z) = 0. Since gB(z, z) =
E(gz

B , gz
B), (RF1) implies that gz

B is constant on X. On the other hand, gz
B(y) =

0 for any y ∈ B. Hence gz
B ≡ 0. For any u ∈ F(B), u(z) = E(gz

B , u) = 0.
Therefore, z ∈ BF .

Lemma 4.12. Let B ⊆ X be non-empty. Define u∗(y) = gx
B/gB(x, x) for

x /∈ BF . Then u∗ is the unique element which attains the following minimum:

min{E(u, u)|u ∈ F(B), u(x) = 1}.

In particular, (GF3) holds.

Proof. Let u ∈ F(B) with u(x) = 1. Since

E(u − u∗, u∗) =
E(u − u∗, g

x
B)

gB(x, x)
=

(u(x) − u∗(x))
gB(x, x)

= 0,

we have
E(u, u) = E(u − u∗, u − u∗) + E(u∗, u∗)

Hence E(u, u) ≥ E(u∗, u∗) and if the equality holds, then u = u∗. Now,

E(u∗, u∗) =
E(gx

B , gx
B)

gB(x, x)2
=

1
gB(x, x)

.

This suffices for (GB3).
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Definition 4.13. Let B ⊆ X be non-empty. If x /∈ BF , we define ψB
x =

gx
B/gB(x, x).

Lemma 4.14. Let B ⊆ X be non-empty. Then gB(x, x) ≥ gB(x, y) ≥ 0 for
any x, y ∈ X.

Proof. If x ∈ BF , then gx
B ≡ 0. Otherwise, set u∗(y) = gx

B(y)/gB(x, x). Define
v = u∗. Then by (RF5), E(u∗, u∗) ≥ E(v, v). The above lemma shows that
u∗ = v. Hence 0 ≤ u∗ ≤ 1.

So far, we have obtained (GF1), (GF2) and (GF3). Before showing (GF4),
we prove Theorem 4.11.

Proof of Theorem 4.11. (RF1), (RF2) and (RF5) are immediate by the defini-
tion of FB . To show (RF3), let x and y ∈ X with x ̸= y. We may assume
y ̸= B without loss of generality. Set Bx = B ∪ {x}. Since (Bx)F = Bx, there
exists u ∈ F(Bx) such that u(y) ̸= 0. Hence we obtain (RF3). To see (RF4),
note that

sup
{
|u(x) − u(y)|2

E(u, u)

∣∣∣∣u ∈ FB , E(u, u) > 0
}

≤ R(E,F)(x, y)

because FB ⊆ F . Hence we have (RF4). To prove (4.3), it is enough to show
the case where B is a one point. Namely we will show that

g{z}(x, y) =
R(x, z) + R(y, z) − R(x, y)

2
(4.4)

for any x, y, z ∈ X. We write g(x, y) = g{z}(x, y). The definition of R(·, ·)
along with Lemma 4.12 shows that g(x, x) = R(x, z). Also by Lemma 4.12, if
u∗(y) = g(x, y)/g(x, x), then u∗ is the {x, z}-harmonic function whose boundary
values are u∗(z) = 0 and u∗(x) = 1. Let V = {x, y, z}. Then by Proposition 4.6,
there exists a Laplacian H ∈ LA(V ) with (4.2). Note that

EH(u∗|V , u∗|V ) = min{EH(v, v)|v ∈ ℓ(V ), v(x) = 1, v(z) = 0}.

Therefore, (Hu∗)(y) = 0. Set H = (Hpq)p,q∈V . Hereafter we assume that
Hpq > 0 for any p, q ∈ V with p ̸= q. (If this condition fails, the proof becomes
easier.) Let Rpq = (Hpq)−1. Solving Hu∗(y) = 0, we have

u∗(y) =
Hxy

Hxy + Hyz
=

Ryz

Rxy + Ryz
. (4.5)

On the other hand, by using the δ-Y transform, if Rx = RxyRxz/R∗, Ry =
RyxRyz/R∗ and Rz = RzxRzy/R∗, where R∗ = Rxy +Ryz +Rzx, then R(p, q) =
Rp + Rq for any p and q with p ̸= q. Hence

R(x, z) + R(y, z) − R(x, y)
2

= Rz (4.6)
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Since g(x, x) = R(x, z), (4.5) implies

g(x, y) = g(x, x)u∗(y) = R(x, z)u∗(y) =
Rxz(Rxy + Ryz)

R∗
u∗(y) = Rz.

By (4.6), we have (4.4).

Proof of (GF4) of Theorem 4.9. Let K = BF . Note that gB(x, y) = gK(x, y).
By (4.3),

|gB(x, y) − gB(x, z)| ≤ |R(y,K) − R(z,K)| + |RK(x, y) − RK(x, z)|
2

≤ RK(y, z) ≤ R(y, z).

In the rest of this section, we study a sufficient condition ensuring that
BF = B.

Definition 4.15. Let (E ,F) be a resistance form on X and let R be the asso-
ciated resistance metric.
(1) For a non-empty subset of B, define

N(B, r) = min{#(A)|A ⊆ B ⊆ ∪y∈ABR(y, r)}

for any r > 0.
(2) For any subsets U, V ⊂ X, define

R(U, V ) = inf{R(x, y)|x ∈ U, y ∈ V }.

The following theorem plays an important role in proving heat kernel esti-
mates in Part III.

Theorem 4.16. Let (E ,F) be a resistance form on X. Let B be a non-empty
subset of X and let x ∈ X\B. If N(B,R(x, B)/2) < +∞, then x /∈ BF and

R(x,B)
4N(B,R(x,B)/2)

≤ R(x,B) ≤ R(x,B).

The key idea of the following proof has been extracted from [6, Lemma 2.4]
and [37, Lemma 4.1].

Proof. Write uy = ψx,y
x for any x, y ∈ X. Then,

uy(z) = uy(z) − uy(y) ≤ R(y, z)
R(y, x)

.

If y ∈ B, x ∈ X\B and z ∈ BR(x,R(x,B)/2), then uy(z) ≤ 1/2. Suppose
that n = N(B,R(x,B)/2) is finite. We may choose y1, . . . , yn ∈ B so that
B ⊆ ∪n

i=1BR(yi, R(x,B)/2). Define v(z) = mini=1,...,n uyi(z) for any z ∈ X.
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Then v ∈ F , v(x) = 1 and v(z) ≤ 1/2 for any z ∈ B. Letting h = 2(v − 1/2), we
see that 0 ≤ h(z) ≤ 1 for any z ∈ X, h(x) = 1 and h ∈ F(B). Hence x /∈ BF .
Moreover,

E(h, h) ≤ 4E(v, v) ≤ 4
n∑

i=1

E(uyi , uyi) ≤ 4
n∑

i=1

1
R(x, yi)

≤ 4n

R(x,B)
.

Therefore,

R(x, B) =
(
min{E(u, u)|u ∈ F(B), u(x) = 1}

)−1 ≥ R(x, B)
4n

.

Corollary 4.17. Let (E ,F) be a resistance form on X. If B is compact with
respect to the resistance metric associated with (E ,F), then BF = B.

In general, BF does not coincide with B for every closed set B. We have
the following example where (X,R) is locally compact and BF ̸= B for some
closed set B ⊂ X.

Example 4.18. Let X = N ∪ {0} and let Vm = {1, . . . ,m} ∪ {0}. Define a
linear operator Hm : ℓ(Vm) → ℓ(Vm) by

(Hm)ij =



2 if |i − j| = 1 or |i − j| = m,
1 if {i, j} = {0, k} for some k ∈ {1, . . . ,m}\{1,m},
−4 if i = j and i ∈ {1,m},
−5 if i = j and i ∈ {1, . . . ,m}\{1,m},
−(m + 2) if i = j = 0,
0 otherwise.

Then Hm is a Laplacian on Vm and {(Vm,Hm)}m≥1 is a compatible sequence.
Set Em(u, v) = −(u, Hv)Vm for any u, v ∈ ℓ(Vm). Define

F = {u|u ∈ ℓ(X), lim
m→∞

Em(u|Vm , u|Vm) < ∞}

and
E(u, v) = lim

m→∞
Em(u|Vm , v|Vm)

for any u, v ∈ F . Then (E ,F) is a resistance form on X. Let R be the associated
resistance metric on X. Using the fact that R(i, j) = Rm(i, j) for i, j ∈ Vm,
where Rm is the effective resistance with respect to Em, we may calculate R(i, j)
for any i, j ∈ X. As a result,{

R(0, j) = 1
3 for any j ≥ 1,

R(i, j) = 2
3 (1 − 2−|i−j|) if i, j ≥ 1.
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Since 1/3 ≤ R(i, j) ≤ 2/3 for any i, j ∈ X with i ̸= j, any one point set {x} is
closed and open. In particular, (X,R) is locally compact. Let B = N. Since B
is the complement of a open set {0}, B is closed. Define ψ ∈ ℓ(X) by ψ(0) = 1
and ψ(x) = 0 for any x ∈ B. Since Em(ψ|Vm , ψ|Vm) = m + 2 → ∞ as m → ∞,
we see that ψ /∈ F . Therefore if u ∈ F(B), then u(0) = 0. This shows that
BF = B ∪ {0}.

5 Regularity of resistance forms

Does a domain F of a resisatnce form E contain enough many functions? The
notion of regularity of a resistance form will provide an answer to such a ques-
tion. As you will see in Definition 5.2, a resistance form is regular if and only if
the domain of the resistance from is large enough to approximate any continu-
ous function with a compact support. It is notable that the operation B → BF

plays an important role again in this section.
Let (E ,F) be a resistance form on a set X and let R be the associated

resistance metric on X. We assume that (X,R) is separable.

Definition 5.1. (1) Let u : X → R. The support of u, supp(u) is defined by
supp(u) = {x|u(x) ̸= 0}. We use C0(X) to denote the collection of continuous
functions on X whose support are compact.
(2) Let K be a subset of X and let u : X → R. We define the supremum norm
of u on K, ||u||∞,K by

||u||∞,K = sup
x∈K

|u(x)|.

We write || · ||∞ = || · ||∞,X if no confusion can occur.

Definition 5.2. The resistance form (E ,F) on X is called regular if and only
if F ∩ C0(X) is dense in C0(X) in the sense of the supremum norm || · ||∞.

The regularity of a resistance form is naturally associated with that of a
Dirichlet form. See Section 8 for details. The following theorem gives a simple
criteria for the regularity.

Theorem 5.3. Assume that (X,R) is locally compact. The following conditions
are equivalent:
(R1) (E ,F) is regular.
(R2) BF = B for any closed subset B.
(R3) If B is closed and Bc is compact, then BF = B.
(R4) If K is a compact subset of X, U is a open subset of X, K ⊆ U and U
is compact, then there exists ϕ ∈ F such that supp(ϕ) ⊆ U , 0 ≤ ϕ(y) ≤ 1 for
any y ∈ X and ϕ|K ≡ 1.

Combining the above theorem with Corollary 4.17, we obtain the following
result.

Corollary 5.4. If (X,R) is compact, then (E ,F) is regular.
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In general, even if (X,R) is locally compact, (E ,F) is not always regular.
Recall Example 4.18.

To prove Theorem 5.3, we need the following lemma, which can be proven
by direct calculation.

Lemma 5.5. If u, v ∈ F ∩ C0(X), then uv ∈ F ∩ C0(X) and

E(uv, uv) ≤ 2||u||2∞E(v, v) + 2||v||2∞E(u, u).

Proof of Theorem 5.3. (R1) ⇒ (R2) Let x /∈ B. Choose r > 0 so that B(x, r)
is compact and B ∩ B(x, r) = ∅. Then there exists f ∈ C0(X) such that
0 ≤ f(y) ≤ 1 for any y ∈ X, f(x) = 1 and supp(f) ⊆ B(x, r). Since (E ,F)
is regular, we may find v ∈ F ∩ C0(X) such that ||v − f ||∞ ≤ 1/3. Define
u = 3v − 1. Then u(x) = 1 and u|B ≡ 0. Hence x /∈ BF .
(R2) ⇒ (R3) This is obvious.
(R3) ⇒ (R4) By (R3), (U c)F = U c. Hence, for any x ∈ K, we may choose
rx so that B(x, rx) ⊆ U and ψUc

x (y) ≥ 1/2 for any y ∈ B(x, rx). Since K is
compact, K ⊆ ∪n

i=1B(xi, rxi) for some x1, . . . , xn ∈ K. Let v =
∑n

i=1 ψUc

xi
.

Then v(y) ≥ 1/2 for any y ∈ K and supp(v) ⊆ U . If ϕ = 2v, then u satisfies
the desired properties.
(R4) ⇒ (R1) Let u ∈ C0(X). Set K = supp(u). Define ΩK = {u|K : u ∈
F∩C0(X)}. Then by (R4) and Lemma 5.5, we can verify the assumptions of the
Stone Weierstrass theorem for the || · ||K closure of ΩK . (See, for example, [46]
on the Stone Weierstrass theorem.) Hence, ΩK is dense in C(K) with respect
to the supremum norm on K. For any ϵ > 0, there exists uϵ ∈ F ∩ C0(X) such
that ||u − uϵ||∞,K < ϵ. Let V = K ∪ {x||uϵ(x)| < ϵ}. Suppose that x ∈ K and
that there exists {xn}n=1,2,... ⊆ V c such that R(xn, x) → 0 as x → ∞. Then
|uϵ(xn)| ≥ ϵ for any n and hence |uϵ(x)| ≥ ϵ. On the other hand, since xn ∈ Kc,
u(xn) = 0 for any n and hence u(x) = 0. Since x ∈ K, this contradict to the
fact that ||u− uϵ||∞,K < ϵ. Therefore, V is open. We may choose a open set U
so that K ⊆ U , U is compact and U ⊆ V . Let ϕ be the function obtained in
(R4). Define vϵ = ϕuϵ. Then by Lemma 5.5, vϵ ∈ F ∩ C0(X). Also it follows
that ||u− vϵ||∞ ≤ ϵ. This shows that F ∩C0(X) is dense in C0(X) with respect
to the norm || · ||∞.

6 Annulus comparable condition and local prop-
erty

We can modify a given resistance form by adding a new resistor between two
distinct points. The modified new resistance form has a “jump” associated with
the added resistor. Such “jumps” naturally appears the associated probabilistic
process. In this section, we introduce annulus comparable condition, (ACC) for
short, which assures certain kind of control to such jumps, or direct connections
between two distinct points. For instance, Theorems in Section 14 will show that
(ACC) is necessary to get the Li-Yau type on-diagonal heat kernel estimate.

We need the following topological notion to state (ACC).
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Definition 6.1. Let (X, d) be a metric space. (X, d) is said to be uniformly
perfect if and only if there exists ϵ > 0 such that Bd(x, (1 + ϵ)r)\Bd(x, r) ̸= ∅
for any x ∈ X and r > 0 with X\Bd(x, r) ̸= ∅.

In this section, (E ,F) is a regular resistance form on X and R is the associ-
ated resistance metric. We assume that (X,R) is separable and complete.

Definition 6.2. A resistance form (E ,F) on X is said to satisfy the annulus
comparable condition, (ACC) for short, if and only if (X,R) is uniformly perfect
and there exists ϵ > 0 such that

R(x, BR(x, r)c) ≃ R
(
x, BR(x, (1 + ϵ)r) ∩ BR(x, r)c

)
(6.1)

for any x ∈ X and any r > 0 with BR(x, r) ̸= X.

Remark. It is obvious that

R(x,BR(x, r)c) ≤ R
(
x,BR(x, (1 + ϵ)r) ∩ BR(x, r)c

)
.

So the essential requirement of (ACC) is the opposite inequality up to a constant
multiplication.

The annulus comparable condition holds if (X,R) is uniformly perfect and
(E ,F) has the local property defined below.

Definition 6.3. (E ,F) is said to have the local property if and only if E(u, v) =
0 for any u, v ∈ F with R(supp(u), supp(v)) > 0.

Proposition 6.4. Assume that (E ,F) has the local property and that BR(x, r)
is compact for any x ∈ X and any r > 0. If BR(x, (1 + ϵ)r) ∩ BR(x, r)c ̸= ∅,
then

R(x,BR(x, r)c) = R
(
x,BR(x, (1 + ϵ)r) ∩ BR(x, r)c

)
.

In particular, we have (ACC) if (X,R) is uniformly perfect.

Proof. Let K = BR(x, (1 + ϵ)r) ∩ BR(x, r)c. Recall that ψK
x (y) = gK(x,y)

gK(x,x) and
that E(ψK

x , ψK
x ) = R(x,K)−1. By Theorem 5.3, there exists ϕ ∈ F such that

supp(ϕ) ⊆ BR(x, (1 + ϵ/2)r), 0 ≤ ϕ(y) ≤ 1 for any y ∈ X and ϕ(y) = 1 for any
y ∈ BR(x, r). By Lemma 5.5, if ψ1 = ψK

x ϕ and ψ2 = ψK
x (1 − ϕ), then ψ1 and

ψ2 belong to F . Since supp(ψ2) ⊆ Br(x, (1 + ϵ)r)c, the local property implies

E(ψK
x , ψK

x ) = E(ψ1, ψ1) + E(ψ2, ψ2) ≥ E(ψ1, ψ1).

Note that ψ1(y) = 0 for any y ∈ BR(x, r)c and that ψ1(x) = 1. Hence,
E(ψ1, ψ1) ≥ E(ψB

x , ψB
x ), where B = B(x, r)c. On the other hand, since K ⊆ B,

E(ψB
x , ψB

x ) ≥ E(ψK
x , ψK

x ). Therefore, we have

R(x,B)−1 = E(ψB
x , ψB

x ) = E(ψK
x , ψK

x ) = R(x,K)−1.
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There are non-local resistance forms which satisfy (ACC), for example, the
α-stable process on R and their traces on the Cantor set. See Sections 15. In
the next section, we will show that if the original resistance form has (ACC),
then so do its traces, which are non-local in general.

To study non-local cases, we need the doubling property of the space.

Definition 6.5. Let (X, d) be a metric space.
(1) (X, d) is said to have the doubling property or be the doubling space if and
only if

sup
x∈X,r>0

Nd(Bd(x, r), δr) < +∞ (6.2)

for any δ ∈ (0, 1), where

Nd(A, r) = min{#F |F ⊆ A,A ⊆ ∪x∈F Bd(x, r)}.

(2) Let µ be a Borel regular measure on (X, d) which satisfies 0 < µ(Bd(x, r)) <
+∞ for any x ∈ X and any r > 0. µ is said to have the volume doubling property
with respect to d or be volume doubling with respect to d, (VD)d for short, if
and only if there exists c > 0 such that

µ(Bd(x, 2r)) ≤ cµ(Bd(x, r)) (6.3)

for any x ∈ X and any r > 0.

Remark. (1) (X, d) is the doubling space if (6.2) holds for some δ ∈ (0, 1).
(2) If µ is (VD)d, then, for any α > 1, µ(Bd(x, αr)) ≃ µ(Bd(x, r)) for any
x ∈ X and any r > 0.

One of the sufficient condition for the doubling property is the existence of
a volume doubling measure. The following theorem is well-known. See [28] for
example.

Proposition 6.6. Let (X, d) be a metric space and let µ be a Borel regular
measure on (X,R) with 0 < µ(BR(x, r)) < +∞ for any x ∈ X and any r > 0.
If µ is (VD)d, then (X, d) has the doubling property.

The next proposition is straight forward from the definitions.

Proposition 6.7. If a metric space (X, d) has the doubling property, then any
bounded subset of (X, d) is totally bounded.

By the above proposition, if the space is doubling and complete, then every
bounded closed set is compact.

Now we return to (ACC). The following key lemma is a direct consequence
of Theorem 4.16.

Lemma 6.8. Assume that (X,R) has the doubling property and is uniformly
perfect. Then, for some ϵ > 0,

R
(
x,BR(x, r)c ∩ BR(x, (1 + ϵ)r)

)
≃ r (6.4)

for any x ∈ X and any r > 0 with BR(x, r) ̸= X.

21



Proof. Set B = BR(x, (1 + ϵ)r) ∩ BR(x, r)c. Choose ϵ so that B ̸= ∅ for any
x ∈ X and any r > 0 with BR(x, r) ̸= X. Then, r ≤ R(x,B) ≤ (1 + ϵ)r. This
and the doubling property of (X,R) imply

N(B,R(x, B)/2) ≤ N(B, r/2) ≤ N(BR(x, (1 + 2ϵ)r), r/2) ≤ c∗,

where c∗ is independent of x and r. Using Theorem 4.16, we see

r

8c∗
≤ R(x,B) ≤ (1 + ϵ)r.

By the above lemma, (ACC) turns out to be equivalent to (RES) defined
below if (X,R) is the doubling space.

Definition 6.9. A resistance from (E ,F) on X is said to satisfy the resistance
estimate, (RES) for short, if and only if

R(x,BR(x, r)c) ≃ r (6.5)

for any x ∈ X and any r > 0 with BR(x, r) ̸= X.

Theorem 6.10. Assume that (X,R) has the doubling property. Then (X,R)
is uniformly perfect and (RES) holds if and only if (ACC) holds.

Proof of Theorem 6.10. If (ACC) holds, then (6.4) and (ACC) immediately im-
ply (6.5). Conversely, (6.5) along with (6.4) shows (ACC).

Corollary 6.11. If (E ,F) has the local property, (X,R) has the doubling prop-
erty and is uniformly perfect, then (RES) holds.

7 Trace of resistance form

In this section, we introduce the notion of the trace of a resistance form on a
subset of the original domain. This notion is a counterpart of that in the theory
of Dirichlet form, which has been extensively studied in [17, Section 6.2], for
example. In fact, if a Dirichlet form is derived from a regular resistance form,
a trace of the Dirichlet form coincides with the counterpart of the resistance
form.

Throughout this section, (E ,F) is a resistance form on X and R is the as-
sociated resistance distance. We assume that (X,R) is separable and complete.

Definition 7.1. For a non-empty subset Y ⊆ X, define F|Y = {u|Y | u ∈ F}.

Lemma 7.2. Let Y be a non-empty subset of (X,R). For any u ∈ F|Y , there
exists a unique u∗ ∈ F such that u∗|Y = u and E(u∗, u∗) = min{E(v, v)|v ∈
F , v|Y = u}.
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The unique u∗ is thought of as the harmonic function with the boundary
value u on Y .

To prove this lemma, we use the following fact which has been shown in [33,
Section 2.3].

Proposition 7.3. Let {Vm}m≥1 be an increasing sequence of finite subsets of
X. Assume that V∗ = ∪m≥1Vm is dense in X. Set Hm = H(E,F),Vm

and define
Em(·, ·) = EHm(·, ·), where H(E,F),Vm

is defined in Definition 4.7. Then for any
u ∈ ℓ(V∗), Em(u|Vm , u|Vm) is monotonically non-decreasing. Moreover,

F = {u|u ∈ C(X,R), lim
m→∞

Em(u|Vm , u|Vm) < +∞}

and
E(u, v) = lim

m→∞
Em(u|Vm , v|Vm)

for any u, v ∈ F .

Proof of Lemma 7.2. Let p ∈ Y . Replacing u by u − u(p), we may assume
that u(p) = 0 without loss of generality. Choose a sequence {vn}n≥1 ⊆ F
so that vn|Y = u and limn→∞ E(vn, vn) = inf{E(v, v)|v ∈ F , v|Y = u}. Let
C = supn E(vn, vn). By Proposition 4.2, if v = vn, then

|v(x) − v(y)|2 ≤ CR(x, y) (7.1)

and
|v(x)|2 ≤ CR(x, p) (7.2)

Let {Vm}m≥1 be an increasing sequence of finite subsets of X. Assume that V∗ =
∪m≥1Vm is dense in X. (Since (X,R) is separable, such {Vm}m≥1 does exists.)
By (7.1) and (7.2), the standard diagonal construction gives a subsequence
{vni}i≥1 which satisfies {vni(x)}i≥1 is convergent as i → ∞ for any x ∈ V∗ =
∪m≥1Vm. Define u∗(x) = limi→∞ vni(x) for any x ∈ V∗. Since u∗ satisfies (7.1)
and (7.2) on V∗ with v = u∗, u∗ is extended to a continuous function on X.
Note that this extension also satisfies (7.1) and (7.2) on X with v = u∗. Set
Em(·, ·) = EH(E,F),Vm

. Then, by Proposition 7.3,

Em(vn, vn) ≤ E(vn, vn) ≤ C (7.3)

for any m ≥ 1 and any n ≥ 1. Define M = inf{E(v, v)|v ∈ F , v|Y = u}. For
any ϵ > 0, if n is large enough, then (7.3) shows Em(vn, vn) ≤ M + ϵ for any
m ≥ 1. Since vn|Vm → u∗|Vm as n → ∞, it follows that Em(u∗, u∗) ≤ M + ϵ for
any m ≥ 1. Proposition 7.3 implies that u∗ ∈ F and E(u∗, u∗) ≤ M .

Next assume that ui ∈ F , ui|Y = u and E(ui, ui) = M for i = 1, 2. Since
E((u1 + u2)/2, (u1 + u2)/2) ≥ E(u1, u1), we have E(u1, u2 − u1) ≥ 0. Similarly,
E(u2, u1 −u2) ≥ 0. Combining those two inequalities, we obtain E(u1 −u2, u1 −
u2) = 0. Since u1 = u2 on Y , we have u1 = u2 on X.

Definition 7.4. Define hY : F|Y → F by hY (u) = u∗, where u and u∗ are
the same as in Lemma 7.2. hV (u) is called the Y -harmonic function with the
boundary value u. For any u, v ∈ F|Y , define E|Y (u, v) = E(hY (u), hY (v)).
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Trough the harmonic functions, we construct a resistance form on a subspace
Y of X, which is called the trace.

Theorem 7.5. Let Y be a non-empty subset of X. Then hY : F|Y → F
is linear and (E|Y ,F|Y ) is a resistance form on Y . The associated resistance
metric equals to the restriction of R on Y . If Y is closed and (E ,F) is regular,
then (E|Y ,F|Y ) is regular.

Definition 7.6. (E|Y ,F|Y ) is called the trace of the resistance form (E ,F) on
Y .

The following lemma is essential to prove the above theorem.

Lemma 7.7. Let Y be a non-empty subset of X. Define

HY = {u|u ∈ F , E(u, v) = 0 for any v ∈ F(Y )}.

Then, for any f ∈ F|Y , u = hY (f) if and only if u ∈ HY and u|Y = f .

By this lemma, HY = Im(hY ) is the space of Y -harmonic functions and
F = HY ⊕ F(Y ), where ⊕ means that E(u, v) = 0 for any u ∈ HY and any
v ∈ F(Y ). The counter part of this fact has been know for Dirichlet forms. See
[17] for details.

Proof. Let f∗ = hY (f). If v ∈ F and v|Y = f , then

E(t(v − f∗) + f∗, t(v − f∗) + f∗) ≥ E(f∗, f∗)

for any t ∈ R. Hence E(v − f∗, f∗) = 0. This implies that f∗ ∈ HY . Conversely
assume that u ∈ HY and u|Y = f . Then, for any v ∈ F with v|Y = f ,

E(v, v) = E((v − u) + u, (v − u) + u) = E(v − u, v − u) + E(u, u) ≥ E(u, u).

Hence by Lemma 7.2, u = hY (f).

Proof of Theorem 7.5. By Lemma 7.7, if rY : HY → F|Y is the restriction on
Y , then rY is the inverse of hY . Hence hY is linear. The conditions (RF1)
through (RF4) for (E|Y ,F|Y ) follows immediately from the counterpart for
(E ,F). About (RF5),

E|Y (u, u) = E(hY (u), hY (u)) ≤ E(hY (u), hY (u))
≤ E(hY (u), hY (u)) = E|Y (u, u).

The rest of the statement is straight forward.

In the rest of this section, the conditions (ACC) and (RES) are shown to be
preserved by the traces under reasonable assumptions.

Theorem 7.8. Let (E ,F) be a regular resistance form on X and let R be the
associated resistance metric. Assume that (E ,F) satisfies (RES). If Y is a closed
subset of X and (Y,R|Y ) is uniformly perfect, then (RES) holds for the trace
(E|Y ,F|Y ).
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By Theorem 6.10, we immediately have the following corollary.

Corollary 7.9. Let (E ,F) be a regular resistance from on X and let R be the
associated resistance metric. Assume that (X,R) has the doubling property. Let
Y be a closed subset of X and assume that (Y,R|Y ) is uniformly perfect. If
(ACC) holds for (E ,F), then so does for the trace (E|Y ,F|Y ).

Notation. Let (E ,F) be a resistance form on X and let R be the associated
resistance metric. For a non-empty subset Y of X, we use RY to denote the
resistance metric associated with the trace (E|Y ,F|Y ) on Y . Also we write
BY

R (x, r) = BR(x, r) ∩ Y for any x ∈ Y and r > 0.

Proof of Theorem 7.8. Note that RY (x, Y \BY
R (x, r)) = R(x,BR(x, r)c ∩ Y ).

Hence if (RES) holds for (E ,F) then,

RY (x, Y \BY
R (x, r)) ≥ R(x,BR(x, r)c) ≥ c1r. (7.4)

On the other hand, since (Y,RY ) is uniformly perfect, there exists ϵ > 0 such
that BY

R (x, (1 + ϵ)r)\BY
R (x, r) ̸= ∅ for any x ∈ Y and r > 0 with BY

R (x, r) ̸= Y .
Let y ∈ BY

R (x, (1 + ϵ)r)\BY
R (x, r). Then

(1 + ϵ)r ≥ RY (x, y) ≥ RY (x, Y \BY
R (x, r)). (7.5)

Combining (7.4) and (7.5), we obtain (RES) for (E|Y ,F|Y ).

8 Resistance forms as Dirichlet forms

In this section, we will present how to obtain a regular Dirichlet form from a
regular resistance form and show that every single point has a positive capacity.
As in the previous sections, (E ,F) is a resistance form on X and R is the asso-
ciated resistance metric on X. We continue to assume that (X,R) is separable,
complete and locally compact.

We present how to obtain a regular Dirichlet form out of a regular re-
sistance form. Let µ be a Borel regular measure on (X,R) which satisfies
0 < µ(BR(x, r)) < +∞ for any x ∈ X and r > 0. Note that C0(X) is a
dense subset of L2(X,µ) by those assumptions on µ.

Definition 8.1. For any u, v ∈ F ∩ L2(X,µ), define E1(u, v) by

E1(u, v) = E(u, v) +
∫

X

uvdµ.

By [33, Theorem 2.4.1], we have the following fact.

Lemma 8.2. (F ∩ L2(X,µ), E1) is a Hilbert space.

Since F ∩ C0(X) ⊆ F ∩ L2(X,µ), the closure of F ∩ C0(X) is a subset of
F ∩ L2(X,µ).
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Definition 8.3. We use D to denote the closure of F ∩ C0(X) with respect to
the inner product E1.

Note that if (X,R) is compact, then D = F .

Theorem 8.4. If (E ,F) is regular, then (E|D×D,D) is a regular Dirichlet form
on L2(X,µ).

See [17] for the definition of a regular Dirichlet form.
For ease of notation, we write E instead of ED×D.

Proof. (E ,D) is closed form on L2(X,µ). Also, since C0(X) is dense in L2(X,µ),
the assumption that F ∩ C0(X) is dense in C0(X) shows that D is dense in
L2(K,µ). Hence (E ,D) is a regular Dirichlet form on L2(X,µ) with a core
F ∩ C0(X).

Hereafter in this section, (E ,F) is always assumed to be regular. Next we
study the capacity of points associated with the Dirichlet form constructed
above.

Lemma 8.5. Let x ∈ X. Then there exists cx > 0 such that

|u(x)| ≤ cx

√
E1(u, u)

for any u ∈ D. In other words, the map u → u(x) from D to R is bounded.

Proof. If the claim of the lemma is false, then there exists a sequence {un}n≥1 ⊂
F such that un(x) = 1 and E1(un, un) ≤ 1/n for any n ≥ 1. By (4.1),

|un(x) − un(y)| ≤
√

R(x, y)√
n

≤
√

R(x, y)

Hence un(y) ≥ 1/2 for any y ∈ B(x, 1/4). This implies that

||un||22 ≥
∫

B(x,1/4)

u(y)2dµ ≥ µ(B(x, 1/4))/4 > 0

This contradicts to that fact that E1(un, un) → 0 as n → ∞.

Lemma 8.6. If K is a compact subset of X, then the restriction map ιK : D →
C(K) defined by ιK(u) = u|K is a compact operator, where D and C(K) are
equipped with the norms

√
E1(·, ·) and || · ||∞,K respectively.

Proof. Set D = supx,y∈K R(x, y). Let U be a bounded subset of D, i.e. there
exists M > 0 such that E1(u, u) ≤ M for any u ∈ U . Then by (4.1),

|u(x) − u(y)|2 ≤ R(x, y)M

for any x, y ∈ X and any u ∈ U . Hence U is equicontinuous. Choose x∗ ∈ K.
By Lemma 8.5 along with (4.1),

u(x)2 ≤ 2|u(x) − u(x∗)|2 + 2|u(x∗)|2 ≤ 2DM + 2c2
x∗

M
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for any u ∈ U and any x ∈ K. This shows that U is uniformly bounded on K.
By the Ascoli-Arzelà theorem, {u|K}u∈U is relatively compact with respect to
the supremum norm. Hence ιK is a compact operator.

Definition 8.7. For an open set U ⊆ X, define the E1-capacity of U , Cap(U)
by

Cap(U) = inf{E1(u, u)|u ∈ D, u(x) ≥ 1 for any x ∈ U}.
If {u|u ∈ D, u(x) ≥ 1 for any x ∈ U} = ∅, we define Cap(U) = ∞. For any
A ⊆ X, we define Cap(A) by

Cap(A) = inf{Cap(U)|U is an open subset of X and A ⊆ U}.

Theorem 8.8. For any x ∈ X, 0 < Cap({x}) < ∞. Moreover, if K is a
compact subset of X, then 0 < infx∈K Cap({x}).

Lemma 8.9. For any x ∈ X, there exists a unique g ∈ D such that

E1(g, u) = u(x)

for any u ∈ D. Moreover, let ϕ = g/g(x). Then, ϕ is the unique element in
{u|u ∈ D, u(x) ≥ 1} which attains the following minimum

min{E1(u, u)|u ∈ D, u(x) ≥ 1}.

Proof. The existence of g follows by Lemma 8.5. Assume that E1(f, u) = u(x)
for any u ∈ D. Since E1(f − g, u) = 0 for any u ∈ D, we have f = g. Now, if
u ∈ D and u(x) = a > 1, then E1(u − aϕ, ϕ) = u(x)/g(x) − 1/g(x) = 0. Hence,

E1(u, u) = E1(u − aϕ, u − aϕ) + E1(aϕ, aϕ) ≥ E1(ϕ,ϕ).

This immediately shows the rest of the statement.

Definition 8.10. We denote the function g and ϕ in Lemma 8.9 by gx
1 and ϕx

1

respectively.

Proof of Theorem 8.8. Fix x ∈ X. By the above lemma, for any open set U
with x ∈ U ,

Cap(U) = min{E1(u, u)|u ∈ D, u(y) ≥ 1 for any y ∈ U}

≥ min{E1(u, u)|u ∈ D, u(x) ≥ 1} ≥ E1(ϕx
1 , ϕx

1) =
1

gx
1 (x)

.

Hence 0 < 1/gx
1 (x) < Cap({x}) < Cap(U) < +∞.

Let K be a compact subset of X. By Lemma 8.6, there exists cK > 0 such
that ||u||∞,K ≤ cK

√
E1(u, u) for any u ∈ D. Now, for x ∈ K,

gx
1 (x) = E1(gx

1 , gx
1 ) = sup

u∈D,u ̸=0

E1(gx
1 , u)2

E1(u, u)
= sup

u∈D,u̸=0

u(x)2

E1(u, u)
≤ (cK)2

Hence Cap({x}) ≥ 1/gx
1 (x) ≥ (cK)−2.
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Theorem 8.8 implies that every quasi continuous function is continuous and
every exceptional set is empty.

Definition 8.11. A function u : X → R is called quasi continuous if and only
if, for any ϵ > 0, there exists V ⊆ X such that Cap(V ) < ϵ and u|X\V is
continuous.

Proposition 8.12. Any quasi continuous function is continuous on X.

Proof. Let u be a quasi continuous function. Let x ∈ X. Since (X,R) is
locally compact, B(x, r) is compact for some r > 0. By Theorem 8.8, we may
choose ϵ > 0 so that inf

y∈B(x,r)
Cap({y}) > ϵ. There exists V ⊆ X such that

Cap(V ) < ϵ and u|X\V is continuous. Since V ∩B(x, r) = ∅, u is continuous at
x. Hence u is continuous on X.

9 Transition density

In this section, without ultracontractivity, we establish the existence of jointly
continuous transition density (i.e. heat kernel) associated with the regular
Dirichlet form derived from a resistance form.

As in the last section, (E ,F) is a resistance form on X and R is the associated
resistance metric. We assume that (X,R) is separable, complete and locally
compact. µ is a Borel regular measure on X which satisfies 0 < µ(BR(x, r)) < ∞
for any x ∈ X and any r > 0. We continue to assume that (E ,F) is regular.
By Theorem 8.4, (E ,D) is a regular Dirichlet form on L2(X,µ), where D is the
closure of F ∩ C0(X) with respect to the E1-inner product.

Let H be the nonnegative self-adjoint operator associated with the Dirichlet
form (E ,D) on L2(X,µ) and let Tt be the corresponding strongly continuous
semigroup. Since Ttu ∈ D for any u ∈ L2(X,µ), we always take the continuous
version of Ttu. In other words, we may naturally assume that Ttu is continuous.

Let M = (Ω, {Xt}t>0, {Px}x∈X) be the Hunt process associated with the
regular Dirichlet form (E ,D) on L2(X,µ). Note that Cap(A) = 0 if and only
if A = ∅ by Theorem 8.8. Hence, the Hunt process M is determined for every
x ∈ X. Moreover, by [17, Theorem 4.2.1], every exceptional set is empty. Let pt

be the transition semigroup associated with the Hunt process M. In particular,
for non-negative µ-measurable function u,

(ptu)(x) = Ex(u(Xt))

for any x ∈ X. Let B be the Borel σ-algebra of (X,R). We say that u is
Borel measurable, if and only if u−1((a, b]) ∈ B for any a, b ∈ R. Combining
Proposition 8.12 and [17, Theorem 4.2.3], we have the following statement.

Proposition 9.1. For any nonnegative u ∈ L2(X,µ), (ptu)(x) = (Ttu)(x) for
any t > 0 and any x ∈ X.

Definition 9.2. Let U be an open subset of X. Define DU = {u|u ∈ D, u|Uc ≡
0}. Also we define EU = E|DU×DU .
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Note that if U is compact, then DU = F(U c).
Combining the results in [17, Section 4.4], we have the following facts.

Theorem 9.3. Let µU be the restriction of µ on U , i.e. µU (A) = µ(A ∩ U)
for any Borel set U . Then (EU ,DU ) is a regular Dirichlet form on L2(U, µU ).
Moreover, if MU = (ΩU , XU

t , PU
x ) be the associated Hunt process, then

PU
x (XU

t ∈ A) = P (Xt ∈ A, t < σUc)

for any Borel set A and any x ∈ U , where σUc is the hitting time of U c defined
by

σUc(ω) = inf{t > 0|Xt(ω) ∈ U c}.
Moreover, if pU

t is the transition semigroup associated with MU , then

(pU
t u)(x) = EU

x (u(XU
t )) = Ex(χ{t<σUc}u(Xt))

for any non-negative measurable function u and any x ∈ X.

Remark. For a function u : U → R, we define ϵU (u) : X → R by ϵU (u)|U = u
and ϵU (u)|Uc ≡ 0. Through this extension map, L2(U, µU ) is regarded as a
subspace of L2(X,µ). Also, if u ∈ DU , then ϵU (u|U ) = u and hence we may
think of DU as a subset of C(X) trough ϵU . Hereafter, we always use these
conventions.
Remark. By the same reason as in the case of M, the process MU is determined
for every x ∈ U .

The existence and the continuity of heat kernel have been studied by sev-
eral authors. In [5], the existence of quasi-continuous version of heat kernel
(i.e. transition density) has been proven under ultracontractivity. Grigor’yan
has shown the corresponding result only assuming local ultracontractivity in
[18]. In [15], the existence of jointly continuous heat kernel have been shown
for resistance forms under ultracontractivity. The following theorem establish
the existence of jointly continuous heat kernel for resistance forms without ul-
tracontractivity and, at the same time, gives an upper diagonal estimate of the
heat kernel. The main theorem of this section is the following.

Theorem 9.4. Assume that BR(x, r) is compact for any x ∈ X and r > 0. Let
U be a non-empty open subset of X. Then there exits pU (t, x, y) : (0,∞)×X ×
X → [0, +∞) which satisfies the following conditions:
(TD1) pU (t, x, y) is continuous on (0,∞)×X×X. Define pt,x

U (y) = pU (t, x, y).
Then pt,x

U ∈ DU for any (t, x) ∈ (0,∞) × X.
(TD2) pU (t, x, y) = pU (t, y, x) for any (t, x, y) ∈ (0,∞) × X × X.
(TD3) For any non-negative (Borel)-measurable function u and any x ∈ X,

(pU
t u)(x) =

∫
X

pU (t, x, y)u(y)µ(dy) (9.1)

(TD4) For any t, s > 0 and any x, y ∈ X,

pU (t + s, x, y) =
∫

X

pU (t, x, z)pU (s, y, z)µ(dz). (9.2)
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Furthermore, let A be a Borel subset of X which satisfies 0 < µ(A) < ∞. Define
R(x, A) = supy∈A R(x, y) for any x ∈ X. Then

pU (t, x, x) ≤ 2R(x,A)
t

+
√

2
µ(A)

(9.3)

for any x ∈ X and any t > 0.

The proof of the upper heat kernel estimate (9.3) is fairly simple. Originally,
the same result has been obtained by more complicated discussion in [6] and
[37]. Simplified argument, which is essentially the same as ours, for random
walks can be found in [8].

Remark. In fact, we have the following inequality which is slightly better than
(9.3). For any ϵ > 0,

pU (t, x, x) ≤
(

1 +
1
ϵ

)
R(x,A)

t
+

√
1 + ϵ

µ(A)
. (9.4)

This inequality implies that

lim
t→∞

pU (t, x, x) ≤ 1
µ(X)

.

for any x ∈ X.

Definition 9.5. pU (t, x, y) is called the transition density and/or the heat ker-
nel associated with the Dirichlet form (EU ,DU ) on L2(X,µ).

Corollary 9.6. Assume that BR(x, r) is compact for any x ∈ X and any
r > 0. Let U be a non-empty open subset of X. Then

lim
t↓0

tpU (t, x, x) = 0

for any x ∈ X.

Proof. Choose A = BR(x, r). By (9.3), it follows that tpU (t, x, x) ≤ 3r for
sufficiently small t.

The rest of this section is devoted to the proof of Theorem 9.4. First we deal
with the case where U is compact.

Lemma 9.7. If U is compact, then we have pU (t, x, y) : (0,∞)×X ×X which
satisfies (TD1), (TD2), (TD3) and (TD4).

Proof. Let HU be the non-negative self-adjoint operator on L2(U, µU ) associated
with the Dirichlet form (EU ,DU ). Then by Lemma 8.6, HU has compact resol-
vent. Hence, there exists a complete orthonormal system {ϕn}n≥1 of L2(U, µU )
and {λn}n≥1 ⊆ [0, +∞) such that ϕn ∈ Dom(HU ) ⊆ DU , HUϕn = λnϕn,
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λn ≤ λn+1 and limn→∞ λn = +∞.
Claim 1: ∑

n≥1

1
λn + 1

< +∞ (9.5)

Proof of Claim 1: By Lemma 8.5, for any x ∈ U , there exists gx
1,U ∈ DU such

that E1(gx
1,U , u) = u(x) for any u ∈ DU . Since

ϕn(x) = E1(gx
1,U , ϕn) = (λn + 1)

∫
U

gx
1,UϕndµU ,

we have gx
1,U =

∑
n≥1

ϕn(x)
λn+1 ϕn in L2(U, µU ). Hence

gx
1,U (x) = E1(gx

1,U , gx
1,U ) =

∑
n≥1

ϕn(x)2

λn + 1
(9.6)

On the other hand, by the same argument as in the proof of Theorem 8.8, there
exists cU > 0 such that

|E1(u, gx
1,U )| ≤ |u(x)| ≤ ||u||∞,K ≤ cU

√
E1(u, u)

for any u ∈ DU , where K = U . This implies that E1(gx
1,U , gx

1,U ) ≤ cU . Combin-
ing this with (9.6), we see that gx

1,U (x) is uniformly bounded on U . Hence by
integrating (9.6) with respect to x, we obtain (9.5) by the monotone convergence
theorem.
Claim 2: ||ϕn||∞ ≤

√
Dλn for any n ≥ 2, where D = supx,y∈U R(x, y).

Proof of Claim 2: By (4.1),

|ϕn(x) − ϕn(y)|2 ≤ E(ϕn, ϕn)R(x, y) = λnR(x, y). (9.7)

We have two cases. First if U ̸= X, then ϕn(y) = 0 for any y ∈ U c. Hence
(9.7) implies the claim. Secondly, if U = X, then (X,R) is compact. It follows
that λ1 = 0 and ϕ1 is constant on X. Hence

∫
X

ϕn(x)µ(dx) = 0 for any
n ≥ 2. For any x ∈ X, we may find y ∈ X so that ϕn(x)ϕn(y) ≤ 0. Since
|ϕn(x)|2 ≤ |ϕn(x) − ϕn(y)|2, (9.7) yields the claim.
Claim 3:

∑
n≥1 e−λntϕn(x)ϕn(y) converges uniformly on [T,∞) × X × X for

any T > 0.
Proof of Claim 3: Note that e−a ≤ 2/a2 for any a > 0. This fact with Claim
2 shows that |e−λntϕn(x)ϕn(y)| ≤ 2/(λnt2). Using Claim 1, we immediately
obtain Claim 3.

Now, let p̃U (t, x, y) =
∑

n≥1 e−λntϕn(x)ϕn(y). By Claim 3, p̃ is continuous
on (0, +∞)×X ×X. Also, p̃U is the integral kernel of the strongly continuous
semigroup {TU

t }t>0 associated with the Dirichlet form (EU ,DU ) on L2(U, µU ).
Let A be a Borel set. Then

(TU
t χA)(x) =

∫
X

p̃U (t, x, y)χA(y)µ(dy).
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In particular TU
t χA is continuous on X. By [17, Theorem 4.2.3], pU

t χA is a quasi
continuous version of TU

t χA. Since any quasi continuous function is continuous
by Proposition 8.12, we have (TU

t χA)(x) = (pU
t χA)(x) for any x ∈ X. Letting

pU (t, x, y) = p̃U (t, x, y), we have (TD3). The rest of the required properties are
straightforward.

The following facts are well-known in general setting. See [17] for example.
In this particular situation, they can be checked by the eigenfunction expansion
of the heat kernel above.

Lemma 9.8. Assume that U is compact.
(1) For any t > 0 and any x, y ∈ X,

∂pU

∂t
(t, x, y) = −E(pt/2,x

U , p
t/2,y
U ).

(2) For any t, s > 0 and any x ∈ X,

E(pt,x
U , ps,x

U ) ≤ 2
t + s

pU

(
t + s

2
, x, x

)
.

Lemma 9.9. If U is compact, then (9.3) holds for any Borel subset A of X
which satisfies 0 < µ(A) < ∞.

Proof. Since
∫

A
pU (t, x, y)µ(dy) ≤

∫
X

pU (t, x, y)µ(dy) ≤ 1, there exists y∗ ∈ A
such that pU (t, x, y∗) ≤ 1/µ(A). By this fact along with Lemma 9.8-(2),

1
2
pU (t, x, x)2 ≤ pU (t, x, y∗)2 + |pU (t, x, x) − pU (t, x, y∗)|2

≤ 1
µ(A)2

+ R(x,A)E(pt,x
U , pt,x

U ) ≤ 1
µ(A)2

+
R(x,A)

t
pU (t, x, x)

Solving this with respect to pU (t, x, x), we have

pU (t, x, x) ≤ R(x, A)
t

+
(

2
µ(A)2

+
R(x,A)2

t2

) 1
2

≤ 2R(x,A)
t

+
√

2
µ(A)

.

Remark. To get (9.4), we only need to use

pU (t, x, x)2 ≤ (1 + ϵ)pU (t, x, y)2 +
(

1 +
1
ϵ

)
|pU (t, x, x) − pU (t, x, y)|2

in place of the inequality with ϵ = 1 in the above proof.

Thus we have shown Theorem 9.4 if U is compact.
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Proof of Theorem 9.4. If U is compact, then we have completed the proof. As-
sume that U is not compact. Fix x∗ ∈ X and set Un = BR(x∗, n) ∩ U for any
n = 1, 2, . . .. Note that Un is compact. Write pn(t, x, y) = pUn

(t, x, y).
Claim 1 pn(t, x, y) ≤ pn+1(t, x, y) for any x, y ∈ X and any n ≥ 1.
Proof of Claim 1. Let σn = σX\Un

. Then σn ≤ σn+1 for any n. Hence

(pUn
t u)(x) = Ex(χt<σnu(Xt)) ≤ Ex(χt<σn+1u(Xt)) = (pUn+1

t u)(x)

for any non-negative measurable function u and any x ∈ X. By (TD3), we
deduce Claim 1.

Let A be a Borel subset of X which satisfies 0 < µ(A) < ∞. By (TD4) and
(9.3), we have

pn(t, x, y) ≤
√

pn(t, x, x)
√

pn(t, y, y)

≤
(

2R(x,A)
t

+
√

2
µ(A)

) 1
2
(

2R(y,A)
t

+
√

2
µ(A)

) 1
2

(9.8)

for any x ∈ X, any t > 0 and any n. Hence pn(t, x, y) is uniformly bounded and
monotonically nondecreasing as n → ∞. This shows that pn(t, x, y) converges
as n → ∞. If p(t, x, y) = limn→∞ pn(t, x, y), then p(t, x, y) satisfies the same
inequality as (9.8). In particular (9.3) holds for p(t, x, x). Also, we immediately
verity (TD2) and (TD4) for p(t, x, y) from corresponding properties of pn(t, x, y).
About (TD3), let u be a non-negative Borel-measurable function. Then by
(TD3) for pn(t, x, y),

(pUn
t u)(x) = Ex(χ{t<σn}u(Xt)) =

∫
X

pn(t, x, y)u(y)µ(dy)

for any x ∈ X. The monotone convergence theorem shows that

Ex(χt<σX\U
u(Xt)) =

∫
X

p(t, x, y)u(y)µ(dy).

Since the left-hand side of the about equality equals (pU
t u)(x), we have (TD3).

Finally we show (TD1). Fix (t, x, y) ∈ (0,∞) × X × X. Define V = (t −
ϵ, t + ϵ) × BR(x, r) × BR(y, r), where r > 0 and 0 < ϵ < t. (9.3) shows that

C = sup
(s,x′,y′)∈V1,n≥1

(√
pn(s, x′, x′)

s
+

√
pn(s, y′, y′)

s

)
< ∞,

where V1 = ((t − ϵ)/2, t + ϵ) × BR(x, r) × BR(y, r). By Lemma 9.8, for any
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(s, a, b) ∈ V and any n ≥ 1,

|pn(t, x, y) − pn(s, a, b)|
≤|pn(t, x, y) − pn(t, x, b)| + |pn(t, x, b) − pn(t, a, b)| + |pn(t, a, b) − pn(s, a, b)|

≤
√
E(pt,x

Un
, pt,x

Un
)R(y, b) +

√
E(pt,b

Un
, pt,b

Un
)R(x, a) + |t − s||∂pn

∂t
(t′, a, b)|

≤
√

pn(t, x, x)R(y, b)
t

+

√
pn(t, b, b)R(x, a)

t
+ 2|t − s|

√
pn(t′/2, a, a)p(t′/2, b, b)

t′

≤C
√

R(x, a) + C
√

R(y, b) + C2|t − s|

where t′ is a value between t and s. Letting n → ∞, we have

|p(t, x, y) − p(s, a, b)| ≤ C
√

R(x, a) + C
√

R(y, b) + C2|t − s|.

Hence p(t, x, y) is continuous on (0,∞)×X ×X. By (TD4), pt,x
U ∈ L2(X,µ) for

any t > 0 and any x ∈ X. Using (TD3) and (TD4), we see

pt,x
U = pU

t/2(p
t/2,x
U ) = Tt(p

t/2,x
U )

for any t > 0 and any x, y ∈ X, where {Tt}t>0 is the strongly continuous
semigroup associated with the Dirichlet form (EU ,DU ) on L2(X,µ). Hence
pt,x

U ∈ D for any t > 0 and any x ∈ X.

Part II

Quasisymmetric metrics and
volume doubling measures
The main subject of this part is the notion of qausisymmetric maps, which has
been introduced in [45] as certain generalization of quasiconformal mappings of
the complex plane. The results in this part will play an indispensable role to
in the next part, where we will modify the original resistance metric quasisym-
metrically to obtain a metric which is suitable for describing the asymptotic
behavior of the associated heat kernel.

At the first section, we present several notions, whose combinations are
shown to be equivalent to being quasisymmetric in the second section. In other
words, we resolve the notion of being quasisymmetric into geometric and an-
alytic components. In the latter two sections, we discuss relations between a
metric and a measure. Under the volume doubling property of the measure, we
will construct a quasisymmetric metric which satisfies certain desired relations.

Since [45], quasisymmetric maps and related subjects have been studied
deeply by many authors. See Heinonen [28] for example. Some of the results
in this section may be included in some of the preceeding articles. However, we
give all the proofs since it is difficult to find an exact reference from such a huge
number of literatures.

34



10 Semi-quasisymmetric metrics

In this section, we introduce several notions associated with quasisymmetric
mappings and clarify their relations.

Notation. Let X be a set and let d be a distance on X. Bd(x, r) is the closed
ball, i.e. Bd(x, r) = {y|y ∈ X, d(x, y) ≤ r}. For any A ⊆ X, diam(A, d) is
the diameter of A with respect to d defined by diam(A, d) = supx,y∈A d(x, y).
Moreover, we set d∗(x) = supy∈X d(x, y) for any x ∈ X.

In the rest of this section, we assume that d and ρ are distances on a set X.
The following notion “semi-quasisymmetric” is called “weakly quasisymmet-

ric” in [45] and can be traced back to [12] and [29]. See [45] for details.

Definition 10.1. ρ is said to be semi-quasisymmtric with respect to d, or
(SQS)d for short, if and only if there exist ϵ ∈ (0, 1) and δ > 0 such that
ρ(x, z) < ϵρ(x, y) whenever d(x, z) < δd(x, y).

In the above definition, we may assume δ < 1 without loss of generality.

Proposition 10.2. If ρ is (SQS)d, then the identity map from (X, d) to (X, ρ)
is continuous.

This fact has been obtained in [45].

Proof. Assume that d(xn, x) → 0 as n → ∞ and ρ(xn, x) → a as n → ∞, where
a > 0. Choose ϵ1 ∈ (ϵ, 1). Then ρ(xn+m, x) > ϵ1ρ(xn, x) and d(xn+m, x) <
δd(xn, x) for sufficiently large n and m. By (SQS)d, it follows that ρ(xn+m, x) <
ϵρ(xn, x). This contradiction implies the desired conclusion.

Proposition 10.3. Assume that (X, d) is uniformly perfect. Then ρ is (SQS)d
if and only if, for any ϵ > 0, there exists δ > 0 such that ρ(x, z) < ϵρ(x, y)
whenever d(x, z) < δd(x, y).

Proof. Assume that ρ is (SQS)d. We will show that d(x, z) < (cδ)nd(x, y)
implies ρ(x, z) < ϵnρ(x, y) by induction, where c is the constant appearing in
Definition 6.1. The case n = 1 is obvious. Suppose this is true for n. Suppose
that d(x, z) < (cδ)n+1d(x, y). Since (X, d) is uniformly perfect, there exits y′ ∈
X such that c(cδ)nd(x, y) ≤ d(x, y′) < (cδ)nd(x, y). By induction assumption,
ρ(x, y′) < ϵnρ(x, y). Also since d(x, z) < δd(x, y′). we have ρ(x, z) < ϵρ(x, y′).
Therefore ρ(x, z) < ϵn+1ρ(x, y).

The converse is obvious.

Next we consider geomtric interpretation of semi-quasisymmetricity. We say
that ρ is semi-quasiconformal with respect to d, (SQC)d for short, if ρ-balls
are equivalent to d-balls with a uniform distortion. (SQS)d implies (SQS)d
but not vise versa. To get an “if and only if” assertion, we need a kind of
uniform distortion condition regarding annuli instead of balls, called annulus
semi-quasiconformality. To give a precise statement, we introduce the follow-
ings.
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Definition 10.4. (1) Define dρ(x, r) = supy∈Bρ(x,r) d(x, y) for x ∈ X and
r > 0. d is said to be doubling with respect to ρ if and only if there exist α > 1
and c > 0 such that dρ(x, αr) ≤ cdρ(x, r) < ∞ for any r > 0 and any x ∈ X.
(2) ρ is said to be semi-quasiconformal with respect to d, or (SQC)d for short,
if and only if dρ(x, r) < +∞ for any x ∈ X and any r > 0 and there exists
δ ∈ (0, 1) such that Bd(x, δdρ(x, r)) ⊆ Bρ(x, r) for any x ∈ X and r > 0.
(3) ρ is said to be annulus semi-quasiconformal with respect to d, or (ASQC)d

for short, if and only if dρ(x, r) < ∞ for any x ∈ X and r > 0 and, for
any ϵ ∈ (0, 1), there exists δ ∈ (0, 1) such that d(x, y) ≥ δdρ(x, r) whenever
ρ(x, y) ≥ ϵr.
(4) ρ is said to be weak annulus semi-quasiconformal with respect to d, or
(wASQC)d for short, if and only if dρ(x, r) < ∞ for any x ∈ X and r > 0
and there exist ϵ ∈ (0, 1) and δ ∈ (0, 1) such that d(x, y) ≥ δdρ(x, r) whenever
ρ(x, y) ≥ ϵr.

Remark. (1) If d is doubling with respect to ρ, then

dρ(x, ar) ≤ c0a
ωdρ(x, r)

for any r > 0, a ≥ 1 and x ∈ X, where c0 and ω are positive constants which
are independent of x, a and r. Hence the value of α itself is not essential. An
easy choice of α is two, and this is why we call this notion “doubling”.
(2) Note that Bρ(x, r) ⊆ Bd(x, dρ(x, r)). Hence ρ is (SQC)d if and only if, for
any x ∈ X and r > 0, there exist R1 and R2 such that Bd(x, R1) ⊆ Bρ(x, r) ⊆
Bd(x, R2) and R1 ≥ CR2, where C ∈ (0, 1) is independent of x and r. There-
fore, a ρ-ball is equivlent to a d-ball with a uniformly bounded distortion.
(3) Assume that dρ(x, r) < ∞ for any x and r. Then (ASQC)d is equiv-
alent to the following statement: for any ϵ ∈ (0, 1), there exists δ ∈ (0, 1)
such that d(x, y) ≥ δdρ(x, r) whenever r > ρ(x, y) ≥ ϵr. Also (ASQC)d im-
plies that a ρ-annulus Bρ(x, r)\Bρ(x, ϵr) is contained in a d-annulus Bd(x, (1 +
γ)dρ(x, r))\Bd(x, δdρ(x, r)) for any γ > 0.

Theorem 10.5. Assume that both (X, d) and (X, ρ) are uniformly perfect and
that dρ(x, r) < +∞ for any x ∈ X and r > 0. Then the following four conditions
are equivalent.
(a) ρ is (SQS)d.
(b) d is doubling with respect to ρ and ρ is (SQC)d.
(c) ρ is (ASQC)d.
(d) ρ is (wASQC)d.

Proof. (a) ⇒ (b): First we show that d is doubling with respect to ρ. Since
(X, ρ) is uniformly perfect, Bρ(x, r)\Bρ(x, cr) ̸= ∅ unless X\Bρ(x, r) = ∅, where
c is independent of x and r. By Proposition 10.3, we may assume ϵ < c2. Now
by (SQS)d, ρ(x, z)/ϵ ≥ ρ(x, y) implies d(x, z) ≥ δd(x, y).
Claim: Suppose r/

√
ϵ > ρ(x, y). Then there exists z ∈ Bρ(x, r) such that

ρ(x, z)/ϵ > ρ(x, y).
Proof of the claim: If X\Bρ(x, r) ̸= ∅, then there exists z ∈ X such that r >
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ρ(x, z) ≥ cr. Hence ρ(x, z)/ϵ ≥ cr/ϵ > r/
√

ϵ > ρ(x, y). In case X = Bρ(x, r),
let ρ∗(x) = supx′∈X ρ(x, x′). Then ρ∗(x)/ϵ > ρ∗(x) ≥ ρ(x, y). Hence there
exists z ∈ Bρ(x, r) = X such that ρ(x, z)/ϵ > ρ(x, y). Thus we have shown the
claim.
If ρ(x, z)/ϵ > ρ(x, y), (SQS)d implies d(x, z) ≥ δd(x, y). By the above claim, we
obtain that dρ(x, z) ≥ δdρ(x, y/

√
ϵ). Hence d is doubling with respect to ρ.

Next we show that ρ is (SQC)d. Suppose that d(x, z) < δdρ(x, r). Then there
exists y ∈ Bρ(x, r) such that d(x, z) < δd(x, y). Hence by (SQS)d, ρ(x, z) <
ϵρ(x, y) < r and hence z ∈ Bρ(x, r).
(b) ⇒ (c): Let ϵ ∈ (0, 1). By (SQC)d, Bρ(x, ϵr) ⊇ Bd(x, δdρ(x, ϵr)). Since
d is doubling with respect to ρ, dρ(x, ϵr) > c′dρ(x, r), where c′ is independent
of x and r. Therefore, Bρ(x, ϵr) ⊇ Bd(x, δc′dρ(x, r)). This immediately imply
(ASQC)d.
(c) ⇒ (d): This is obvious.
(d) ⇒ (a): Let ρ(x, z) ≥ ϵr. Then ϵ−n+1r ≤ ρ(x, z) < ϵ−nr for some n ≥ 0. By
(ASQC)d, δdρ(x, r) ≤ δdρ(x, ϵ−nr) ≤ d(x, z). Hence, d(x, z) < δdρ(x, r) implies
ρ(x, z) < ϵr. Now suppose d(x, z) < δd(x, y). Since δd(x, y) ≤ δdρ(x, ρ(x, y)),
we have ρ(x, y) < ϵρ(x, y).

Next we present useful implications of (SQS)d, (SQC)d and (ASQC)d.

Definition 10.6. ρ is said to decay uniformly with respect to d if and only if
(i) diam(X, d) < +∞ and there exist r∗ > diam(X, d) and (a, λ) ∈ (0, 1)2 such
that ρd(x, λr) ≤ aρd(x, r) for any x ∈ X and r ∈ (0, r∗]
or
(ii) diam(X, d) = +∞ and there exists (a, λ) ∈ (0, 1)2 such that ρd(x, λr) ≤
aρd(x, r) for any x ∈ X and r > 0.

Proposition 10.7. Assume that (X, d) is uniformly perfect and ρ is (SQS)d.
Then ρ decays unifromly with respect to d. More precisely, if diam(X, d) < ∞,
then, for any r∗ > 0, there exists (a, λ) ∈ (0, 1)2 such that ρd(x, λr) ≤ aρd(x, r)
for any x ∈ X and r ∈ (0, r∗].

Remark. If ρ is (SQS)d, then Bd(x, δd(x, y)) ⊆ Bρ(x, ϵρ(x, y)). Hence ρd(x, r) <
∞ if r < δd∗(x). Note that d∗(x) ≥ diam(X, d)/2.

Proof. Since ρ is (SQS)d, there exist ϵ ∈ (0, 1) and δ ∈ (0, 1) such that ρ(x, z) <
ϵρ(x, y) whenever d(x, z) < δd(x, y). Also there exists c ∈ (0, 1) such that
Bd(x, r)\Bd(x, cr) ̸= ∅ unless X = Bd(x, r). Suppose that diam(X, d) < ∞.
Choose n ≥ 1 so that cn−1r∗ < diam(X, d)/2. Since d∗(x) ≥ diam(X, d)/2, it
follows that X ̸= Bd(x, cn−1r) for any r ∈ (0, r∗]. Therefore, there exists y ∈ X
such that cnr ≤ d(x, y) < cn−1r. If d(x, z) < cnδr, we have d(x, z) < δd(x, y).
Hence, ρ(x, z) < ϵρ(x, y). This shows that ρd(x, cnδr) ≤ ϵρ(x, y) ≤ ϵρd(x, r).
The similar arguments suffice as well in the case where diam(X, d) = ∞.

Proposition 10.8. Assume that d is doubling with respect to ρ and ρ is (SQC)d.
Let µ be a Borel regular measure on X. Then µ is (VD)ρ if µ is (VD)d.
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Combining this proposition with Thereom 10.5, we see that the volume dou-
bling property is inherited from d to ρ if ρ is (SQS)d under the uniform perfect-
ness.

Proof. Since d is (VD)ρ,

Bρ(x, 2r) ⊆ Bd(x, 2dρ(x, 2r)) ⊆ Bd(x, c′dρ(x, r)),

where c′ > 1. If µ is (VD)d, then

µ(Bd(x, c′dρ(x, r))) < cµ(Bd(x, δdρ(x, r))).

Moreover, by (SQC)d, Bd(x, δdρ(x, r)) ⊆ Bρ(x, r). Thus, we have

µ(Bρ(x, 2r)) ≤ cµ(Bd(x, δdρ(x, r)) ≤ cµ(Bρ(x, r)).

The following lemma is quite similar to Theorem 10.5 but is a little stronger
since it does not assume that (X, d) is uniformly perfect. We will take advantage
of this stronger statement later.

Lemma 10.9. Assume that (X, ρ) is uniformly perfect. If ρ is (ASQC)d, then
d is doubling with respect to ρ.

Proof. By the assumption, Bρ(x, r)\Bρ(x, cr) ̸= ∅ unless Bρ(x, cr) = X for some
c ∈ (0, 1). Let ϵ = c2. By (ASQC)d, for some δ ∈ (0, 1), d(x, y) ≥ δdρ(x, r)
when ρ(x, y) ≥ ϵr. If Bρ(x, r) = Bρ(x, cr), then dρ(x, r) = dρ(x, cr) ≥ δdρ(x, r).
If Bρ(x, r)\Bρ(x, cr) ̸= ∅, then there exists y ∈ X such that ϵr ≤ ρ(x, y) ≤
cr. This also implies that dρ(x, cr) ≥ δdρ(x, r). Hence we have the doubling
property of dρ.

Proposition 10.10. Assume that (X, ρ) is uniformly perfect and that dρ(x, r) <
∞ for any x ∈ X and r > 0. If ρ is (ASQC)d, then

d(x, y) ≃ dρ(x, ρ(x, y))

for any x, y ∈ X.

Proof. There exist ϵ ∈ (0, 1) and δ ∈ (0, 1) such that ϵr ≤ ρ(x, y) < r im-
plies d(x, y) ≥ δdρ(x, r). Choose α > 1 so that αϵ < 1. For any y ∈ X,
we have ϵαρ(x, y) ≤ ρ(x, y) < αρ(x, y). Hence d(x, y) ≥ δdρ(x, αρ(x, y)) ≥
δdρ(x, ρ(x, y)). By Lemma 10.9, d is doubling with respect to ρ. Therefore,
c2dρ(x, ρ(x, y)) ≤ dρ(x, αρ(x, y)) ≤ d(x, y), where c2 only depends on α.
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11 Quasisymmetric metrics

In this section, we will introduce the notion of being quasisymmetric and relate
it to the notions obtained in the last section.

d and ρ are distances on a set X through this section.

Definition 11.1. ρ is said to be quasisymmetric, or QS for short, with respect
to d if and only if there exists a homeomorphism h from [0,∞) to itself such that
h(0) = 0 and, for any t > 0, ρ(x, z) < h(t)ρ(x, y) whenever d(x, z) < td(x, y).
We write ρ ∼

QS
d if ρ is quasisymmetric with respect to d.

The followings are basic properties of quasisymmetric distances.

Proposition 11.2. Assume that ρ is quasisymmetric with respect to d. Then
(1) d is quasisymmetric with respect to ρ.
(2) The identity map from (X, d) to (X, ρ) is a homeomorphism.
(3) (X, d) is uniformly perfect if and only if (X, ρ) is uniformly perfect.
(4) (X, d) is bounded if and only if (X, ρ) is bounded.
(5) Define dρ(x, r) = supy∈Bρ(x,r) d(x, y) and ρd(x, r) = supy∈Bd(x,r) ρ(x, y).
Then dρ(x, r) and ρd(x, r) are finite for any x ∈ X and any r > 0.

Those statements, in particular (1) and (3), have been obtained in the orig-
inal paper [45].

Proof. (1) Note that ρ(x, z) ≥ h(t)ρ(x, y) implies d(x, z) ≥ td(x, y). Hence
if h(t)−1ρ(x, z) > ρ(x, y), then 2t−1d(x, z) > d(x, y). Set g(s) = 2/h−1(1/t).
Then g(s) is a homeomorphism from [0,∞) to itself and g(s)d(x, z) > d(x, y)
whenever tρ(x, z) > ρ(x, y). Thus d is QS with respect to ρ.
(2) If ρ ∼

QS
d, then ρ is (SQS)d and d is (SQS)ρ. Now, Proposition 10.2 suffices.

(3) There exists δ ∈ (0, 1) such that Bd(x, r/δ)\Bd(x, r) ̸= ∅ if Bd(x, r) ̸= X
by the uniform perfectness. Choose t∗ ∈ (0, 1) so that h(t∗) < 1. Suppose
Bρ(x, r) ̸= X. There exists y ∈ X such that ρ(x, y) > r. Let r = δt∗d(x, y).
Since r < d(x, y), Bd(x, r) ̸= ∅. Hence there exists y1 ∈ X such that δt∗d(x, y) ≤
d(x, y1) < t∗d(x, y). Since ρ ∼

QS
d, we have λ1ρ(x, y) < ρ(x, y1) < λ2ρ(x, y),

where 0 < λ1 = h(2/(δt∗)) < λ2 = h(t∗) < 1. In the same way, we have y2

which satisfies λ1ρ(x, y1) < ρ(x, y2) < λ2ρ(x, y1). Inductively, we may construct
{yn}n≥1 such that λ1ρ(x, yn) < ρ(x, yn+1) < λ2ρ(x, yn). Choose m so that
ρ(x, ym+1) < r ≤ ρ(x, ym). Then ym ∈ Bρ(x, r/λ1)\Bρ(x, r). Hence (X, ρ) is
uniformly perfect.
(4), (5) Obvious.

By (1) of the above proposition, ∼
QS

is an equivalence relation.

The following theorem relates the notion of begin semi-quasisymmetric with
being quasisymmetric. It has essentially been obtained in [45, Theorem 3.10],
where the notion of “unifromly perfect” is called “homogeneously dense”.
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Theorem 11.3. Assume that both (X, d) and (X, ρ) are uniformly perfect.
Then ρ is QS with respect to d if and only if ρ is (SQS)d and d is (SQS)ρ.

Proof. If ρ is QS with respect to d, then it is straight forward to see that d
and ρ are semi-quasisymmetric with respect to each other. Conversely, assume
that d and ρ are semi-quasisymmetric with respect to each other. Then by
Proposition 10.3, we may construct homeomorphisms h1 : [0.δ1] → [0, ϵ1] and
h2 : [0, δ2] → [0, ϵ2] which satisfy
(i) h1(0) = 0, h2(0) = 0,
(ii) ρ(x, z) < h1(δ)ρ(x, y) whenever d(x, z) < δd(x, y) for any δ ∈ (0, δ1] and
(iii) d(x, z) < h2(δ)d(x, y) whenever ρ(x, z) < δρ(x, y) for any δ ∈ (0, δ2].

Define

h3(t) =

{
2/(h2)−1(1/t) for t ∈ [1/δ2,∞),
2/ϵ2 for t ∈ [0, 1/δ2].

Then ρ(x, z) < h3(δ)ρ(x, y) whenever d(x, z) < δd(x, y) for any δ ∈ (0,∞).
There is no difficulty to find a homeomorphism h : [0,∞) → [0,∞) with h(0) = 0
that satisfies h(t) ≥ h1(t) for any t ∈ [0, δ1] and h(t) ≥ h3(t) for any t ∈
[δ1,∞). Obviously d(x, z) < td(x, y) implies ρ(x, z) < h(t)ρ(x, y) for any t > 0.
Therefore, ρ is QS with respect to d.

Combining this theorem with Theorem 10.5, we can produce several equiv-
alent conditions for quasisymmetricity under uniform perfectness.

The next corollary is a modified version of Proposition 10.8.

Corollary 11.4. Assume that (X, d) is uniformly perfect and that ρ ∼
QS

d. Let

µ be a Borel regular measure on (X, d). Then µ is (VD)d if and only if it is
(VD)ρ.

Proof. By Proposition 11.2-(3), (X, ρ) is uniformly perfect. Hence by Theo-
rem 11.3, ρ is (SQS)d and d is (SQS)ρ. Theorem 10.5 shows that d is doubling
with respect to ρ and ρ is (SQC)d. By Proposition 10.8, if µ is (VD)d, then µ
is (VD)ρ. The converse follows by exchanging d and ρ.

12 Relations of measures and metrics

To obtain a heat kernel estimate, one often show a certain kind of relations
concerning a measure and a distance. The typical example in the following
relation:

d(x, y)µ(Bρ(x, ρ(x, y))) ≃ ρ(x, y)β , (12.1)

where d(x, y) is the resistance metric (may be written as R(x, y)), ρ is a distance
used in the heat kernel estimate and β is a positive exponent. The left hand side
corresponds the escape time from a ρ-ball. We generalize such a kind of relations
and study them in the light of quasisymmetricity in the present section.

Troughout this section, d and ρ are distances on a set X which give the
same topology on X. µ is a Borel regular measure on (X, d). We assume that
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0 < µ(Bd(x, r)) < +∞ and 0 < µ(Bρ(x, r)) < +∞ for any x ∈ X and any
r > 0.

Notation. We set Vd(x, r) = µ(Bd(x, r)) and Vρ(x, r) = µ(Bρ(x, r)).

Let H : (0,∞)2 → (0,∞) satisfy the following two conditions:
(H1) if 0 < s1 ≤ s2 and 0 < t1 ≤ t2, then H(s1, t1) ≤ H(s2, t2),
(H2) for any (a, b) ∈ (0,∞)2, define

h(a, b) = sup
(s,t)∈(0,∞)2

H(as, bt)
H(s, t)

.

Then h(a, b) < ∞ for any (a, b) ∈ (0,∞)2 and there exists c0 > 0 such that
h(a, b) < 1 for any (a, b) ∈ (0, c0)2.

Also g : (0,∞) → (0,∞) is a monotonically increasing function satisfying
g(t) ↓ 0 as t ↓ 0 and the doubling property, i.e. there exists c > 0 such that
g(2t) ≤ cg(t) for any t > 0.

We will study several relations between conditions concerning d, ρ, µ, H and
g.

Definition 12.1. (1) We say that the condition (DM1) holds if and only if
there exists η : (0, 1] → (0,∞) such that η is monotonically nondecreasing,
η(t) ↓ 0 as t ↓ 0 and

η(λ)
g(ρ(x, y))

H(d(x, y), Vρ(x, ρ(x, y)))
≥ g(λρ(x, y)))

H(d(x, y), Vρ(x, λρ(x, y)))

for any x, y ∈ X and any λ ∈ (0, 1].
(2) We say that the condition (DM2) holds if and only if

H(d(x, y), Vρ(x, ρ(x, y))) ≃ g(ρ(x, y))

for any x, y ∈ X.
(3) We say that the condition (DM3) holds if and only if there exist r∗ >
diam(X, ρ) such that

H(dρ(x, r), Vρ(x, r)) ≃ g(r)

for any x ∈ X and any r ∈ (0, r∗].

The relation (DM2) can be seen as a generalization of the above mentioned
relation (12.1), where H(s, t) = st and g(r) = rβ . The relation (DM1) looks
too complicated but it is shown to be necessary if d ∼

QS
ρ and (DM2) is satisfied.

See Corollary 12.3.
Remark. If diam(X, ρ) = ∞, then we remove the statement “r∗ > diam(X, ρ)”
and replace “r ∈ (0, r∗]” by “r > 0” in (3) of the above definition.

In the next section, we are going to construct a distance ρ on X which
satisfies all three conditions (DM1), (DM2) and (DM3) with g(r) = rβ for
sufficiently large β under a certain assumptions. See Theorem 13.1 for details.

The next theorem gives the basic relations. Much clearer description from
quasisymmetric point of view can be found in the corollary below.
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Theorem 12.2. Assume that (X, ρ) is uniformly perfect, that lims↓0 h(s, 1) =
limt↓0 h(1, t) = 0 and that there exists c∗ > 0 such that µ(X) ≤ c∗Vρ(x, ρ∗(x))
for any x ∈ X, where ρ∗(x) = supy∈X ρ(x, y).
(1) µ is (VD)ρ under (DM1) and (DM2).
(2) (DM1) and (DM2) hold if and only if (DM3) holds, d decays uniformly
with respect to ρ and ρ is (ASQC)d.

Remark. If diam(X, ρ) = ∞, then ρ∗(x) = ∞ for any x ∈ X. In this case, we
define Bρ(x,∞) = X and Vρ(x,∞) = µ(X). Hence letting c∗ = 1, we always
have µ(X) ≤ c∗Vρ(x, ρ∗(x)).

On the other hand, if diam(X, ρ) < ∞, then diam(X, ρ)/2 ≤ ρ∗(x) ≤
diam(X, ρ). In this case, X = B(x, ρ∗(x)).

Corollary 12.3. In addition to the assumptions in Theorem 12.2, suppose that
(X, d) is uniformly perfect. Then the following four conditions are equivalent:
(a) (DM1) and (DM2) hold.
(b) ρ ∼

QS
d and (DM2) holds.

(c) ρ ∼
QS

d and (DM3) holds.

(d) (DM3) holds, d decays uniformly with respect to ρ and ρ is (SQS)d.
Moreover, if any of the above conditions is satisfied, then µ is (VD)d and (VD)ρ.

The rest of this section is devoted to proving the above theorem and the
corollary.

Lemma 12.4. If (DM1) and (DM2) are satisfied, than, for any ϵ > 0, there ex-
ists δ > 0 such that d(x, z) < ϵd(x, y) whenever ρ(x, z) < δρ(x, y). In particular,
d is (SQS)ρ.

Proof. Assume that d(x, z) ≥ ϵd(x, y) and that ρ(x, z) ≤ ρ(x, y). Let λ =
ρ(x, z)/ρ(x, y). Then by (DM2),

c2g(λg(x, y)) ≥ H(d(x, z), Vρ(x, ρ(x, z)))
≥ H(ϵd(x, y), Vρ(x, λρ(x, y)))

≥ h(1/ϵ, 1)−1H(d(x, y), Vρ(x, λρ(x, y))).

Hence

c3 ≤ g(λρ(x, y))
H(d(x, y), Vρ(x, λρ(x, y)))

,

where c3 is a positive constant which depends only on ϵ. This combined with
(DM1) and (DM2) implies that 0 < c4 ≤ η(λ), where c4 depends only on
ϵ. Hence, there exists δ > 0 such that ρ(x, z) ≥ δρ(x, y). Thus we have the
contraposition of the statement.

Lemma 12.5. Assume (DM1) and that limt↓0 h(1, t) = 0. Then, for any λ > 0,
there exists a > 0 such that Vρ(x, λρ(x, y)) ≥ aVρ(x, ρ(x, y)) for any x, y ∈ X.

Remark. Note that h(1, tn) ≤ h(1, t)n. Hence limt↓0 h(1, t) = 0 if and only if
there exists t∗ ∈ (0, 1) such that h(1, t∗) < 1.
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Proof. For λ ≥ 1, we may choose a = 1. Suppose that λ ∈ (0, 1). Then by
(DM1) and the doubling property of g,

h
(
1,

Vρ(x, λρ(x, y))
Vρ(x, ρ(x, y))

)
≥ H(d(x, y), Vρ(x, λρ(x, y)))

H(d(x, y), Vρ(x, ρ(x, y)))

≥ η(λ)
g(λρ(x, y))
g(ρ(x, y))

≥ cλ > 0,

where cλ depends only on λ. Since limt↓0 h(1, t) = 0, we have the desired
conclusion.

Lemma 12.6. Assume that (X, ρ) is uniformly perfect and that limt↓0 h(1, t) =
0. If d is (SQS)ρ and (DM2) holds, then, for any sufficiently small λ ∈ (0, 1),
there exists a > 0 such that Vρ(x, λρ(x, y)) ≥ aVρ(x, ρ(x, y)) for any x, y ∈ X.

Proof. Since d is (SQS)ρ, there exists ϵ ∈ (0, 1) and δ0 ∈ (0, 1) such that
d(x, z) < ϵd(x, y) whenever ρ(x, z) < δ0ρ(x, y). If δ ≤ δ0, then d(x, z) <
ϵd(x, y) whenever ρ(x, z) < δρ(x, y). Also there exists c ∈ (0, 1) such that
Bρ(x, r)\Bρ(x, cr) ̸= ∅ if Bρ(x, r) ̸= X because (X, ρ) is uniformly perfect. Let
x and y ∈ X. Then we may choose z ∈ Bρ(x, δr)\Bρ(x, cδr), where r = ρ(x, y).
Note that d(x, z) < ϵd(x, y) < d(x, y). By the doubling property of g and
(DM2),

c′g(ρ(x, z)) ≥ c2g(ρ(x, z)/(cδ)) ≥ c2g(r) ≥ H(d(x, y), Vρ(x, r))

≥ H(d(x, z), Vρ(x, r)) ≥ h
(
1,

Vρ(x, ρ(x, z))
Vρ(x, ρ(x, y))

)−1

H(d(x, z), Vρ(x, ρ(x, z)))

≥ c1h
(
1,

Vρ(x, δρ(x, y))
Vρ(x, ρ(x, y))

)−1

g(ρ(x, z)).

Therefore, it follows that

h
(
1,

Vρ(x, δρ(x, y))
Vρ(x, ρ(x, y))

)
≥ c3,

where c3 > 0 is independent of x and y. Since limt↓0 h(1, t) = 0, we have
Vρ(x, δρ(x, y)) ≥ aVρ(x, ρ(x, y)). Letting λ = δ, we have the desired statement.

Lemma 12.7. Assume that (X, ρ) is uniformly perfect, that limt↓0 h(1, t) = 0,
and that there exists c∗ > 0 such that µ(X) ≤ c∗Vρ(x, ρ∗(x)) for any x ∈ X.
If either (DM1) is satisfied or d is (SQS)ρ and (DM2) is satisfied, then µ is
volume doubling with respect to ρ.

Proof. Bρ(x, r)\Bρ(x, cr) ̸= ∅ unless Bρ(x, cr) = X by the uniform perfectness.
Suppose r < ρ∗(x) = supy∈X ρ(x, y). Choose λ so that 0 < λ < c. Then
there exists y ∈ X such that cr ≤ ρ(x, y) < r. By Lemmas 12.5 and 12.6, we
have Vρ(x, λρ(x, y)) ≥ aVρ(x, ρ(x, y)) in either case. This immediately implies
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Vρ(x, λr) ≥ aVρ(x, cr). Therefore, if r < cρ∗(x), then Vρ(x, λ′r) ≥ aVρ(x, r),
where λ′ = λ/c < 1. If diam(X, ρ) = ∞, then we have finished the proof.
Otherwise, ρ∗(x) < ∞ for any x ∈ X.

If r ∈ [cρ∗(x), ρ∗(x)), there exists y ∈ X such that r ≤ ρ(x, y) ≤ ρ∗(x).
Lemma 12.5 implies that Vρ(x, λρ(x, y)) ≥ aVρ(x, ρ(x, y)) ≥ aVρ(x, r). Since
r/c ≥ ρ∗(x) ≥ ρ(x, y), we have Vρ(x, λ′r) ≥ Vρ(x, λρ(x, y)) ≥ aVρ(x, r).

Finally, let r ≥ ρ∗(x). Then there exists y ∈ X such that ρ∗(x)/2 < ρ(x, y) ≤
ρ∗(x) and Vρ(x, ρ∗(x))/2 ≤ Vρ(x, ρ(x, y)). By Lemma 12.5, Vρ(x, λ′ρ(x, y) ≥
a′Vρ(x, ρ(x, y)), where a′ is independent fo x and y. Hence

a′c∗
2

Vρ(x, r) =
a′c∗
2

µ(X) ≤ a′

2
Vρ(x, ρ∗(x)) ≤ a′Vρ(x, ρ(x, y))

≤ Vρ(x, λ′ρ(x, y)) ≤ Vρ(x, λ′r)

Lemma 12.8. Assume that (X, ρ) is uniformly perfect and that µ is volume
doubling with respect to ρ. If (DM1) and (DM2) are satisfied and lims↓0 h(s, 1) =
0, then ρ is (ASQC)d.

Proof. First we suppose that diam(X, ρ) < ∞. Lemma 12.4 implies that d is
(SQS)ρ. Let r∗ > diam(X, ρ). By Proposition 10.7-(1), there exist λ ∈ (0, 1)
and a ∈ (0, 1) such that dρ(x, λr) ≤ adρ(x, r) for any x ∈ X and any r ∈ (0, r∗].
Let r ∈ (0, r∗]. (Note that dρ(x, λnr) ≤ andρ(x, r). Hence λ can be arbitrarily
small.) Then

dρ(x, r) = sup{d(x, y)|y ∈ Bρ(x, r)\Bρ(x, λr)}. (12.2)

Since µ is (VD)ρ, there exists α > 0 such that αVρ(x, λr) ≥ Vρ(x, r). Now choose
x, y ∈ Bρ(x, r)\Bρ(x, λr). Then λρ(x, y) ≤ ρ(x, z) ≤ ρ(x, y)/λ. Therefore,

c1g(ρ(x, z)) ≤ H(d(x, z), Vρ(x, ρ(x, z))) ≤ H(d(x, z), Vρ(x, ρ(x, y)/λ)))

≤ H(d(x, z), αVρ(x, ρ(x, y))) ≤ c2h(1, α)h
(d(x, z)

d(x, y)
, 1

)
g(ρ(x, y)).

This along with the doubling property of g shows that

h
(d(x, z)

d(x, y)
, 1

)
≥ c3 > 0,

where c3 is independent of x, y and z. Since h(s, 1) ↓ 0 as s ↓ 0, there exists
δ > 0 such that d(x, z) ≥ δd(x, y). By (12.2), we see that d(x, z) ≥ δdρ(x, r).
Hence Bρ(x, r)\Bρ(x, λr) ⊆ Bρ(x, dρ(x, r))\Bρ(x, δdρ(x, r)). Next we consider
the case where r > r∗. Note that r∗diam(X, d) ≥ ρ∗(x). Hence Bρ(x, r) =
Bρ(x, r∗) = X and dρ(x, r) = dρ(x, r∗) = d∗(x). Also, ρ(x, z) ≤ r∗ for any z ∈
X. Therefore if λr ≤ ρ(x, y) < r, then λr∗ ≤ ρ(x, z) < r∗ and hence d(x, z) ≥
δdρ(x, r∗) = δdρ(x, r∗). This completes the proof when diam(X, ρ) < ∞. Using
the similar arguments, we immediately obtain the case where diam(X, ρ) =
∞.
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Lemma 12.9. Assume that (X, ρ) is uniformly perfect, that µ is (VD)ρ and
that ρ is (ASQC)d. If (DM2) holds, then, for any r∗ > diam(X, ρ),

H(dρ(x, r), Vρ(x, r)) ≃ g(r)

for any x ∈ X and any r ∈ (0, r∗]. In particular, (DM3) holds.

Remark. If diam(X, ρ) = ∞, then we remove “, for any r∗ > diam(X, ρ),” and
replace “r ∈ (0, r∗]” by “r > 0” in the statement of the above lemma.

Proof. There exists c ∈ (0, 1) such that Bρ(x, r)\Bρ(x, cr) ̸= ∅ if X ̸= Bρ(x, cr)
by the uniform perfectness. Recall that ρ∗(x) ≥ diam(X, ρ)/2 for any x ∈
X. Hence if cn−1r∗ < diam(X, ρ)/2, then cn−1r < ρ∗(x) for any r ∈ (0, r∗].
Therefore X ̸= Bρ(x, cn−1r). So, we have y ∈ X satisfying cnr ≤ ρ(x, y) <
cn−1r. By Proposition 10.10 and (DM2),

H(dρ(x, ρ(x, y)), Vρ(x, ρ(x, y)) ≃ g(ρ(x, y)).

On the other hand, Lemma 10.9 implies that d is doubling with respect to ρ.
This and the doubling property of µ shows that

H(dρ(x, ρ(x, y)), Vρ(x, ρ(x, y))) ≃ H(dρ(x, r), Vρ(x, r)).

Moreover, by the doubling property of g, c6g(r) ≤ g(ρ(x, y)) ≤ g(r). Combining
the last three inequalities, we immediately obtain the desired statement.

Lemma 12.10. Assume that (X, ρ) is uniformly perfect and that ρ is (ASQC)d.
Then (DM3) implies (DM2).

Proof. By Proposition 10.10,

dρ(x, ρ(x, y)) ≃ d(x, y).

Hence, letting r = ρ(x, y), we obtain

H(dρ(x, r), Vρ(x, r)) ≃ H(d(x, y), Vρ(x, r))

This immediately imply (DM2).

Lemma 12.11. Assume that (X, ρ) is uniformly perfect and lims↓0 h(s, 1) = 0.
If ρ is (ASQC)d, d decays uniformly with respect to ρ and (DM3) holds, then
(DM1) holds.

Proof. Since d decays uniformly with respect to ρ, there exists c0 > 0 and
τ > 0 such that dρ(x, λr) ≤ c0λ

τdρ(x, r) for any x ∈ X and r ∈ (0, r∗]. (If
diam(X, ρ) = ∞, we always replace (0, r∗] by (0,∞) in this proof.) Let r =
ρ(x, y). By Proposition 10.10 and (DM3),

c1g(λr) ≤ H(dρ(x, λr), Vρ(x, λr)) ≤ H(c0λ
τdρ(x, r), Vρ(x, λr))

≤ h(c3λ
τ , 1)H(d(x, y), Vρ(x, λr)),
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where c3 > 0 is independent of x and y. Moreover, by Lemma 12.10, we have
(DM2). Hence H(d(x, y), Vρ(x, r))/g(r) is uniformly bounded. So, there exists
c4 > 0 such that

c4h(c0λ
τ , 1) ≥ H(d(x, y), Vρ(x, ρ(x, y)))

g(ρ(x, y))
g(λρ(x, y))

H(d(x, y), Vρ(x, λρ(x, y)))

for any x and y. Since limλ↓0 h(c0λ
τ , 1) = 0, we have (DM1) with η(λ) =

c4h(c0λ
τ , 1).

Proof of Theorem 12.2. (1) This is immediate by Lemma 12.7.
(2) Assume (DM1) and (DM2). Then, Lemma 12.8 shows that ρ is (ASQC)d.
By Lemma 12.4, d is (SQS)ρ. This along with Proposition 10.7 implies that d
decays uniformly with respect to ρ. Now (DM3) follows by using Lemma 12.9.

Lemmas 12.10 and 12.11 suffice for the converse direction.

Proof of Corollary 12.3. (a) ⇒ (b) Using Lemma 12.4 and 12.8 and applying
Theorem 10.5, we see that d and ρ are semi-quasisymmetric with respect to
each other. Hence by Theorem 11.3, ρ ∼

QS
d.

(b) ⇒ (c) Since ρ ∼
QS

d, Theorems 10.5 and 11.3 shows that d is (SQS)ρ and

that ρ is (ASQC)d. By Lemma 12.7, µ is (VD)ρ. Therefore Lemma 12.9 yields
(DM3).
(c) ⇒ (d) Since ρ ∼

QS
d, Theorems 10.5 and 11.3 shows that d is (SQS)ρ and

that ρ is (ASQC)d. Then by Proposition 10.7, d decays uniformly with respect
to ρ.
(d) ⇒ (a) This immediately follows by Theorem 12.2.

13 Construction of quasisymmetric metrics

The main purpose of this section is to construct a distance ρ which satisfy the
conditions (DM1) and (DM2) in Section 12 in the case where g(r) = rβ .

In this section, (X, d) is a metric space and µ is a Borel regular measure
on (X, d) which is volume doubling with respect to d. We also assume that
0 < µ(Bd(x, r)) < +∞ for any x ∈ X and r > 0. Let H : (0,∞)2 → (0,∞)
satisfy (H1) and (H2) in Section 12.

Theorem 13.1. Assume that (X, d) is uniformly perfect and that µ is (VD)d.
For sufficiently large β > 0, there exists a distance ρ on X such that ρ ∼

QS
d and

(DM3) holds with g(r) = rβ.

Remark. If ρ ∼
QS

d and (X, d) is uniformly perfect, then Proposition 11.2 and

Corollary 11.4 impliy that (X, ρ) is uniformly perfect and that µ is (VD)ρ.

Our distance ρ satisfies the condition (c) of Corollary 12.3. If lims↓0 h(s, 1) =
limt↓0 h(1, t) = 0, then we have all the assumption of the corollary and hence
obtain the statements (a) through (d). In particular, d, µ and ρ satisfy (DM1)
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and (DM2) with g(r) = rβ . In particular, letting H(s, t) = st, we establish the
existence of a distance which is quasisymmetric to the resistance metric and
satisfies (12.1) if µ is volume doubing with respect to the resistance meric. This
fact play an important role in the next part.

Example 13.2. (1) If H(s, t) = t, (DM3) is

µ(Bρ(x, r)) ≃ rβ .

Hence in this case, Theorem 13.1 implies that following well-known theorem: if
(X, d) is unifromly perfect and µ is (VD)d, then there exists a metric ρ such
that the metric measure space (X, ρ, µ) is Ahlfors regular. See Heinonen [28,
Chapter 14] and Semmes [43, Section 4.2] for details.
(2) Let F : (0,∞) → (0,∞) be monotonically nondecreasing. Suppose that
there exist positive constants c1, τ1 and τ2 such that

F (xy) ≤ c1 max{xτ1 , xτ2}F (y)

for any x, y ∈ (0,∞). Define H(s, t) = F (sptq). If p ≥ 0, q ≥ 0 and (p, q) ̸=
(0, 0), then H satisfies (H1) and (H2). In fact, H(as, bt) = F (apbqsptq) ≤
c1 max{(apbq)τ1 , (apbq)τ2}H(s, t). Hence h(a, b) ≤ c1 max{(apbq)τ1 , (apbq)τ2}.

To prove Theorem 13.1, we need several preparations.

Notation. Define v(x, y) = Vd(x, d(x, y)) + Vd(y, d(x, y)). Also define

ϕ(x, y) =

{
H(d(x, y), v(x, y)) if x ̸= y,
0 otherwise.

Note that ϕ(x, y) = ϕ(y, x) ≥ 0 and that ϕ(x, y) = 0 implies x = y.
Hereafter in this section, we always assume that (X, d) is uniformly perfect

and that µ is (VD)d. By the volume doubling property, we have the following
lemma.

Lemma 13.3. For any x, y ∈ X,

v(x, y) ≃ Vd(x, d(x, y)).

Lemma 13.4. Define

fτ1,τ2(t) =

{
tτ1 if t ∈ (0, 1),
tτ2 if t ≥ 1.

Then there exist positive constants c1, τ1 and τ2 such that Vd(x, δd(x, y)) ≤
c1fτ1,τ2(δ)Vd(x, d(x, y)) for any x, y ∈ X and any δ > 0.

Proof. If δ ≥ 1, this is immediate from the volume doubling property. Since
(X, d) is uniformly perfect, there exists c ∈ (0, 1) such that Bd(x, r) ̸= X implies
Bd(x, r)\Bd(x, cr) ̸= ∅. Let r = d(x, y). Choose z ∈ Bd(x, r/2)\Bd(x, cr/2). It
follows that Vd(x, cr/4) + Vd(z, cr/4) ≤ Vd(x, r). Now by the volume doubling
property, Vd(z, cr/4) ≥ aVd(x, cr/4), where a is independent of x, z and r. Hence
Vd(x, cr/4) ≤ (1 + a)−1Vd(x, r). This shows the desired inequality when δ ∈
(0, 1).
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Lemma 13.5. There exists a homeomorphism g : [0,∞) → [0,∞) such that
g(0) = 0 and ϕ(x, z) < g(t)ϕ(x, y) whenever d(x, z) < td(x, y).

Proof. Assume that d(x, z) < td(x, y). Write f = fτ1,τ2 . Then by (H1), (H2)
and the above lemmas,

ϕ(x, z) = H(d(x, z), v(x, z)) ≤ H(td(x, y),Mc1f(t)Vd(x, d(x, y)))

≤ H(td(x, y),M2c1f(t)v(x, y)) ≤ h(1,M2c1)h(t, f(t))H(d(x, y), v(x, y)).

By the definition of h(a, b), it follows that h(t, f(t)) is monotonically nonde-
creasing. Also if t < c0, then h(t, tτ1) < 1. Since h(tn, tnτ1) ≤ h(t, tτ1)n for
n ≥ 0, we see that h(t, f(t)) → 0 as t ↓ 0. Therefore, there exists a homeomor-
phism g : [0,∞) → [0,∞) such that g(0) = 0 and g(t) ≥ h(1,M2c1)h(t, f(t))
for any t > 0.

Definition 13.6. f : X × X → [0,∞) is called a quasidistance on X if and
only if f satisfies the following three conditions:
(QD1) f(x, y) ≥ 0 for any x, y ∈ X. f(x, y) = 0 if and only if x = y.
(QD2) f(x, y) = f(y, x) for any x, y ∈ X.
(QD3) There exists K > 0 such that f(x, y) ≤ K(f(x, z) + f(z, y)) for any
x, y, z ∈ X.

Lemma 13.7. ϕ(x, y) is a quasidistance.

Proof. Since d(x, y) ≤ d(x, z) + d(z, y), either d(x, y) ≤ d(x, z)/2 or d(x, y) ≤
d(z, y). Assume that d(x, y) ≤ d(x, z)/2. Then Lemma 13.5 implies that
ϕ(x, y) ≤ g(1/2)ϕ(x, z) ≤ g(1/2)(ϕ(x, z) + ϕ(z, y)).

Lemma 13.8. If f : X ×X → [0,∞) is a quasidistance on X, then there exists
ϵ0 > 0 such that f ϵ is equivalent to a distance for any ϵ ∈ (0, ϵ0], i.e.

f(x, y)ϵ ≃ ρ(x, y)

for any x, y ∈ X, where ρ is a distance on X.

See Heinonen [28, Proposition 14.5] for the proof of this lemma.

Lemma 13.9. For sufficiently large β > 0, there exists a distance ρ on X such
that ρ ∼

QS
d and

ϕ(x, y) ≃ ρ(x, y)β (13.1)

for any x, y ∈ X.

Proof. By Lemmas 13.7 and 13.8, if β is large enough, then there exists a
distance ρ which satisfies (13.1). By Lemma 13.5, d(x, z) < td(x, y) implies
ρ(x, z) < cg(t)1/βρ(x, y) for some c > 0. Hence ρ ∼

QS
d.
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Since ρ ∼
QS

d, d and ρ define the same topology on X. Also since (X, d) is

uniformly perfect, so is (X, ρ). Then, Theorem 11.3 shows that d and ρ are
semi-quasisymmetric with respect to each other. So we may enjoy the results
in Theorem 10.5 in the rest of discussions.

Lemma 13.10. For any x ∈ X and any r > 0,

Vρ(x, r) ≃ Vd(x, dρ(x, r)). (13.2)

Proof. Since ρ is (SQC)d,

Bd(x, cdρ(x, r)) ⊆ Bρ(x, r) ⊆ Bd(x, c′dρ(x, r)).

This and the volume doubling property of µ imply (13.2).

Proof of Theorem 13.1. The rest is to show (DM3). Since (X, ρ) is uniformly
perfect, there exists c ∈ (0, 1) such that Bρ(x, r)\Bρ(x, cr) ̸= ∅ unless Bρ(x, r) =
X. We will consider the case when diam(X, ρ) < ∞. Let r∗ > diam(X, ρ).
Choose n ≥ 1 so that cnr < diam(X, ρ)/2. Note that diam(X, ρ)/2 ≤ ρ∗(x).
Hence if r ∈ (0, r∗], then cnr < ρ∗(x). Hence there exists y ∈ X such that
cn+1r ≤ ρ(x, y) < cnr. By (ASQC)d, there exists δ > 0 such that d(x, z) ≥
δdρ(x, r) for any r > 0 and any z ∈ Bρ(x, r)\Bρ(x, cr). This along with the
doubling property of dρ(x, r) implies that dρ(x, r) ≥ d(x, y) ≥ δdρ(x, cnr) ≥
c′dρ(x, r). Then by Lemma 13.3. the volume doubling property of µ, (13.1) and
(13.2),

(cnr)β ≥ ρ(x, y)β ≥ c3H(d(x, y), c4Vd(x, d(x, y)))

≥ c3H(c′dρ(x, r), c5Vd(x, dρ(x, r))) ≥ c6H(dρ(x, r), Vρ(x, r))

Similarly,

(cn+1r)β ≤ ρ(x, y)β ≤ c7H(d(x, y), c8Vd(x, d(x, y)))

≤ c7H(dρ(x, r), Vd(x, dρ(x, r))) ≤ c8H(dρ(x, r), Vρ(x, r))

Thus we obtain (DM3) if diam(X, ρ) < ∞. The other case follows by almost
the same argument.

Part III

Volume doubling measures and
heat kernel estimates
In this part, we will show results on heat kernel estimates, which answer the
questions in the introduction, under the foundation laid by the previous two
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parts. The first question is how and when we can find a metric which is suitable
for describing an asymptotic behavoir of a heat kernel. We will give an answer
to this question in Theorem 14.11, which says that if the measure is volume dou-
bling with respect to the resistance metric, then we can get a good (on-diagonal
estimate, at least) heat kernel estimate by quasisymmetric modification of the
resistance metric. The second question concerns jumps. Namely, what kind of
jump can we allow to get a good heat kernel estimate? Theorem 14.11 also gives
an answer to this question, saying that the annulus comparable condition (with
the volume doubling property) is sufficient and necessary for a good heat kernel
estimate.

14 Main results on heat kernel estimates

In this section, we present the main results on heat kernel estimates. There
will be three main theorems, 14.6, 14.10 and 14.11. The first one gives a good
(on-diagonal and lower near diagonal) heat kernel estimate if the measure is
(VD)R and the distance is quasisymmetric with respect to R, where R is the
resistance metric. The second one provides geometrical and analytical equivalent
conditions for having a good heat kernel estimate. Finally in the third theorem,
(VD)R and (ACC) ensures the existence of a distance d which is quasisymmetric
to R and under which a good heat kernel estimate holds.

Let (E ,F) be a regular resistance form on a set X and let R be the asso-
ciated resistance metric on X. We assume that (X,R) is separable, complete,
uniformly perfect and locally compact. Let µ be a Borel regular measure on
(X,R) which satisfies 0 < µ(BR(x, r)) < ∞ for any x ∈ X and any r > 0. Under
those assumptions, if D is the closure of F∩C0(X) with respect to the E1-norm,
then (E ,D) is a regular Dirichlet form L2(X,µ). Let ({Xt}t>0, {Px}x∈X) be the
Hunt process associated with the regular Dirichlet form (E ,D) on L2(X,µ).

As we have shown in Section 6, if (X,R) is complete and µ is (VD)R, then
BR(x, r) is compact for any x ∈ X and any r > 0. Hence under (VD)R, Theo-
rem 9.4 implies the existence of a jointly continuous heat kernel (i.e. transition
density) p(t, x, y) associated with the Dirichlet form (E ,D) on L2(X,µ).

Definition 14.1. Let d be a distance on X giving the same topology as R.
Define Rd(x, r) = supy∈Bd(x,r) R(x, y), Vd(x, r) = µ(Bd(x, r)) and hd(x, r) =
Rd(x, r)Vd(x, r) for any r > 0 and any x ∈ X.

Lemma 14.2. For each x ∈ X, Rd(x, r) and Vd(x, r) are monotonically nonde-
creasing left-continuous function on (0,∞). Moreover limr↓0 Rd(x, r) = 0 and
limr↓0 Vd(x, r) = µ({x}).

By the above lemma, hd(x, r) is monotonically nondecreasing left-continuous
function on (0,∞) and limr↓0 hd(x, r) = 0.

Definition 14.3. (1) For a Borel set B ⊆ X, define the exit time from B, τB

by τB = inf{t > 0|Xt /∈ B}. Note that τB = σBc , where σBc is the hitting time
of Bc.
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(2) Let d be a distance on X which gives the same topology as R. We say that
the Einstein relation with respect d, (EIN)d for short, holds if and only if

Ex(τBd(x,r)) ≃ hd(x, r), (14.1)

for any x ∈ X and r > 0 with X ̸= Bd(x, r).

The name “Einstein relation” have been use by several authors . See [22]
and [44] for example.

We have two important equivalences between the resistance estimate, the
annulus comparable condition and the Einstein relation.

Proposition 14.4. Assume that d is a distance on X and d ∼
QS

R. Then (RES)

is equivalent to
R(x,Bd(x, r)c) ≃ Rd(x, r) (14.2)

for any x ∈ X and any r > 0 with Bd(x, r) ̸= X.

Proposition 14.5. Assume that µ is (VD)R, that d is a distance on X and
that d ∼

QS
R. Then (RES), (ACC) and (EIN)d are equivalent to one another.

The proofs of the above propositions are in Section 17.
Now we have the first result on heat kernel estimate.

Theorem 14.6. Assume (ACC). Suppose µ has volume doubling property with
respect to R. Then, there exists a jointly continuous heat kernel p(t, x, y) asso-
ciated with the Dirichlet form (E ,D) on L2(X,µ). Moreover, if a distance d on
X is quasisymmetric with respect to R, then (EIN)d holds and

c1

Vd(x, r)
≤ p(hd(x, r), x, y) (14.3)

and
p(hd(x, r), x, x) ≤ c2

Vd(x, r)
(14.4)

for any x ∈ X, any r > 0 and any y ∈ X with d(x, y) ≤ c3 min{r,diam(X, d)}.

(14.3) is called the lower near diagonal estimate. If the distance is not
geodesic, the lower near diagonal estimate is known as a substitute of the lower
off-diagonal sub-Gaussian estimate for diffusion case.

Note that R ∼
QS

R and Rd(x, r) ≃ r if (X,R) is uniformly perfect. Hence,

hd(x, r) = rVR(x, r) and the above theorem shows

p(rVR(x, r), x, x) ≃ 1
VR(x, r)

.

This have essentially been obtained in [37].
To state the next theorem, we need several notions and results on monoton-

ically non-decreasing functions on (0,∞) and their inverse.
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Definition 14.7. Let f : (0,∞) → (0,∞).
(1) f is said to be doubling if there exists c > 0 such that f(2t) ≤ cf(t) for
any t ∈ (0,∞).
(2) f is said to be to decay uniformly if and only if there exists (δ, λ) ∈ (0, 1)2

such that f(δt) ≤ λf(t) for any t ∈ (0,∞).
(3) f is said to be a monotone function with full range if and only if f is
monotonically non-decreasing, limt↓0 f(t) = 0 and limt→∞ f(t) = +∞. For a
monotone function with full range on (0,∞), we define f−1(y) = sup{x|f(x) ≤
y} and call f−1 the right-cotinuous inverse of f .

Lemma 14.8. Let f : (0,∞) → (0,∞) be a monotone function with full range.
(1) If f is doubling, then f−1 decays uniformly and f(f−1(y)) ≃ y for any
y ∈ (0,∞).
(2) If f decays uniformly, then f−1 is doubling and f−1(f(x)) ≃ x for any
x ∈ (0,∞).

This lemma is rather elementary and we omit its proof.
The following definition is a list of important relations or properties between

a heat kernel, a measure and a distance.

Definition 14.9. Let d be a distance of X giving the same topology as R and
let g : (0,∞) → (0,∞) be a monotone function with full range.
(1) A heat kernel p(t, x, y) is said to satisfy on-diagonal heat kernel estimate
of order g with respect to d, (DHK)g,d for short, if and only if

p(t, x, x) ≃ 1
Vd(x, g−1(t))

for any x ∈ X and any t > 0, where g−1 is the right-continuous inverse of g.
(2) A heat kernel p(t, x, y) is said to have the doubling property. (KD) for
short, if and only if there exists c1 > 0 such that

p(t, x, x) ≤ c1p(2t, x, x).

for any x ∈ X and any t > 0.
(3) We say that (DM1)g,d holds if and only if there exists η : (0, 1] → [0,∞)
such that η is monotonically nondecreasing, limt↓0 η(t) = 0 and

g(λd(x, y))
Vd(x, λd(x, y))

≤ g(d(x, y))
Vd(x, d(x, y))

η(λ)

for any x, y ∈ X and any λ ∈ (0, 1].
(4) We say that (DM2)g,d holds if and only if

R(x, y)Vd(x, d(x, y)) ≃ g(d(x, y))

for any x, y ∈ X.

The conditions (DM1)g,d and (DM2)g,d corresponds to (DM1) and (DM2)
with H(s, t) = st respectively. (DM2)g,d is the counterpart of R(β) defined in
[6] and it will relate the exit time with g(d(x, y)) through (EIN)d.
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Remark. If diam(X, d) is bounded, it is enough for g to be only defined on
(0, diam(X, d)), for example, to describe (DM2)g,d. In such a case, the value of
g for [diam(X, d),∞) does not make any essential differences. One can freely
extend g : (0, diam(X, d)) → (0,∞) to g : (0,∞) → (0,∞) so that g sat-
isfy required conditions as being doubling, decaying uniformly or being strictly
monotone.

Here is our second theorem giving equivalent conditions for a good heat
kernel.

Theorem 14.10. Assume (ACC). Let d be a distance on X giving the same
topology as R and let g : (0,∞) → (0,∞) be a monotone function with full
range and doubling. Then the following statements (a), (b), (c) and (HK)g,d are
equivalent.
(a) (X, d) is uniformly perfect, (DM1)g,d and (DM2)g,d hold.
(b) d ∼

QS
R and (DM2)g,d holds.

(c) d ∼
QS

R and, for any x ∈ X and any r ≤ diam(X, d),

hd(x, r) ≃ g(r) (14.5)

(HK)g,d d ∼
QS

R, g decays uniformly, a jointly continuous heat kernel p(t, x, y)

associated with the Dirichlet form (E ,D) on L2(X,µ) exists and satisfies (KD)
and (DHK)g,d.
Moreover, if any of the above conditions holds, then there exist positive constants
c and c′ such that

c′

Vd(x, g−1(t))
≤ p(t, x, y) (14.6)

for any y ∈ Bd(x, cg−1(t)). Furthermore, assume that Φ(r) = g(r)/r is a
monotone function with full range and decays uniformly. We have the following
off-diagonal estimates:
Case 1: If (E ,F) has the local property, then

p(t, x, y) ≤ c1

Vd(x, g−1(t))
exp

(
− c2

(
d(x, y)

Φ−1(t/d(x, y))

))
(14.7)

for any x, y ∈ X and any t > 0, where c1, c2 > 0 are independent of x, y and t.
Case 2: Assume that d(x, y) has the chain condition, i.e. for any x, y ∈ X and
any n ∈ N, there exist x0, . . . , xn such that x0 = x, xn = y and d(xi, xi+1) ≤
Cd(x, y)/n for any i = 0, . . . , n − 1, where C > 0 is independent of x, y and n.
Then,

c4

Vd(x, g−1(t))
exp

(
− c5

(
d(x, y)

Φ−1(t/d(x, y))

))
≤ p(t, x, y) (14.8)

for any x, y ∈ X and any t > 0, where c3, c4 > 0 are independent of x, y and t.
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Note that if d = R, then the above theorem says (DM2)g,R implies (DM1)g,R.
Moreover, in this case, (DM2)g,R show the uniform volume doubling property
given by Kumagai in [37]. In fact, he have shown the above theorem in this
special case including the off-diagonal estimates when (E ,F) satisfy the local
property.

The above theorem is useful to show a heat kernel estimate for a specific
example. In the next section, we will apply this theorem to (traces of) α-stable
process on R for α ∈ (1, 2]. Also, in Section 23, we will apply (14.7) and (14.8)
to homogeneous random Sierpinski gaskets and recover the off-diagonal heat
kernel estimate obtained by Barlow and Hambly in [7].

The next theorem assures the existence of a distance d which satisfies the
conditions in Theorem 14.10 for certain g if µ is (VD)R and (ACC).

Theorem 14.11. Assume that (X,R) is uniformly perfect. Then the following
conditions (C1), (C2), ..., (C6) are equivalent.
(C1) (ACC) holds and µ is (VD)R.
(C2) µ is (VD)R and (EIN)R holds.
(C3) (ACC) holds and there exist a distance d on X and β > 1 such that
(HK)g,d with g(r) = rβ is satisfied.
(C4) There exist a distance d on X and β > 1 such that d ∼

QS
R,

Ex(τBd(x,r)) ≃ rβ ≃ hd(x, r) (14.9)

for any x ∈ X and any r > 0 with Bd(x, r) ̸= X.
(C5) µ is (VD)R. If d is a distance on X and d ∼

QS
R, then (EIN)d holds.

(C6) µ is (VD)R. There exists a distance d on X such that d ∼
QS

R and (EIN)d

holds.
Moreover, if any of the above conditions holds, then we can choose the dis-

tance d in (C3) and (C4) so that

d(x, y)β ≃ R(x, y)(VR(x,R(x, y)) + VR(y,R(x, y))) (14.10)

for any x, y ∈ X.

Both the voulme doubing property and the Einstein relation are known to
be necessary to obtain a good heat kernel estimate. Hence the implication
(C2) ⇒ (C3) shows that (ACC) is also necessary to get a reasonable both side
heat kernel estimate.

Remark. By Theorem 6.10, we may replace (ACC) by (RES) in (C1) and (C3).

We have simpler statement in the local case. Recall that (X,R) is assumed
to be unifromly perfect. Using Corollary 6.11, we have the next corollary.

Corollary 14.12. Assume that (E ,F) has the local property. Then the following
conditions (C1)’ and (C3)’ are equivalent:
(C1)’ µ is (VD)R.
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(C3)’ There exist a distance d on X and β > 1 such that (HK)g,d with g(r) = rβ

holds.
Moreover, if any of the above conditions is satisfied, then we have the near

diagonal lower estimate (14.6) and off-diagonal sub-Gaussian upper estimate
(14.7).

Next we apply the above theorems to the Dirichlet form associated with
a trace of a resistance form (E ,F) on X. Let Y be a closed subset of X
which is uniformly perfect. Assume that (E ,F) satisfy (RES). By Theorem 7.8,
(E|Y ,F|Y ) satisfy (RES) as well. Let ν be a Borel regular measure on (Y,R|Y )
which satisfy 0 < µ(BR(x, r) ∩ Y ) < +∞ for any x ∈ Y and r > 0. If ν is
(VD)R|Y , then (ACC) for (Y,R|Y ) follows by Theorem 6.10. Therefore, the
counterpart of Theorems 14.6, 14.10 and 14.11 hold for (E|Y ,F|Y ) with (ACC)
granted. (Note that the conditions (a), (b), (c) and (HK)g,d imply the volume
doubling property.) In particular, we have the following result.

Theorem 14.13. Let µ be a Borel regular measure on (X,R) with satisfies
0 < µ(BR(x, r)) < +∞ for any x ∈ X and any r > 0. Assume that (ACC)
holds for (E ,F) and that there exists a distance d on X such that d ∼

QS
R and

(HK)g,d with g(r) = rβ is satisfied. Let Y be a non-empty closed subset of X. If
(Y,R|Y ) is uniformly perfect and there exist γ > 0 and a Borel regular measure
ν on (Y,R|Y ) such that

µ(Bd(x, r)) ≃ rγν(Bd(x, r) ∩ Y ) (14.11)

for any x ∈ Y and any r > 0 with Bd(x, r) ̸= X, then it follows that β > γ,
that there exists a jointly continuous heat kernel pY

ν (t, x, y) associated with the
regular Dirichlet form (E|Y ,F|Y ) on L2(Y, ν) and that

pY
ν (t, x, x) ≃ 1

ν(Bd(x, t1/(β−γ)) ∩ Y )
(14.12)

for any x ∈ X and any t > 0. In particular, if µ(Bd(x, r)) ≃ rα for any x ∈ X
and any r > 0 with Bd(x, r) ̸= X, then

pY
ν (t, x, x) ≃ t−

α−γ
β−γ (14.13)

for any x ∈ Y and any t > 0 with Bd(x, t1/(β−γ)) ̸= X.

If µ(Br(x, d)) ≃ rα, then the Hausdorff dimension of (X, d) is α and µ ≃ Hα,
where Hα is the α-dimensional Hausdorff measure of (X, d). In other word,
(X, d) is Alfors α-regular set. In this case, (14.11) implies that (Y, d|Y ) is Alfors
(α − γ)-regular set.

We will apply the above theorem for the traces of the standard resistance
form on the Sierpinski gasket in Example 19.8.
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15 Example: the α-stable process on R
In this section, we will apply the results in the last section to the resistance
forms associated with the α-stable process on R for α ∈ (1, 2]. For α = 2,
the α-stable process is the Brownian motion on R. We denote the Euclidean
distance on R by dE .

Definition 15.1. (1) For α ∈ (0, 2), define

F (α) =
{

u

∣∣∣∣u ∈ C(R),
∫

R2

(u(x) − u(y))2

|x − y|1+α
dxdy < ∞

}
(15.1)

and

E(α)(u, v) =
∫

R2

(u(x) − u(y))(v(x) − v(y))
|x − y|1+α

dxdy (15.2)

for any u, v ∈ Fα. Moreover, define D(α) = F (α) ∩ L2(R, dx).
(2) For α = 2, define

F (2)
0 = {u|u ∈ C1(R),

∫
R
(u′(x))2dx < +∞}

and
E(2)(u, v) =

∫
R

u′(x)v′(x)dx

for any u, v ∈ F (2)
0 .

For α = 2, (E(2),F (2)
0 ) does not satisfy (RF2). To make a resistance form,

we need to take a kind of closure of (E(2),F (2)
0 ).

Proposition 15.2. If {un}n≥1 ⊆ F (2)
0 satisfies E(2)(un − um, un − um) → 0 as

n,m → ∞ and un(0) → a as n → ∞ for some a ∈ R, then {un}n≥1 converges
compact uniformly to u ∈ C(R) as n → ∞.

Definition 15.3. We use F (2) to denote the collection of all such limits u in
the sense of Proposition 15.2. Define

E(2)(u, v) = lim
n→∞

E(2)(un, vn)

for any u, v ∈ F (2), where {un}n≥1 and {vn}n≥1 are the sequences convergent
to u and v respectively in the sense of Proposition 15.2. Also set D(2) = F (2) ∩
L2(R, dx).

It is well-known that, for α ∈ (0, 2], (E(α),D(α)) is a regular Dirichlet form
on L2(R, dx) and the associated non-negative self-adjoint operator on L2(R, dx)
is (−∆)α/2, where ∆ = d2/dx2 is the Laplacian. The corresponding Hunt
process is called the α-stable process on R. See [36, 13] for example. Note that
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(E(α),F (α)) has a natural scaling property. More precisely, for u ∈ F (α), define
ut(x) = u(tx) for any t > 0. Then,

E(α)(ut, ut) = tα−1E(α)(u, u)

for any t > 0. Combining this scaling property with [20, Theorem 8.1], we have
the following.

Proposition 15.4. For α ∈ (1, 2], (E(α),F (α)) is a regular resistance form
on R. The corresponding resistance metric R(α)(x, y) = γα|x − y|α−1 for any
x, y ∈ R, where γα is independent of x and y.

By this proposition, for α ∈ (1, 2], if D(α)
µ = L2(R, µ)∩F (α), then (E(α),D(α)

µ )
is a regular Dirichlet form on L2(R, µ) for any Radon measure µ on R.

Theorem 15.5. (E(α),F (a)) satisfies the annulus comparable condition (ACC)
for α ∈ (1, 2].

Proof. By the scaling property with the invariance under parallel translations,
there exist c1, c2 > 0 such that

R(α)(x,B(x, r)c) = c1r

R(α)(x,B(x, r)c ∩ B(x, 2r)) = c2r,

where B(x, r) = BR(α)(x, r). Now, it is obvious that (ACC) holds.

Due to this theorem, we can apply Theorems 14.6 and 14.11 to get an es-
timate of the heat kernel associated with the Dirichlet form (E(α),D(α)

µ ) on
L2(R, µ) if µ has the volume doubling property with respect to the Euclidean
distance. (Note that R(α) is a power of the Euclidean distance.) As a special
case, we have the following proposition.

Proposition 15.6. Let p
(α)
δ (t, x, y) be the heat kernel associated with the Dirich-

let form (E(α),D(α)) on L2(R, xδdx) for δ > −1. For α ∈ (1, 2],

p
(α)
δ (t, 0, 0) ≃ t−

δ+1
δ+α

for any t > 0.

Recall that (−∆)α/2 is the associated self-adjoint operator for δ = 0. Hence
p
(α)
0 (t, x, y) = Pα(t, |x − y|), where Pα(t, ·) is the inverse Fourier transform of

e−ct|x|α for some c > 0. This immediately imply that p
(α)
0 (t, x, x) = a/t1/α for

some a > 0.
Next we consider the trace of (E(α),F (α)) on the Cantor set. Let K be the

Cantor set, i.e.

K =
{ ∞∑

m=1

im
3m

∣∣∣∣i1, i2, . . . ∈ {0, 2}
}

.
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The Hausdorff dimension dH of (K, dE) is log 2/ log 3, where dE is the Euclidean
distance. Let ν be the dH -dimensional normalized Hausdorff measure. Define

Ki1...im =
{ m∑

k=1

ik
3k

+
1

3m

∞∑
n=1

jn

3n

∣∣∣∣j1, j2, . . . ∈ {0, 2}
}

for any i1, . . . , im ∈ {0, 2}. Then ν(Ki1...im) = 2−m. Hence ν(B(x, r)) ≃ rdH for
any r ∈ [0, 1] and any x ∈ K. It is easy to see that ν has the volume doubling
property with respect to dE . Also (K, dE |K) is uniformly perfect. Recall that
R(α) = γα(dE)α−1. Also we have

µ(BdE
(x, r)) ≃ r1−dH ν(BdE

(x, r) ∩ K)

Using Theorem 14.13, we have the following result.

Theorem 15.7. Let α ∈ (1, 2]. There exists a jointly continuous heat kernel
p
(α)
K (t, x, y) on (0,∞) × K2 associated with the Dirichlet form (E(α)|K ,F (α)|K)

on L2(K, ν). Moreover,
p
(α)
K (t, x, x) ≃ t−η (15.3)

for any t ∈ (0, 1] and any x ∈ K, where η = log 2
(α−1) log 3+log 2 .

If α = 2, the process associated with (E(2)|K ,F (2)|K) on L2(K, ν) is called
the generalized diffusion on the Cantor set. Fujita has studied the heat kernel
associated with the generalized diffusion on the Cantor set extensively in [16].
He has obtained (15.3) for this case by a different method.

16 Basic tools in heat kernel estimates

The rest of this part is devoted to proving the theorems in Section 14. In this
section, we review the general methods of estimates of a heat kernel and make
necessary modifications to them. The results in this section have been developed
by several authors, for example, [1], [35] and [18].

In this section, (X, d) is a metric space and (E ,D) is a regular Dirichlet
form on L2(X,µ), where µ is a Radon measure on X. (We do not assume that
(E ,D) is derived from a resistance form.) We assume that there exists a jointly
continuous heat kernel (i.e. transition density) p(t, x, y) associated with this
Dirichlet form.

First we introduce a result on diagonal-lower estimate of a heat kernel. The
Chapman-Kolmogorov equation imply the following fact.

Lemma 16.1. For any Borel set A ⊆ X, any t > 0 and any x ∈ X,

Px(Xt ∈ A)2

µ(A)
≤ p(2t, x, x).

The next lemma can be extracted from [18, Proof of Theorem 9.3].

58



Lemma 16.2. Let h : X× (0,∞) → [0,∞) satisfy the following conditions (A),
(B) and (C):
(A) For any x ∈ X, h(x, r) is a monotonically non decreasing function of r
and limr↓0 h(x, r) = 0.
(B) There exists a1 > 0 such that h(x, 2r) ≤ a1h(x, r) for any x ∈ X and any
r > 0.
(C) There exists a2 > 0 such that h(x, r) ≤ a2h(y, r) for any x, y ∈ X with
d(x, y) ≤ r.

Assume that there exist positive constants c1, c2 and r∗ ∈ (0,∞)∪{∞} such
that

c1h(x, r) ≤ Ex(τBd(x,r)) ≤ c2h(x, r) (16.1)

for any x ∈ X and any r ∈ (0, r∗]. Then,
(1) There exist ϵ ∈ (0, 1) and c > 0 such that

Ex(e−λτBd(x,r)) ≤ ϵ (16.2)

whenever λh(x, r) ≤ c and r ∈ (0, r∗/2].
(2) For any r ∈ (0, r∗/2] and any t > 0,

Px(τBd(x,r) ≤ t) ≤ ϵe
ct

h(x,r) , (16.3)

where ϵ and c are the same as in (1).

Combining the above two lemmas, we immediately obtain the following the-
orem.

Theorem 16.3. Under the same assumptions of Lemma 16.1, there exist pos-
itive constants α and δ such that

α

µ(Bd(x, r))
≤ p(δh(x, r), x, x)

for any x ∈ X and any r ∈ (0, r∗/2]. Moreover, if µ has the volume doubling
property with respect to d and h(x, λr) ≤ ηh(x, r) for any x ∈ X and any
r ∈ (0, r∗], where λ and η belong to (0, 1) and are independent of x and r, then
there exist α′ > 0 and c∗ ∈ (0, 1) such that

α′

µ(Bd(x, r))
≤ p(h(x, r), x, x)

for any x ∈ X and r ∈ (0, c∗r∗].

Next we give a result on off-diagonal upper estimate.
Hereafter, h(x, r) is assumed to be independent on x ∈ X. We write h(r) =

h(x, r).
The following line of reasoning has essentially been developed in the series

of papers by Barlow and Bass [2, 3, 4]. It has presented in [1] in a concise and
organized manner. Here we follow a sophisticated version in [18]. Generalizing
the discussion in [18, Proof of Theorem 9.1], we have the following lemma.
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Lemma 16.4. Let (E ,D) be strongly local, i.e. the Hunt process associated
with the Dirichlet form (E ,D) on L2(X,µ) is a diffusion process. Also let h :
(0,∞) → (0,∞) be a monotone function with full range, continuous, strictly
increasing and doubling.
(1) If there exist ϵ ∈ (0, 1) and c > 0 such that (16.2) holds for any r ∈ (0, r∗]
and any x ∈ X with λh(r) ≥ c, then, for any q > 0,

Ex(e−λτBd(x,r)) ≤ c1 exp
(
− c2

r

h−1(c/λ)

)
(16.4)

for any λ > 0 and any r ∈ (0, qr∗], where c1 = ϵ−2 max{1,q} and c2 = − log ϵ.
(2) Moreover, assume that Ψ(r) = h(r)/r is a monotone function with full
range, strictly increasing. If (16.4) holds for any λ > 0 and any r ∈ (0, R],
then, for any δ ∈ (0, 1), any t > 0 and any r ∈ (0, R],

Px(τBd(x,r) ≤ t) ≤ c1 exp
(
− c3r

Ψ−1(c4t/r)

)
, (16.5)

where c3 = c2(1 − δ) and c4 = c/(c2δ).

Proof. (1) First assume that r/h−1(c/λ) ≥ 2 and r∗/h−1(c/λ) ≥ 2. Then there
exists n ∈ N such that

r

h−1(c/λ)
≥ n ≥ r

2h−1(c/λ)
≥ r

r∗
. (16.6)

If n is the maximum natural number satisfying (16.6), then n ≥ r/h−1(c/λ)−1.
Since λh(r/n) ≥ c and r/n ∈ (0, r∗], the arguments in [18, Proof of Theorem 9.1]
work and imply

Ex(e−λτBd(x,r)) ≤ ϵn ≤ 1
ϵ

exp
(
− c2r

h−1(c/λ)

)
. (16.7)

If r/h−1(x/λ) ≤ 2, then

Ex(e−λτBd(x,r)) ≤ 1 ≤ 1
ϵ2

exp
(
− c2r

h−1(c/λ)

)
. (16.8)

Finally if r∗/h−1(c/λ) ≤ 2, then r/h−1(c/λ) ≤ qr∗/h−1(x/λ) ≤ 2q for any
r ∈ (0, qr∗]. Hence

Ex(e−λτBd(x,r)) ≤ 1 ≤ 1
ϵ2q

exp
(
− c2r

h−1(c/λ)

)
. (16.9)

Combining (16.7), (16.8) and (16.9), we obtain the desired inequality.
(2) By [18, Proof of Theorem 9.1],

Px(τBd(x,r) ≤ t) ≤ eλtEx(e−λτBd(x,r)) ≤ c1 exp
(

λt − c2r

h−1(c/λ)

)
(16.10)

for any t > 0, any λ > 0 and any r ∈ (0, R]. Let λ = δc2r
tΨ−1(ct/(δc2r)) . Then

λt = δ c2r
h−1(c/λ) = δc2r

Ψ−1(ct/(δc2r)) . Hence we have (16.5).
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Theorem 16.5. Let (E ,D) be strongly local. Also let h : (0,∞) → (0,∞) be
a monotone function with full range, continuous, strictly increasing, doubling
and decays unifromly. Assume that if Ψ(r) = h(r)/r is a monotone function
with full range and strictly increasing. Assume that µ is (VD)d. If there exist
c1, c3, c4 > 0 such that (16.5) holds for any t > 0 and any r ∈ (0, R] and

p(t, x, x) ≤ c5

µ(Bd(x, h−1(t)))

for any t ∈ (0, t∗] and any x ∈ X, then there exist c6 and c7 such that

p(t, x, y) ≤ c6

µ(Bd(x, h−1(t)))
exp

(
− c7

d(x, y)
Ψ−1(2c4t/d(x, y))

)
(16.11)

for any t ∈ (0, t∗] and any x, y ∈ X with d(x, y) ≤ R.

The next two lemmas are technically the keys in proving the above theorem.
The first one is well-known. See [18, Lemma 11.1].

Lemma 16.6. Assume that µ is (VD)d. There exist c0 > 0 and α > 0 such
that

µ(Bd(x, r1)) ≤ c0(r1/r2)αµ(Bd(x, r2))

for any r1 ≥ r2 > 0 and

µ(Bd(x, r)) ≤ c0

(
1 +

d(x, y)
r

)α

µ(Bd(y, r))

for any x, y ∈ X and r > 0. In particular, there exists M > 0 such that

µ(Bd(x, r)) ≤ Mµ(Bd(y, r))

if d(x, y) ≤ r.

Lemma 16.7. Let Ψ be a monotone function with full range, strictly increasing
and continuous. Set h(r) = rΨ(r). For any γ > 0, any ϵ > 0, any s > 0 and
any r > 0,

1 +
r

h−1(s)
≤ max{ϵ−1, 1 + γ} exp

(
ϵr

Ψ−1(γs/r)

)
. (16.12)

Proof. Set x = r/h−1(s). If 0 ≤ x ≤ γ, then (16.12) holds. Assume that x ≥ γ.
Then

ψ−1

(
γs

r

)
= Ψ−1

(
γ

x
Ψ

(
r

x

))
≤ r

x
.

This implies

exp
(

ϵr

Ψ−1(γs/r)

)
≥ exp ϵx ≥ 1 + ϵx.

Hence we have (16.12).
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Proof of Theorem 16.5. One can modify the discussions in [18, Section 12.3]. In
particular, the counterpart of [18, (12.20)] is obtained by Lemma 16.7.

Next we give an off-diagonal lower estimate. For our theorem, the local
property of the Dirichlet form is not required but the estimate should not be
best possible without the local property, i.e. if the Hunt process associated with
the Dirichlet form has jumps. One can find the original form on this theorem
in [1].

Theorem 16.8. Let Ψ : (0,∞) → (0,∞) be a monotone function with full
range, strictly increasing and continuous. Set h(r) = rΨ(r). Assume that µ is
(VD)d and that d(x, y) satisfies the chain condition, i.e. for any x, y ∈ X and
any n ∈ N, there exist x0, . . . , xn such that x0 = x, xn = y and d(xi, xi+1) ≤
Cd(x, y)/n for any i = 0, . . . , n − 1, where C ≥ 1 is independent of x, y and n.
Also assume that there exist c1 and c2 such that

c1

Vd(x, h−1(t))
≤ p(t, x, y) (16.13)

for any t ∈ (0, t∗] and any x, y ∈ X with d(x, y) ≤ c2h
−1(t). Then

c3

Vd(x, h−1(t))
exp

(
− c4

d(x, y)
Ψ−1(c5t/d(x, y))

)
≤ p(t, x, y) (16.14)

for any t ∈ (0, t∗] and any x, y ∈ X.

Lemma 16.9. Let C,D, T ∈ (0,∞). Then D ≤ Ch−1(T ) if and only if D/C ≤
Ψ−1(TC/D). Also D ≥ Ch−1(T ) if and only if D/C ≥ Ψ−1(TC/D).

The ideas of the following proof is essentially found in [1]. We modify a
version in [35].

Proof of Theorem 16.8. If d(x, y) ≤ c2h
−1(t), then (16.13) implies (16.14). So

we may assume that d(x, y) ≥ ch−1(t), where c = min{c2/(6C), 1/(2C)}, with-
out loss of generality. By Lemma 16.9, we have

d(x, y)
cΨ−1(ct/d(x, y))

≥ 1.

Therefore, there exists n ∈ N such that

d(x, y)
2cΨ−1(2ct/d(x, y))

≤ n ≤ d(x, y)
cΨ−1(ct/d(x, y))

. (16.15)

Note that (16.15) is equivalent to

ch−1
( t

n

)
≤ d(x, y)

n
≤ 2ch−1

( t

n

)
. (16.16)

Now we use the classical chaining argument. (See [1] for example.) Note that

p(t, x, y) =
∫

Xn−1
p
( t

n
, x, z1

)
p
( t

n
, z1, z2

)
· · ·p

( t

n
, zn−1, y

)
µ(dz1)· · ·µ(dzn−1).
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By the chain condition, we may choose a sequence {xi}n
i=0 such that x0 =

x, xn = y and d(xi, xi+1) ≤ D/n for any i = 0, 1, . . . , n−1, where D = Cd(x, y).
Define Bi = BD/n(xi) for i = 1, . . . , n − 1. If zi ∈ Bi and zi+1 ∈ Bi+1, then
d(zi, zi+1) ≤ 3D/n. By (16.16), 3D/n ≤ c2h

−1(t/n) and D/n ≤ h−1(t/n),
(16.13) and Lemma 16.6 yield

p(t, zi, zi+1) ≥
c1

Vd(zi, h−1(t/n))
≥ c1

MVd(xi, h−1(t/n))
,

Hence

p(t, x, y)

≥
∫

B1×...×Bn−1

p
( t

n
, x, z1

)
p
( t

n
, z1, z2

)
· · ·p

( t

n
, zn−1, y

)
µ(dz1)· · ·µ(dzn−1)

≥ (c1/M)n 1
Vd(x, h−1(t))

n−1∏
i=1

Vd(xi, D/n)
Vd(xi, h−1(t/n))

≥ (c1/M)n 1
Vd(x, h−1(t))

n−1∏
i=1

Vd(xi, D/n)
Vd(xi, h−1(t/n))

By Lemma 16.6 and (16.16),

Vd(xi, D/n)
Vd(xi, h−1(t/n))

≥ (c0)−1

(
D

nh−1(t/n)

)λ

≥ c0
−1(cC)λ.

Therefore there exists L > 1 such that

p(t, x, y) ≥ L−n

Vd(x, h−1(t))
.

Now the desired estimate follows immediately from (16.15).

17 Proof of Theorem 14.6

We assume the same prerequisites on a resistance form (E ,F) and the associated
resistance metric R as Section 14.

Lemma 17.1. Let A be an open set containing x ∈ X. Assume that A ̸= X,
µ(A) < ∞ and R(x,A) < ∞. Then, for any γ ∈ (0, 1),

(1 − γ)R(x, Ac)VR(x, γR(x,Ac)) ≤ Ex(τA) ≤ R(x,Ac)µ(A)

Proof. Set B = Ac. Note that Ex(τA) =
∫

A
gB(x, y)µ(dy). Since gB(x, y) ≤

gB(x, x) = R(x,B), the upper estimate is obvious. If y ∈ BR(x, γR(x, B)), then
(GF4) implies that gx

B(y) ≥ (1 − γ)gx
B(x). Therefore,

Ex(τA) ≥
∫

BR(x,γR(x,B))

gx
B(y)µ(dy) ≥ (1 − γ)R(x,B)VR(x, γR(x,B)).
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Proposition 17.2. Assume that d ∼
QS

R.

(1) There exists δ > 0 such that Bd(x, δdR(x, r)) ⊆ BR(x, r) ⊆ Bd(x, dR(x, r))
and BR(x, δRd(x, r)) ⊆ Bd(x, r) for any x ∈ X and any r > 0, where dR(x, r) =
supy∈BR(x,r) d(x, y).
(2) There exists c > 0 such that Rd(x, 2r) ≤ cRd(x, r) for any x ∈ X and any
r > 0.
(3) If diam(X, d) < ∞, then, for any r∗ > 0, there exist λ ∈ (0, 1) and
δ ∈ (0, 1) such that Rd(x, λr) ≤ δRd(x, r) for any x ∈ X and any r ∈ (0, r∗]. If
diam(X, d) = ∞, then we have the same statement with r∗ = ∞.
(4) If µ is (VD)R, then it is (VD)d.

Proof. If d ∼
QS

R, then by Theorem 11.3, d is (SQS)R and R is (SQS)d. Since

(X,R) is assumed to be uniformly perfect, Proposition 11.2-(3) implies that
(X, d) is uniformly perfect. Hence we may apply Theorem 10.5. Note that the
statement (a) of Theorem 10.5 holds.
(1) By the statement (b) of Theorem 10.5, d is (SQC)R and R is (SQC)d.
(2) By the statement (b) of Theorem 10.5, R is doubling with respect to d.
(3) Proposition 10.7 suffices to deduce the desired result.

Proof of Proposition 14.4. Define R̃(x, r) = R(x,BR(x, r)c).
Assume (RES). By Proposition 17.2-(1),

BR(x, δRd(x, r)) ⊆ Bd(x, r) ⊆ BR(x, Rd(x, r)). (17.1)

Hence by (RES),

R̃(x, r) ≥ R̃(x, δRd(x, r)) ≥ cδRd(x, r).

If BR(x,Rd(x, r)) ̸= X, then (RES) also shows

R̃(x, r) ≤ R̃(x,Rd(x, r)) ≤ cRd(x, r).

In case X = BR(x,Rd(x, r)), we have diam(X,R)/2 ≤ Rd(x, r). Hence

R̃(x, r) ≤ diam(X,R) ≤ 2Rd(x, r).

Conversely assume that R̃(x, r) ≃ Rd(x, r) for any x ∈ X and any r > 0 with
Bd(x, r) ̸= X. By (17.1),

c1Rd(x, r) ≤ R̃(x,Rd(x, r)) and R̃(x, δRd(x, r)) ≤ c2Rd(x, r) (17.2)

On the other hand, by Proposition 17.2-(1) and (2), there exists η ∈ (0, 1) such
that

ηθ(r) ≤ δRd(x, δdR(x, r)) ≤ r ≤ θ(r),

for any x ∈ X and r > 0, where θ(r) = Rd(x, dR(x, r)). Hence by (17.2),

r ≤ θ(r) ≤ R̃(x, θ(r)) ≤ R̃(x, r/η)

R̃(x, δr) ≤ R̃(x, δθ(r)) ≤ c2θ(r) ≤ c2r/η

This suffices for (RES).
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Proof of Proposition 14.5. Assume (RES). Let γ ∈ (0, 1). By Proposition 14.4
and the volume doubling property of µ, we obtain

µ(BR(x, γR(x, Bd(x, r)c)) ≥ µ(BR(x, γc3Rd(x, r)))

≥ c′µ(BR(x, Rd(x, r))) ≥ c′µ(Bd(x, r)).

By Lemmas 17.1 and 14.4 , c′(1 − γ)c3hd(x, r) ≤ Ex(τBd(x,r)) ≤ c4hd(x, r).
Conversely, assume (EIN)d. By Lemma17.1,

c1Rd(x, r) ≤ R(x,Bd(x, r)c). (17.3)

Also Lemma 17.1 and the volume doubling property of µ yield

c2R(x,Bd(x, r)c)µ(BR(x,R(x,Bd(x, r)c)) ≤ Rd(x, r)Vd(x, r). (17.4)

By (17.3), it follows that Vd(x, r) ≤ VR(x,Rd(x, r)) ≤ c3VR(x, c1Rd(x, r)) ≤
VR(x,Bd(x, r)c). This and (17.4) show that c4R(x,Bd(x, r)c) ≤ Rd(x, r). Thus
we obtain (14.2). Now Proposition 14.4 implies (RES).

Proof of Theorem 14.6. By Lemma 6.7, BR(x, r) is totally bounded for any x ∈
X and any r > 0. Hence BR(x, r) is compact. By Theorem 9.4, there exists
a jointly continuous heat kernel p(t, x, y). Since d ∼

QS
R, Bd(x, r) is compact

for any x ∈ X and any r > 0. Using (9.3) with A = Bd(x, r) and letting
t = hd(x, r), we have

p(hd(x, r), x, x) ≤ 2 +
√

2
Vd(x, r)

.

The rest is to show (EIN)d and the lower estimate of the heat kernel. Since µ
is (VD)R, (X,R) has the doubling property. Hence by Theorem 6.10, (ACC)
implies (RES). Proposition 14.5 shows (EIN)d. Next we show that hd(x, r)
satisfies the conditions (A), (B) and (C) in Lemma 16.2. (A) is immediate.
(B) follows from Proposition 17.2-(2) and (4). Note that diam(Bd(x, r), R) ≥
Rd(x, r) ≥ diam(Bd(x, r), R)/2. If d(x, y) ≤ r, then Bd(y, r) ≤ Bd(x, 2r).
Hence,

R(y, r) ≤ diam(Bd(y, r), R) ≤ diam(Bd(x, 2r)) ≤ 2R(x, 2r).

By Proposition 17.2-(2), we have (C). Now assume that diam(X,R) = ∞. Then
we have (EIN)d. By Proposition 17.2-(3), Theorem 16.3 shows that, for some
c > 0,

c

Vd(x, r)
≤ p(hd(x, r), x, x) (17.5)

for any x ∈ X and any r > 0. Next we consider the case where diam(X,R) < ∞.
If Bd(x, r) = X, then r ≥ diam(X, d)/2. Therefore, assumptions of Lemma 16.2
hold with r∗ = diam(X, d)/3. Hence by Theorem 16.3, (17.5) is satisfied for any
x ∈ X and any r ∈ (0, αdiam(X, d)], where α is independent of x. Next we
show

1
µ(X)

≤ inf
x∈X,r≥αdiam(X,d)

p(hd(x, r), x, x) (17.6)
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and
sup

x∈X,r≥αdiam(X,d)

1
Vd(x, r)

< ∞. (17.7)

Letting A = X in Lemma 16.1, we have µ(X)−1 ≤ p(t, x, x) for any x ∈ X
and any t > 0. This yields (17.6). Let r1 = αdiam(X, d). Since X ⊆ BR(x, r)
for some r > 0, it follows that X is compact. Hence we may choose N > 0
so that, for any x, y ∈ X, there exists {xi}i=1,...,N+1 ⊆ X such that x1 =
x, xN+1 = y and d(xi, xi+1) ≤ r1 for any i = 1, . . . , N − 1. Since µ has the
volume doubling property with respect to d, there exists a1 > 0 such that
Vd(y1, r1) ≤ a1Vd(y2, r1) for any y1, y2 ∈ X with d(x, y) ≤ r1. Hence, for any
x, y ∈ X, Vd(x, r1) ≤ (a1)NVd(y, r1). This shows (17.7). Thus we have obtained
(17.6) and (17.7). Therefore, there exists C > 0 such that

C

Vd(x, r)
≤ p(hd(x, r), x, x)

for any x ∈ X and any r ≥ αdiam(X, d). Hence changing c, we have (17.5) for
any x ∈ X and any r > 0 in this case as well.

Now, by Proposition 17.2-(3), there exists λ ∈ (0, 1) such that Rd(x, λr) ≤
(c/4)Rd(x, r) for any x ∈ X and any r ≤ diam(X, d), where c is the constant
appearing in (17.5). Since Rd(x, r) = diam(X, d) for any r ≥ diam(X, d), we see
that R(x, y) ≤ (c/4)Rd(x, r) if d(x, y) ≤ λ min{r,diam(X, d)}. Let T = hd(x, r).
Then, this and (17.5) imply

|p(T, x, x) − p(T, x, y)|2 ≤ R(x, y)E(pT,x, pT,x) ≤ R(x, y)p(T, x, x)
T

≤ cRd(x, r)p(T, x, x)
4Rd(x, r)Vd(x, r)

=
1
4

c

Vd(x, r)
p(T, x, x) ≤ 1

4
p(T, x, x)2.

Hence,

p(hd(x, r), x, y) ≥ p(hd(x, r), x, x)
2

≥ 1
2

c

Vd(x, r)
.

Thus we have shown Theorem 14.6.

18 Proof of Theorems 14.10, 14.11 and 14.13

The proofs of Theorems 14.10 and 14.11 depend on the results in Sections 12 and
13. We use those results by letting H(s, t) = st. Note that all the assumptions
on H in Sections 12 and 13 are satisfied for this particular H.

Proof of Theorem 14.10. The equivalence between (a), (b) and (c) is immediate
form the corresponding part of Corollary 12.3. Next assume that (a), (b) and
(c) hold. By Corollary 12.3, µ has the volume doubling property with respect
to d and R. Also by Lemma 13.4 and Proposition 17.2-(2), there exists λ, δ ∈
(0, 1) such that hd(x, r) ≤ λhd(x, δr) for any x ∈ X and r > 0. Hence by
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(14.5), g decays uniformly. Lemma 14.8 implies that g−1 is doubling and decays
uniformly. Now apply Theorem 14.6. There exists a jointly continuous heat
kernel p(t, x, y). Furthermore, combining (14.3), (14.4) and (14.5) along with
the volume doubling property and the above mentioned property of g and g−1,
we obtain

1
Vd(x, g−1(t))

≃ p(t, x, x)

for any t ≤ cg(diam(X, d)) and any x ∈ X, where c is independent of x and r.
The same arguments as in the proof of Theorem 14.6, in particular, (17.6) and
(17.7) show (DHK)g,d for t ≥ cg(diam(X, d)). Now (KD) is straight forward by
the volume doubling property. Thus we have obtained (HK)g,d.

Conversely, assume (HK)g,d. (KD) and (DHK)g,d imply that µ has the
volume doubling property with respect to d. Since d ∼

QS
R, we have the volume

doubling property of µ with respect to R. Also (X, d) is uniformly perfect. By
Theorem 14.6, we have (14.3) and (14.4). Comparing those with (DHK)g,d, we
see that

Vd(x, g−1(hd(x, r))) ≃ Vd(x, r) (18.1)

for any x ∈ X and any r > 0. Set r∗ = diam(X, d). Note that Bd(x, r) ̸= X
for any r < r∗/2. By Lemma 13.4, for any δ > 1, there exists λ ∈ (0, 1)
such that Vd(x, λr) ≤ δ−1Vd(x, r) for any r < r∗/2. This along with (18.1)
shows that r ≃ g−1(hd(x, r)) for any r < λr∗/2. This and Lemma 14.8 show
(14.5) for r < λr∗/2. Let us think about r ∈ [λr∗/2, r∗]. If r∗ < ∞, then
(X, d) is compact and so is (X,R). Therefore, Rd(x, r) ≤ diam(X,R) and
Vd(x, r) ≤ µ(X) < ∞. Let r ∈ [λr∗/2, r∗]. By the volume doubling prop-
erty, Vd(x, r) ≥ Vd(x, λr∗/2) ≥ cVd(x, r∗) = cµ(X). Also, by Proposition 6.4-
(2), we have Rd(x, r) ≥ Rd(x, λr∗/2) ≥ cVd(x, r∗) ≥ c′diam(X,R)/2. Hence
cc′diam(X,R)µ(X)/2 ≤ hd(x, r) ≤ diam(X,R)µ(X) for any r ∈ [λr∗/2, r∗].
Also g(λr∗/2) ≤ g(r) ≤ g(r∗) for any r ∈ [λr∗/2, r∗]. Therefore, adjusting
constants, we obtain (14.5) for r ∈ (0, r∗]. Thus the condition (c) have been
verified.

(14.6) follows from its counterpart (14.3).
The rest is off-diagonal estimates. Note that both g and Φ are doubling and

decay uniformly. Then by Lemma18.1 below, we may replace g and Φ by h
and Ψ which are continuous and strictly increasing. For the upper off-diagonal
estimate, since d ∼

QS
R, Theorem 14.6 implies (16.1) with r∗ = diam(X, d)/2.

Then by Lemmas 16.2 and 16.4, we obtain (16.5) for any t > 0 and any r ∈
(0, diam(X, d)). Applying Theorem 16.5, replacing h and Ψ by g and Φ, and
using the doubling properties, we obtain (14.7) for any x, y ∈ X and any t > 0.
Finally, since we have (14.6), Theorem 16.8 shows an off-diagonal lower estimate,
which easily implies (14.8) by the similar arguments as in the case of upper off-
diagonal estimate.

Lemma 18.1. Suppose that g : (0,∞) → (0,∞) is a monotone function with
full range and doubling. Then there exists h : (0,∞) → (0,∞) such that h is
continuous and strictly monotonically increasing on (0,∞) and g(r) ≃ h(r) for
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any r ∈ (0,∞). Moreover, if g decays uniformly, then g−1(t) ≃ h−1(t) for any
t ∈ (0,∞).

Proof. Assume that g(2r) ≤ cg(r) for any r. Set θ(r) = 1 + (1 + e−r)−1. Note
that θ is strictly monotonically increasing and 1 < θ(r) < 2 for any r. Let
G(r) = θ(r)g(r). Then H is strictly monotonically increasing. There exists
a continuous function F : (0,∞) → (0,∞) such that F (G(r)) = r for any
r > 0. Define f(x) = θ(x)F (x). Then f is strictly monotonically increasing and
continuous and so is the inverse of f , which is denoted by h. Since f(G(r)) =
θ(G(r))F (G(r)) = θ(G(r))r, we have θ(r)g(r) = h(θ(G(r))r). This implies
h(r)/2 ≤ g(r) ≤ ch(r).

Now assume that g decays uniformly. Then so does h. By Lemma 14.8, h−1

is doubling. Since h(r)/2 ≤ g(r) ≤ ch(r), we have h−1(t/c) ≤ g−1(t) ≤ h−1(2t)
for any t ∈ (0,∞). Hence the doubling property of h−1 shows h−1(t) ≃ g−1(t)
for any t ∈ (0,∞).

Proof of Theorem 14.11. By Theorem 14.6, (C1) implies (C5). Note that R ∼
QS

R. Since (X,R) is uniformly perfect, it follows that RR(x, r) ≃ r. Hence (C5)
implies (C2). Obviously (C2) implies (C6). By Proposition 14.5, (C6) implies
(C1).

(C1) ⇒ (C3) and (C4): Assume (C1). Then by Theorem 13.1, there exists
a metric d which satisfies the condition (c) of Theorem 14.10 with some β > 1.
Therefore, we have (C3) by Theorem 14.10. Also, (C4) follows by Theorem 14.6.

(C3) ⇒ (C1): Assume (C3). Then, (DHK)g,d and (KD) imply the volume
doubling property of µ with respect to d. Since d ∼

QS
R, µ has the volume

doubling property with respect to R as well. Hence we have (C1).
(C4) ⇒ (C1): Assume (C4). Then (2r)β ≃ Rd(x, 2r)Vd(x, 2r). By Propo-

sition 17.2-(2), Rd(x, 2r) ≃ Rd(x, r). Hence µ is (VD)d. Since d ∼
QS

R, µ is

(VD)R. Also we have (EIN)d. Hence Proposition 14.5 shows (ACC). Thus (C1)
is verified.

Finally, (14.10) follows by the process of construction of d in Section 13, in
particular, by (13.1).

Proof of Theorem 14.13. Let g(r) = rβ and let h(r) = rβ−γ . By Theorem 14.10,
(HK)g,d shows (DM2)g,d and (DM1)g,d. Using (14.11), we obtain (DM2)h,d|Y
and (DM1)h,d|Y , where we replace µ by ν. Since we have (ACC) for (E|Y ,FY ),
Theorem 14.10 implies the counterpart of (HK)h,d|Y . Thus we have (14.12).

Part IV

Random Sierpinski gaskets
The main purpose of this part is to apply theorems in the last part to resistance
forms on random Sierpinski gaskets. The notion of random (recursive) self-
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similar set has introduced in [39], where basic properties, Hausdorff dimension
for example, have been studied. Analysis on random Sierpinski gaskets has
been developed in a series of papers by Hambly[23, 24, 25]. He has defined
“Brownian motion” on a random Sierpinski gasket associated with a natural
resistance form and studied an asymptotic behavior of associated heat kernel
and eigenvalue counting function. He has found possible fluctuations in those
assymptotics, which have later confirmed in [26].

In this part, we will first establish a sufficient and necessary condition for a
measure to be volume doubling with respect to the resistance metric in Theo-
rem 22.2. This result is a generalization of the counterpart in [30] on self-similar
sets. Using this result, we show that a certain class of random self-similar mea-
sure always has the volume doubling property with respect to the resistance
metric, so that we may apply theorems on heat kernel estimates in the last
part. Note that Hambly has used the Hausdorff measure associated with the
resistance metric, which is not a random self-similar measure in general. In
fact, in Section 24, we show that the Hausdorff measure is not volume doubling
with respect to the resistance metric for almost sure cases. On the contrary, in
the homogeneous case, the Hausdorff measure is a random self-similar measure
and is shown to satisfy the volume doubling condition in Section 23. Applying
Theorem 14.10, we will recover the both-side off-diagonal heat kernel estimate
in [7]. See Theorem 23.7.

Troughout this part, we fix p1 =
√
−1, p2 = −

√
3/2 −

√
−1/2 and p3 =√

3/2 −
√
−1/2 and set V0 = {p1, p2, p3}. Note that p1 + p2 + p3 = 0 and that

V0 is the set of vertices of a regular triangle. Let T be the convex hull of V0.
We will always identify R2 with C if no confusion may occur.

19 Generalized Sierpinski gasket

In this section, as a basic component of random Sierpinski gasket, we define a
family of self-similar sets in R2 which can be considered as a modification of the
original Sierpinski gasket. Then according to the theory in [33], we briefly review
the construction of resistance forms on those sets. Also, in Example 19.8, we
apply Theorem 14.13 to the subsets of the Original Sierpinski gasket and obtain
heat kernel estimates for the traces onto those sets.

The following is a standard set of definitions for self-similar sets.

Definition 19.1. Let S be a finite set.
(1) We define Wm(S) = Sm = {w1w2 · · ·wm|wj ∈ S for j = 1, . . . ,m} for
m ≥ 1 and W0(S) = {∅}. Also W∗(S) = ∪m≥0Wm(S). For any w ∈ W∗(S),
the length of w, |w|, is defined to be m where w ∈ Wm(S). For any w =
w1w2 · · ·wm ∈ Wm(S), define

[w]n =

{
w1w2 · · ·wn if 0 ≤ n < m,
w if n ≥ m.

(2) Σ(S) is defined by Σ(S) = SN = {ω1ω2 . . . |ωj ∈ S for any j ∈ N}. For any
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ω = ω1ω2 . . . ∈ Σ(S), define [ω]n = ω1ω2 · · ·ωn for any n ≥ 0. For w ∈ W∗(S),
define Σw(S) = {ω|ω ∈ Σ(S), [ω]|w| = w} and define σw : Σ(S) → Σ(S) by
σw(ω) = wω.

A generalized Sierpinski gasket is defined as a self-similar set which preserves
some of the good properties possessed by the original Sierpinski gasket.

Definition 19.2. Let K be a non-empty compact subset of R2 and let S =
{1, . . . , N} for some integer N ≥ 3. Also let Fi(x) = αiAix + qi for any i ∈
S, where αi ∈ (0, 1), Ai ∈ O(2), where O(2) is the 2-dimensional orthogonal
matrices, and qi ∈ R2. Then (K,S, {Fi}i∈S) is called a generalized Sierpinski
gasket, GSG for short, if and only if the following four conditions are satisfied:
(GSG1) K = ∪i∈SFi(K),
(GSG2) Fi(pi) = pi for i = 1, 2, 3,
(GSG3) Fi(T ) ⊆ T for any i ∈ S and Fi(T )∩ Fj(T ) ⊆ Fi(V0)∩ Fj(V0) for any
i, j ∈ S with i ̸= j,
(GSG4) For any i, j ∈ {1, 2, 3}, there exist i1, . . . , im such that i1 = i, im = j
and Fik

(V0) ∩ Fik+1(V0) ̸= ∅ for all k = 1, . . . ,m − 1.
Write L = (K,S, {Fi}i∈S). For any w = w1w2 · · ·wm ∈ W∗(S)\W0(S), we
define Fw = Fw1 ◦ . . .◦Fwm and Kw = Fw(K). Also Vm(L) = ∪w∈Wm(S)Fw(V0).

By (GSG1), (GSG2) and (GSG3), the results in [33, Sections 1.2 and 1.3]
show that a GSG L = (K,S, {Fi}i∈S) is a post critically finite self-similar struc-
ture whose post critical set is V0. Also by (GSG4), K is connected.

Next we give a brief survey on how to construct a resistance form on a
self-similar set. See [33] for details.

Definition 19.3. Let L = (K,S, {Fi}i∈S) be a GSG. For a pair (D, r) ∈
LA(V ) × (0,∞)S , we define a symmetric bilinear form Em on ℓ(Vm(L)) by

Em(u, v) =
∑

w∈Wm(S)

1
rw

ED(u ◦ Fw, v ◦ Fw),

where r = (ri)i∈S and rw = rw1 · · · rwm for w = w1w2 · · ·wm ∈ Wm(S). (D, r)
is called a regular harmonic structure if and only if r ∈ (0, 1)S and ED(u, u) =
min{E1(v, v)|v ∈ ℓ(V1), v|V0 = u} for any u ∈ ℓ(V0).

By the results in [33, Chapter 3], we may construct a resistance form on
K from a regular harmonic structure (D, r) as a limit of the resistance forms
{Em}m≥0 on Vm.

Proposition 19.4. Let C(K) be the collection of continuous functions on K
with respect to the restriction of the Euclidean metric. For any u ∈ C(K),
Em(um, um) is monotonically non-decreasing with respect to m, where um =
u|Vm(L). Define

F = {u|u ∈ C(K), lim
m→∞

Em(um, um) < ∞}
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and
E(u, v) = lim

m→∞
Em(um, vm)

for any u, v ∈ C(K). Then (E ,F) is a resistance form on K and the associated
resistance metric R gives the same topology as the restriction of the Euclidean
metric. In particular, (K,R) is compact and (E ,F) is a regular resistance form.

Recall that the chain condition of a distance is required to get a (lower)
off-diagonal estimate of a heat kernel. In [32], we have obtained a condition
for the existence of a shortest path metric, which posseses the chain condition
by definition. The next definitions and the following theorems are essentially
included in [32].

Definition 19.5. Let L = (K,S, {Fi}i∈S) be a GSG.
(1) For p, q ∈ Vn(L), (p1, . . . , pm) is called an n-path between p and q if p1 =
p, pm = q and for any i = 1, . . . ,m − 1, there exists w ∈ Wn(S) such that
pi, pi+1 ∈ Fw(V0).
(2) L is said to admit a symmetric self-similar geodesic metric if and only if
there exists γ ∈ (0, 1) such that

γ−1 = min{m − 1|(p1, . . . , pm) is a 1-path between p and q}

for any p, q ∈ V0 with p ̸= q. γ is called the symmetric geodesic ratio of L.

Definition 19.6. Let (X, d) be a metric space. For x, y ∈ X, a continuous
curve g : [0, d(x, y)] → X is called a geodesic between x and y if and only if
d(g(s), g(t)) = |s − t| for any s, t ∈ [0, 1]. If there exists a geodesic between x
and y for any x, y ∈ X, then d is called a geodesic metric on X.

Obviously, a geodesic metric satisfies the chain condition. The following
theorem shows the existence of geodesic metric.

Theorem 19.7. Let L = (K,S, {Fi}i∈S) be a GSG. Assume that L admits a
symmetric self-similar geodesic metric. Then there exists a geodesic distance d
on K which gives the same topology as the Euclidian metric on K and

d(Fi(x), Fi(y)) = γd(x, y)

for any x, y ∈ K and any i ∈ S. Moreover, for any p, q ∈ Vn(S),

d(p, q) = γn min{m − 1|(p1, . . . , pm) is an n-path between p and q},

where γ is the symmetric geodesic ratio of L.

Proof. We can verify all the conditions in [32, Theorem 4.3] and obtain this
theorem.

We present two examples which will used as a typical component of random
Siepinski gaskets in the following sections.
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Example 19.8 (the (original) Sierpinski gasket). For i = 1, 2, 3, define fi(z) =
(z − pi)/2 + pi for any z ∈ C. Then there exists a unique non-empty com-
pact subset K of C such that K = f1(K) ∪ f2(K) ∪ f3(K). K is called
the Sierpinski gasket. To distinguish this K from other generalized Sierpin-
ski gaskets, we call K the original Sierpinski gasket, the OSG for short. Let
S = {1, 2, 3}. Then (K,S, {fi}i∈S) is a generalized Sierpinski gasket. We write
LSG = (K,S, {fi}i∈S). Define

Dh =

−2 1 1
1 −(1 + h) h
1 h −(1 + h)


for h > 0. By [33, Exercise 3.1], there exists a unique (r1, r2, r3) such that
(Dh, (r1, r2, r3)) is a harmonic structure for each h > 0. Also the unique
(r1, r2, r3) satisfies r2 = r3 and (Dh, r1, r2, r3)) is regular. We write ri = rSG

i

for i = 1, 2, 3. Hereafter in this example, we set h = 1. Then rSG
1 = rSG

2 =
rSG
3 = 3/5. Set r = (3/5, 3/5, 3/5). Let µ be the self-similar measure on K with

weight (1/3, 1/3, 1/3). Let (E ,F) be the regular resistance form on K associ-
ated with (D1, r) and let R be the associated resistance metric on K. Then by
Barlow-Perkins [9], it has been known that the heat kernel p(t, x, y) associated
with the Dirichlet form (E ,F) on L2(K,µ) satisfies

c1t
− dS

2 exp

(
− c2

(
|x − y|dw

t

) 1
dw−1

)
≤ p(t, x, y)

≤ c3t
− dS

2 exp

(
− c4

(
|x − y|dw

t

) 1
dw−1

)
(19.1)

for any t ∈ (0, 1] and any x, y ∈ K, where ds = log 9/ log 5 and dw = log 5/ log 2,
c1, . . . , c4 are constants independent of x, y and t. The exponents ds and dw are
called the spectral dimension and the walk dimension of the Sierpinski gasket
respectively. In this case, LSG admits a symmetric self-similar geodesic metric
with the geodesic ratio 1/2. The resulting geodesic metric on K is equivalent
to the Euclidean metric.

Next we consider the traces of (E ,F) on Alfors regular subset of K. It is
known that

R(x, y) ≃ dE(x, y)(log 5−log 3)/ log 2

for any x, y ∈ K, where dE(x, y) = |x − y|. Hence dE ∼
QS

R. Also,

µ(BdE
(x, r)) ≃ rdH (19.2)

for any x ∈ K and r ∈ (0, 1], where dH = log 3/ log 2 is the Hausdorff dimension
of (K, dE). Let Y be a closed Alfors δ-regular subset of K, i.e. there exists a
Borel regular measure ν on Y such that ν(Bd(x, r)∩Y ) ≃ rδ for any x ∈ Y and
any r ∈ (0, 1]. Then by (19.1) and (19.2), we may verify all the assumptions
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Figure 1: the Sierpinski spiral

of Theorem 14.13. Thus there exists a jointly continuous heat kernel pY
ν (t, x, y)

associated with the regular Dirichlet form (E|Y ,F|Y ) on L2(Y, ν) and

pY
ν (t, x, x) ≃ t−η

for any x ∈ K and any t ∈ (0, 1], where η = δ log 2
log 5−log 3+δ log 2 . In particular, if Y

is equal to the line segment p2p3, then δ = 1 and η = log 2/ log (10/3).

Example 19.9 (the Sierpinski spiral). For i = 1, 2, 3, define hi(z) = (z −
pi)/3 + pi for any z ∈ C. Also define h4(z) = −z/

√
−3. The unique non-

empty compact subset K of C satisfying K = ∪i=1,2,3,4hi(K) is called the
Sierpinski spiral, the S-spiral for short. See Figure 1. Let S = {1, 2, 3, 4}. Then
(K,S, {hi}i∈S) is a generalized Sierpinski gasket. We use LSP to denote this
generalize Sierpinski gasket associated with the S-spiral. Let Dh be the same as
in Example 19.8 for h > 0. Define rSP

1 = (h−γ)/(h+1), rSP
2 = (1−γh)/(h+1),

rSP
3 = (1 − γ)/2 and rSP

4 = γ. Then (Dh, (rSP
i )i∈S) is a regular harmonic

structure for γ ∈ (0,min{h, 1/h}). Let (E ,F) be the regular resistance form on
K associated with (Dh, (rSP

i )i∈S) and let R be the resistance distance induced
by (E ,F). Note that K is a dendrite, i.e. for any two points x, y ∈ K, there
is a unique path between x and y. It follows that R is a geodesic metric. The
Hausdorff dimension dH of (K,R) is given by the unique d which satisfies

4∑
i=1

(rSP
i )d = 1.

By Theorem 22.8, any self-similar measure on K has the volume doubling prop-
erty with respect to R. (Note that a generalize Sierpinski gasket itself is a
special random Sierpinski gasket. Also for the Spiral SG, all the adjoining pair
are trivial, i,e. ((j1, i1), (j2, i2)) is an adjoining pair if and only if j1 = j2 and
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i1 = i2. See Definition 22.7 for the definition of adjoining pair.) In particular,
letting ν be the self-similar measure with weight ((rSP

i )dH )i∈S , we have

R(x, y)VR(x,R(x, y)) ≃ R(x, y)dH+1.

By Theorem 14.10, the heat kernel p(t, x, y) associated with the Dirichlet form
(E ,F) on L2(K, ν) satisfies

c1t
− dH

dH+1 exp

(
− c2

(
R(x, y)dH+1

t

) 1
dH

)
≤ p(t, x, y)

≤ c3t
− dH

dH+1 exp

(
− c4

(
R(x, y)dH+1

t

) 1
dH

)

for any t ∈ (0, 1] and any x, y ∈ K, where c1, . . . , c4 are constants independent
of x, y and t. Note that the spiral SG admits a symmetric self-similar geodesic
metric with the ration 1/3 and this geodesic metric coincides with the resistance
metric R when h = 1 and γ = 1/3.

20 Random Sierpinski gasket

In this section, we will give basic definitions and notations for random (recursive)
Sierpinski gaskets. Essentially the definition is the same as in [39, 23, 24, 25].
However, we will not introduce the randomness until Section 24.

Let Lj = (K(j), Sj , {F j
i }i∈Sj ) be a generalized Sierpinski gasket for j =

1, . . . ,M , where Sj = {1, . . . , Nj}. Set N = maxj=1,...,M Nj and define S =
{1, . . . , N}. Those generalized Sierpinski gaskets L1, . . . ,LM are the basic com-
ponents of our random Sierpinski gasket.

Definition 20.1. Let W∗ ⊆ W∗(S) and let Γ : W∗ → {1, . . . ,M}. (W∗,Γ) is
called a random Sierpinski gasket generated by {L1, . . . ,LM} if and only if the
following properties are satisfied:
(RSG) ∅ ∈ W∗ and, for m ≥ 1, w = w1w2 · · ·wm ∈ Wm(S) belongs to W∗ if
and only if [w]m−1 ∈ W∗ and wm ∈ SΓ([w]m−1).

Strictly speaking, to call (W∗, Γ) a “random” Sierpinski gasket, one need to
introduce a randomness in the choice of Γ(w) for every w, i.e. a probability mea-
sure on the collections of (W∗, Γ). We will do so in the final section, Section 24.
Until then, we study each (W∗, Γ) respectively without randomness.

Note that (W∗, Γ) is not a geometrical object. The set K(W∗, Γ) ⊆ R2

defined in Proposition 20.3-(2) is the real geometrical object considered as the
random self-similar “set” generated by (W∗, Γ).

Definition 20.2. Let (W∗,Γ) be a random Sierpinski gasket generated by
{L1, . . . ,LM}. Define Wm = W∗ ∩ Wm(S).
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(1) Define F∅ = I, where I is the identity map from R2 to itself. For any m ≥ 1
and w = w1w2 · · ·wm ∈ Wm, define Fw : R2 → R2 by

Fw = FΓ([w]0)
w1

◦FΓ([w]1)
w2

◦ . . . ◦FΓ([w]m−1)
wm

.

(2) Σ(W∗, Γ) = {w1w2 . . . |w1w2 . . . ∈ Σ(S), w1 . . . wm ∈ Wm for any m ≥ 1}.
(3) Define Tm(W∗,Γ) = ∪w∈WmFw(T ) and Vm(W∗,Γ) = ∪w∈WmFw(V0) for
any m ≥ 0.

The followings are basic properties of random Sierpinski gaskets which are
analogous to the self-similar sets.

Proposition 20.3. Let (W∗,Γ) be a random Sierpinski gasket generated by
{L1, . . . ,LM}.
(1) ∩m≥0Tm(W∗, Γ) equals to the closure of ∪m≥0Vm(W∗, Γ) with respect to
the Euclidean metric.
(2) Define K(W∗,Γ) = ∩m≥0Tm and Kw(W∗, Γ) = K(W∗, Γ) ∩ Fw(T ) for any
w ∈ W∗. Then, Kw(W∗, Γ) ∩ Kv(W∗, Γ) = Fw(V0) ∩ Fv(V0) for any w, v ∈ W∗
with Σw(S) ∩ Σv(S) = ∅.
(3) Let ω = ω1ω2 . . . ∈ Σ(W∗, Γ). Then

K[ω]m(W∗, Γ) ⊇ K[ω]m+1(W∗, Γ)

for any m ≥ 0 and ∩m≥1K[ω]m(W∗,Γ) is a single point. If we denote this single
point by πW∗,Γ(ω), then the map πW∗,Γ : Σ(W∗,Γ) → K(W∗,Γ) is continuous
and onto. For any k = 1, 2, 3, (πW∗,Γ)−1(pk) = {(k)∞}, where (k)∞ = kkk . . . ∈
Σ(S).
(4) For any x ∈ K(W∗, Γ), set n(x) = #(π−1

W∗,Γ(x)). Then n(x) ≤ 5 and
n(x) ≥ 2 if and only if there exist w ∈ W∗, i1, . . . , in(x) ∈ SΓ(w) with im ̸= in
for any m ̸= n and k1, . . . , kn(x) ∈ {1, 2, 3} such that

π−1
W∗,Γ(x) = {wim(km)∞|m = 1, . . . , n(x)}.

Next we try to describe the self-similarity of random Sierpinski gasket.

Definition 20.4. Let (W∗,Γ) be a random Sierpinski gasket generated by
{L1, . . . ,LM}.
(1) For any w ∈ W∗, define Ww

∗ = {v|wv ∈ W∗} and Γw : Ww
∗ → {1, . . . ,M}

by Γw(v) = Γ(wv) for any v ∈ Ww
∗ .

(2) A subset Λ ⊆ W∗ is called a partition of W∗ if and only if Σ(W∗, Γ) ⊆
∪w∈ΛΣw(S) and Σw(1)(S) ∩ Σw(2)(S) = ∅ for any w(1), w(2) ∈ Λ with w(1) ̸=
w(2).

The following theorem gives the self-similarity of random Sierpinski gasket.
(20.1) is the counterpart of the ordinary self-similarity K = ∪N

i=1Fi(K).

Proposition 20.5. Let (W∗,Γ) be a random Sierpinski gasket generated by
{L1, . . . ,LM}. For any w ∈ W∗, (Ww, Γw) is a random Sierpinski gasket
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Figure 2: Random Sierpinski gaskets

generated by {L1, . . . ,LM}, Kw(W∗, Γ) = Fw(K(Ww
∗ , Γw)) and Fw◦πW w

∗ ,Γw =
πW∗,Γ◦σw. Moreover, if Λ is a partition of W∗, then

K(W∗,Γ) =
∪

w∈Λ

Kw(W∗,Γw) =
∪

w∈Λ

Fw(K(Ww
∗ , Γw)). (20.1)

The following proposition describes the topological structure of a random
Sierpinski gasket.

Proposition 20.6. Let Km,x(W∗, Γ) = ∪w∈Wm,x∈Kw(W∗,Γ)Kw(W∗,Γ). Then
Km,x(W∗,Γ) is a neighborhood of x and supx∈K(W∗,Γ) diam(Km,x, dE) → 0 as
m → ∞, where dE is the Euclidean distance.

Proof. Write Km,x = Km,x(W∗,Γ). Set Am,x = ∪w∈Wm,x/∈Kw(W∗,Γ)Kw(W∗, Γ).
Then Am,x is compact and x /∈ Am,x. Hence α = miny∈Am,x |x − y| > 0.
For any s ∈ (0, α), BdE (x, s) ∩ K(W∗, Γ) ⊆ Km,x. Hence Km,x is a neigh-
borhood of x. Let L be the maximum of the Lipschitz constants of F j

i for
j ∈ {1, . . . ,M} and i ∈ Sj}. Then diam(Kw(W∗, Γ), dE) ≤ L

m
diam(T, dE).

Thus supx∈K(W∗,Γ) diam(Kw(W∗,Γ)) ≤ L
m

diam(T, dE) → 0 as m → ∞.

Figure 2 shows two random Sierpinski gaskets generated by {LSG,LSP }.

21 Resistance forms on Random Sierpinski gas-
kets

The main purpose of this section is to introduce the construction of a (ran-
dom self-similar) resistance form on a random Sierpinski gasket. We follow the
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method of construction given in [24]. Furthermore, we are going to study the
resistance metric associated with the constructed resistance form.

In this section, we fix a random Sierpinski gasket (W∗, Γ) generated by
{L1, . . . ,LM}, where Lj = (K(j), Sj , {F j

i }i∈Sj ) and Sj = {1, . . . , Nj}. We
write Tm, Vm,K,Kw and π in place of Tm(W∗, Γ), Vm(W∗, Γ) and so on.

Let (D, r(j)) be a regular harmonic structure for each j ∈ {1, . . . ,M}. Set
r(j) = (r(j)

i )i∈Sj . (Note that D is independet of j.) Define r = max{r(j)
i |j ∈

{1, . . . ,M}, i ∈ Sj} and r = min{r(j)
i |j ∈ {1, . . . ,M}, i ∈ Sj}.

We first construct a series of a resistance from on {Vm}m≥0 as in the case
of p. c. f. self-similar sets.

Definition 21.1. Let (W∗,Γ) be a random Sierpinski gasket generated by
{L1, . . . ,LM}. For any w ∈ Wm, define rw = r

Γ([w]0)
w1 r

Γ([w]1)
w2 · · ·rΓ([w]m−1)

wm . (We
set r∅ = 1.) Define a symmetric bilinear form Em on ℓ(Vm) by

Em(u, v) =
∑

w∈Wm

1
rw

ED(u◦Fw, v◦Fw)

for any u, v ∈ ℓ(Vm). We use Hm to denote the symmetric linear operator from
ℓ(Vm) to itself satisfying Em(u, v) = −(u, Hmv)Vm for any u, v ∈ ℓ(Vm).

Since each (D, r(j)) is a harmonic structure, we have the following fact im-
mediately.

Proposition 21.2. Em is a resistance form on Vm for any m ≥ 1 and Hm is a
Laplacian on Vm. Moreover, {(Vm, Hm)}m≥0 is a compatible sequence.

Since {(Vm,Hm)}m≥0 is a compatible sequence, Em(u|Vm , u|Vm) is monoton-
ically non-decreasing for any u ∈ ℓ(V∗). Define

F = {u|u ∈ ℓ(V ), lim
m→∞

Em(u|Vm , u|Vm) < ∞}

and
E(u, v) = lim

m→∞
Em(u|Vm , v|Vm)

for any u, v ∈ F . Then by [33, Chapter 2], (E ,F) is a resistance form. We use
R(·, ·) to denote the associated resistance distance on V∗. Note that if x, y ∈ Vm,
then R(x, y) is equal to the effective resistance with respect to the resistance
form (Em, ℓ(Vm)) on Vm. We use this fact in the followings.

At this point, (E ,F) is merely a resistance form on the countable set V∗.
We need to show that (E ,F) is naturally extended to a resistance form on K
and that the associated resistance distance R gives the same topology as the
Euclidean metric. Such a result will be obtained in Theorem 21.7 after rather
lengthy but necessary steps. The following definition is an analogue of the notion
of scales in [30].

Definition 21.3. For s ∈ (0, 1) define

Λs = {w|w ∈ W∗\W0, r[w]|w|−1
> s ≥ rw}
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and Λ1 = {∅}. For any x ∈ X and any s ∈ (0, 1],

Λs,x = {w|w ∈ Λs, x ∈ Kw}, Ks(x) = ∪w∈Λs,xKw,

Λ1
s,x = {w|w ∈ Λs, Kw ∩ Ks(x) ̸= ∅} and Us(x) = ∪w∈Λ1

s,x
Kw.

Also Qs(x) = ∪w∈Λs\Λ1
s,x

Kw, Cs(x) = Us(x) ∩ Qs(X).

We think of Kw’s for w ∈ Λs a “ball” of radius s with respect to the resistance
metric. Also, Us(x) is regarded as a s-neighborhood of x. Such a viewpoint will
be justified in Corollary 21.8. First we show that {Us(x)}s>0 is a fundamental
system of neighborhood with respect to the Euclidean metric.

Lemma 21.4. Let dE be the restriction of Euclidean metric on K. In this
lemma, we use the topology of K induced by dE.
(1) Ks(x), Us(x) and Vs(x) are compact.
(2) Us(x) is a neighborhood of x with respect to dE. Moreover, as s ↓ 0,
supx∈K diam(Us(x), dE) → 0.
(3) Cs(x) ⊆ ∪w∈Λ1

s,x
Fw(V0) and Cs(x) is the topological boundary of Us(x).

Proof. (1) and (3) are immediate. About (2), for w = w1w2 · · ·wm ∈ Λs, since
rw1w2···wm−1 > s ≥ rw, it follows that rm−1 ≥ s ≥ rm. Hence

log s

log r
≤ m ≤ log s

log r
+ 1 (21.1)

Let m(s) be the integral part of log s/ log r and let m(s) be the integral part
of log s/ log r + 2. Then (21.1) implies Us(x) ⊇ Km(s),x. By Proposition 20.6,
Us(x) is a neighborhood of x. Also by (21.1),

diam(Us(x), dE) ≤ 4 sup
w∈Λs

diam(Kw, dE) ≤ 4 sup
x∈K

diam(Km(s),x).

Now Proposition 20.6 yields the desired result.

In the next lemma, we show that the diameter of Kw for w ∈ Λs is roughly
s.

Lemma 21.5. (1) There exists c0 > 0 such that supx,y∈Kw∩V∗
R(x, y) ≤ c0rw

for any w ∈ W∗.
(2) There exists c1 > 0 such that R(x, y) ≤ c1s for any s ∈ (0, 1], any x ∈ V∗
and any y ∈ Us(x) ∩ V∗.

Proof. (1) First we enumerate two basic facts.
Fact 1: rw ≤ (r)|w|.
Fact 2: Define R∗ = max{R(x, y)|x, y ∈ V0}. Then R(x, y) ≤ rwR∗ for any
x, y ∈ Fw(V0).

Assume that x ∈ Fw(V0) and y ∈ Fw(V1(LΓ(w))) for some w ∈ W∗. Note
that Fw(V1(LΓ(w))) = ∪i∈SΓ(w)Fwi(V0). Since #(V1(LΓ(w))) ≤ 3N , we may
find m ≤ 3N , i1, . . . , im ∈ SΓ(w) and x0, x1, . . . , xm ∈ Fw(V1(LΓ(w))) satisfying
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x0 = x, xm = y and xk−1, xk ∈ Fwik
(V0) for any k = 1, . . . ,m. By the above

facts,

R(x, y) ≤
m∑

k=1

R(xk−1, xk) ≤ 3NR∗rrw.

Now, let x ∈ Fw(V0) and let y ∈ Kw ∩V∗. Then y ∈ Fwv(V0) for some wv ∈ W∗.
Choose yi ∈ F[wv]|w|+i

for i = 1, . . . , |v| − 1. Set y0 = x and y|v| = y. By the
above arguments,

R(x, y) ≤
|v|−1∑
i=0

R(yi, yi+1) ≤
|v|−1∑
i=0

3NR∗rr[wv]|w|+i

≤
∞∑

i=0

3NR∗(r)i+1rw =
3NR∗rrw

1 − r
.

This shows that supx,y∈Kw∩V∗
R(x, y) ≤ 6NR∗r(1 − r)−1rw.

(2) Let y ∈ Us(x) ∩ V∗. There exist w(1), w(2) ∈ Λ1
s,x and z ∈ Fw(1)(V0) ∩

Fw(2)(V0) such that x ∈ Kw(1) ∩ V∗ and y ∈ Kw(2) ∩ V∗. By (1), R(x, y) ≤
R(x, z) + R(z, y) ≤ c0(rw(1) + rw(2)) ≤ 2c0s.

Next lemma is the heart of the series of discussions. It shows that Us(x)
contains a resistance ball of radius cs, where c is independent of s.

Lemma 21.6. There exists c2 > 0 such that R(x, y) ≥ c2s for any s ∈ (0, 1],
any x ∈ V∗ and any y ∈ Qs(x) ∩ V∗.

Proof. Set K∗ = Ks(x) ∩ V∗ and Q∗ = Qs(x) ∩ V∗.
Claim 1 Let z ∈ (Ks(x) ∪Qs(x))c ∩ V∗. For any a, b, c ∈ R, there exists u ∈ F
such that u|K∗ = a, u|Q∗ = b and u(z) = c.
Proof of Claim 1 Set m∗ = maxw∈Λ1

s,x
|w|. We may choose m ≥ m∗ so

that z ∈ Fw(V0), Kw ∩ Qs(x) = ∅ and Kw ∩ Ks(x) = ∅ for some w ∈ Wm.
Considering the resistance form (Em, ℓ(Vm)), we find ũ ∈ ℓ(Vm) such that
ũ|Ks(x)∩Vm

= a, ũ|Qs(x)∩Vm
= b and ũ(z) = c. Since (E ,F) is the limit of

the compatible sequence (Vm,Hm), the harmonic extension of ũ possesses the
desired properties.
Claim 2 Let Fs,x = {u|u ∈ F , u|K∗ and u|Q∗ are constants}. Then (E ,Fs,x)
is a resistance form on (V∗\(Ks(x) ∩ Qs(X))) ∪ {K∗} ∪ {Q∗}.
Proof of Claim 2 By Claim 1, we see that (K∗)F = K∗. Theorem 4.11 implies
that (E ,FK∗) is a resistance form on (V∗\Ks(x)) ∪ {K∗}. Again by Claim 1,
(Q∗)F

K∗ = Q∗. Using Theorem 4.11, we verify Claim 2.
Claim 3 Let R∗(·, ·) be the resistance metric associated with (E ,Fs,x). Then
R∗(K∗, Q∗) ≥ c2s for any x ∈ V∗ and any s ∈ (0, 1], where c2 is independent of
x and s.
Proof of Claim 3 Let Ṽ = ∪w∈Λ1

s,x\Λs,x
Fw(V0). Define V = (Ṽ \(Ks(x) ∪

Qs(x))) ∪ {K0} ∪ {Q0}. Note that V is naturally regarded as a subset of
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(V∗\(Ks(x) ∩ Qs(X))) ∪ {K∗} ∪ {Q∗}. Also, Φ : Ṽ → V is defined by

Φ(x) =


x if x /∈ Ks(x) ∪ Qs(x),
K0 if x ∈ Ks(x),
Q0 if x ∈ Qs(X).

Let
EV (u, v) =

∑
w∈Λ1

s,x\Λs,x

1
rw

ED(u ◦ Φ, v ◦ Φ)

for any u, v ∈ ℓ(V ). Then (EV , ℓ(V )) is a resistance form on V . If RV (·, ·) is the
resistance metric associated with (EV , ℓ(V )), then RV (K0, Q0) = R∗(K∗, Q∗).
Let us consider RV (K0, Q0). Any path of resistors between K0 and Q0 corre-
sponds to (rw)−1ED(u ◦ Φ, v ◦ Φ) for some w ∈ Λ1

s,x\Λs,x. Let w ∈ Λ1
s,x\Λs,x.

If Fw(V0) ∩ Ks(x) or Fw(V0) ∩ Qs(x) is empty, then this part does not con-
tribute to the effective resistance between K0 and Q0. So assume that both
pw = Ks(x)∩Fw(V0) and qw = Qs(x)∩Fw(V0) are non-empty. Let r(w) be the
effective resistance between pw and qw with respect to the resistance form de-
rived from the resistance form (rw)−1ED(·, ·) on Fw(V0). Since the choice of pw

and qw in Fw(V0) is finite, it follows that α1rw ≤ r(w) ≤ α2rw, where α1 and α2

are independent of x, s and w. Since rw ≥ rs, we have α3s ≤ r(w) ≤ α2s, where
α3 = α1r. Now RV (K0, Q0) is the resistance of the parallel circuit with the
resistors of resistances r(w). Since #(Λs,x

1 ) is uniformly bounded with respect
to x and s, in fact 45 is a sufficient upper bound, we have

α4s ≤ RV (K0, Q0) ≤ α5s,

where α4 and α5 are independent of x and s. This completes the proof of Claim
3.

Since R∗(K∗, Q∗) ≤ R(x, y) for any y ∈ Qs(x), Claim 3 suffices for the proof
of this lemma.

Combining all the lemmas, we finally obtain the desired result.

Theorem 21.7. The resistance distance R and the Euclidean distance dE give
the same topology on V∗. Moreover, the identity map on V∗ is extended to a
homeomorphism between the completions of (V∗, R) and (V∗, dE).

Proof. If {xn}n≥1 ⊆ V∗ and x ∈ V∗, then the following three conditions (A),
(B) and (C) are equivalent.
(A) limn→∞ R(xn, x) = 0
(B) For any s > 0, there exists N > 0 such that xn ∈ Us(x) for any n ≥ N .
(C) limn→∞ |xn − x| → 0.

In fact, by Lemmas 21.5-(2) and 21.6, (A) is equivalent to (B). Lemma 21.4-
(2) shows that (B) is equivalent to (C).

Hence, the identity map between (V∗, R) and (V∗, dE) is homeomorphism.
Next assume that {xn}n≥1 is a dE-Cauchy sequence. Let x ∈ K be the limit of

80



{xn}n≥1 with respect to dE . Since Us(x) is a neighborhood of x with respect
to dE by Lemma 21.4-(2), xn ∈ Us(x) for sufficiently large n. Lemma 21.5-(2)
shows that {xn}n≥1 is an R-Cauchy sequence. Conversely assume that {xn}n≥1

is not a dE-Cauchy sequence. There exist δ > 0 and subsequences {xni} and
{xmi} such that |xni − xmi | ≥ δ for any i ≥ 1. By Lemma 21.5-(2), we may
choose s ∈ (0, 1] so that diam(Us(x), dE) < δ. This shows that xni /∈ Us(xmi).
By Lemma 21.6, it follows that R(xni , xmi) ≥ c2s. Hence {xn}n≥1 is not an
R-Cauchy sequence. Thus we have shown that the completions of (V∗, R) and
(V∗, dE) are naturally homeomorphic.

By this theorem, we are going to identify the completion of (V∗, R) with K.
In other words, the resistance distance R is naturally extended to K. Using
[33, Theorem 2.3.10], we think of (E ,F) as a resistance form on K and R as
the associated resistance metric from now on. Note that (K,R) is compact and
hence (E ,F) is regular.

By the identification described above, Lemmas 21.4, 21.5 and 21.6 imply
that Us(x) is comparable with the resistance ball of radius s.

Corollary 21.8. There exist α1, α2 > 0 such that

BR(x, α1s) ⊆ Us(x) ⊆ BR(x, α2s)

for any x ∈ X and any s ∈ (0, 1].

Since (E ,F) is a resistance form on K and (K,R) is compact, we immediately
obtain the following result.

Corollary 21.9. (E ,F) is a local regular resistance form on K.

Definition 21.10. (E ,F) and R constructed in this section are called the re-
sistance form and the resistance metric on K associated with ((D, r(j)))j=1,...,M

respectively.

22 Volume doubling property

In this section, we will give a criterion for the volume doubling property of a
measure with respect to the resistance metric in Theorem 22.2. For random
self-similar measures, we will obain a simpler condition in Theorem 22.8.

As in the last section, (W∗, Γ) is a random Sierpinski gasket generated by
{L1, . . . ,LM}, (D, r(j)) is a regular harmonic structure on Lj for any j and
(E ,F) is the resistance form on K associated with {(D, r(j))}j=1,...,M . We
continue to use the same notations as in the previous section.

The first theorem is immediate from Theorem 8.4 and Corollary 21.9.

Theorem 22.1. Let µ be a finite Borel regular measure on K. Then (E ,F) is
a local regular Dirichlet form on L2(K,µ).
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The following theorem gives a necessary and sufficient condition for the
volume doubling property with respect to the resistance metric. It is a gener-
alization of [30, Theorem 1.3.5]. The conditions (EL) and (GE) correspond to
(ELm) and (GE) in [30] respectively.

Theorem 22.2. Let µ be a finite Borel regular measure on K. µ has the
volume doubling property with respect to the resistance distance R if and only if
the following two conditions (GE) and (EL) are satisfied:
(GE) There exists c1 > 0 such that µ(Kw) ≤ c1µ(Kv) for any w, v ∈ Λs with
Kw ∩ Kv ̸= ∅ and any s ∈ (0, 1].
(EL) There exists c2 > 0 such that µ(Kwi) ≥ c2µ(Kw) for any w ∈ W∗ and
any i ∈ SΓ(w).

We need two lemmas to prove this theorem.

Lemma 22.3. Let µ be a finite Borel regular measure on K. µ has the volume
doubling property with respect to the resistance distance R if and only if there
exist α ∈ (0, 1) and c > 0 such that µ(Us(x)) ≤ cµ(Uαs(x)) for any x ∈ X and
any s ∈ (0, 1].

Proof. By Corollary 21.8, BR(x, α1s) ⊆ Us(x) ⊆ BR(x, α2s). Assume that
µ(Us(x)) ≤ cµ(Uαs(x)). Choose n so that αnα2 < α1. Then

µ(BR(x, α1s)) ≤ µ(Us(x)) ≤ cnµ(Uαns(x)) ≤ µ(BR(x, αnα2s)).

Hence µ has the volume doubling property with respect to R.
Conversely, assume that µ(BR(x, s)) ≤ c∗µ(BR(x, δs)) for some c∗ > 0 and

δ ∈ (0, 1). Choose n so that δnα2 < α1. Then

µ(Us(x)) ≤ µ(BR(x, α2s)) ≤ (c∗)nµ(BR(x, δnα2s)) ≤ (c∗)nµ(Uδnα2(α1)−1s(x)).

Letting α = δnα2(α1)−1, we have the desired statement.

Lemma 22.4. Let s ∈ (0, 1] and let w ∈ Λs. If α ≤ r2, then there exists
x ∈ Kw such that Us(x) ⊆ Kw.

Proof. Set w = w1w2 · · ·wm, where m = |w|. Choose k and l so that k, l ∈
{1, 2, 3}, k ̸= wm and l ̸= k. Note that Kwkl∩Fw(V0) = ∅. Since rw1w2···wm−1 >
s, it follows that rwk > r2s. If α ≤ r2, then rwklv ∈ Λαs for some v ∈ W∗(S).
Set w∗ = wklv. Choose x ∈ Kw∗\Fw∗(V0). By Proposition 20.3-(2) and (4),
Λαs,x = {w∗} and [w′]m = w for any w′ ∈ Λ1

αs,x. Hence Uαs(x) ⊆ Kw.

Proof of Theorem 22.2. Assume (GE) and (EL). Fix α ∈ (0, 1). Let w ∈ Λs,x

and let wv ∈ Λαs,x. For any w′ ∈ Λ1
s,x, there exists w′′ ∈ Λs,x such that

Kw′′ ∩ Kw′ ̸= ∅ and Kw′′ ∩ Kw ̸= ∅. Hence by (GE), µ(Kw′′) ≤ (c1)2µ(Kw).
Since #(Λ1

s,x) ≤ 45,
µ(Us(x)) ≤ 45(c1)2µ(Kw). (22.1)

Now, since wv ∈ Λαs and w ∈ Λs,

αs < rwrv∗ ≤ srv∗ ≤ sr|v|−1,
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where v∗ = [v]|v|−1. Letting m∗ be the integral part of log α
log r + 2, we have

|v| ≤ m∗. Note that m∗ only depends on α. By (EL), µ(Kwv) ≥ (c2)m∗µ(Kw).
Hence (22.1) shows that

µ(Uαs) ≥ (c2)m∗µ(Kw) ≥ (c2)m∗(c1)−2 1
45

µ(Us(x)).

By Lemma 22.3, µ has the volume doubling property with respect to R.
Next assume that (GE) do not hold. For any C > 0, there exist s ∈ (0, 1]

and w, v ∈ Λs with Kw ∩ Kv ̸= ∅ such that µ(Kv) ≥ Cµ(Kw). Let α ∈ (0, r2].
By Lemma 22.4, Uαs(x) ⊆ Kw for some x ∈ Kw. Since v ∈ Λ1

s,x,

µ(Us(x)) ≥ (1 + C)µ(Kw) ≥ (1 + C)µ(Uαs(x)).

Lemma 22.3 shows that µ does not have the volume doubling property with
respect to R.

Finally, if (EL) do not hold, then for any ϵ > 0 there exist w ∈ W∗ and
i ∈ SΓ(w) such that µ(Kwi) ≤ ϵµ(Kw). Set s = rw. Let α ∈ (0, r3]. Then αs ≤
r3s ≤ r2rwi. By Lemma 22.4, there exists x ∈ Kwi such that Uαs(x) ⊆ Kwi.
Now,

µ(Uαs(x)) ≤ µ(Kwi) ≤ ϵµ(Kw) ≤ ϵµ(Us(x)).

Using Lemma 22.3, we see that µ does not have the volume doubling property
with respect to R.

Next we introduce the notion of random self-similar measures, which is a
natural generalization of self-similar measures on ordinary self-similar sets.

Proposition 22.5. Let µ(j) = (µ(j)
i )i∈Sj ∈ (0, 1)Sj satisfy

∑
i∈Sj

µ
(j)
i = 1

for each j = 1, . . . ,M . Define µw = µ
Γ([w]0)
w1 µ

Γ([w]1)
w2 · · ·µΓ([w]m−1)

wm for any w =
w1w2 · · ·wm ∈ W∗. Then there exists a unique Borel regular probability measure
µ on K such that µ(Kw) = µw for any w ∈ W∗. Moreover, µ satisfies the
condition (EL) in Theorem 22.2

Note that the Hausdorff measure associated with the resistance metric, which
has been studied in [24, 25, 26] is not a random self-similar measure in general
except for a homogeneous case.

Definition 22.6. The Borel regular probability measure µ in Proposition 22.5 is
called the random self-similar measure on (W∗, Γ) generated by (µ(1), . . . , µ(M)).

In the next definition, we introduce a notion describing relations of neigh-
boring Kw

′s for w ∈ Λs in order to apply Theorem 22.2.

Definition 22.7. A pair ((j1, i1), (j2, i2)) ∈ {(j, i)|j = 1, . . . ,M, i ∈ {1, 2, 3}}2

is called an adjoining pair for (W∗, Γ) if and only if there exist w, v ∈ W∗
such that wi1, vi2 ∈ Λs for some s ∈ (0, 1], w ̸= v, j1 = Γ(w), j2 = Γ(v) and
π(w(i1)∞) = π(v(i2)∞).
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Theorem 22.8. Let µ be a random self-siimilar measure on (W∗, Γ) gener-
ated by (µ(1), . . . , µ(M)). µ has the volume doubling property with respect to the
resistance distance R if

log µ
(j1)
i1

log r
(j1)
i1

=
log µ

(j2)
i2

log r
(j2)
i2

(22.2)

for any adjoining pair ((j1, i1), (j2, i2)) for (W∗, Γ).

Before proving this theorem, we give an example where the condition of the
above theorem is realized.

Example 22.9. Let L1 = LSG and let L2 = LSP , where LSG and LSP are
the original Sierpinski gasket and the Sierpinski spiral respectively introduced
in Section 19. Set S1 = {1, 2, 3} and S2 = {1, 2, 3, 4}. Define H = {(h, γ)|0 <

h, γ ∈ (0, min{h, 1/h})}. Fix (h, γ) ∈ H and set r
(1)
i = rSG

i for i ∈ S1 and r
(2)
i =

rSP
i for i ∈ S2. (Recall that rSG

i only depends on h and rSP
i depend on h and γ.

See Examples 19.8 and 19.2.) Denote r(j) = (r(j)
i )j∈Sj for j = 1, 2. Define α∗

by the unique α satisfying
∑

i∈S1
(r(1)

i )α = 1. Note that α∗ depends only on h.

When h = 1, then r
(1)
i = 3/5 for any i ∈ S1 and hence α∗ = log 3/(log 5− log 3).

Let µ
(1)
i = (r(1)

i )α∗ for i ∈ S1. Define

H0 = {(h, γ)|(h, γ) ∈ H,
∑

i=1,2,3

(r(2)
i )α∗ < 1}.

If h = 1, r
(2)
i = (1 − γ)/2 for any i ∈ {1, 2, 3}. This implies (1, γ) ∈ H0 for any

γ ∈ (0, 1). Hence H0 is a non-empty open subset of R2. Let µ
(2)
i = (r(2)

i )α∗ for
any i ∈ {1, 2, 3} and let µ

(2)
4 = 1−

∑3
i=1 µ

(2)
i . Applying Theorem 22.8, we have

the following proposition:
Proposition Assume that (h, γ) ∈ H0. Let (W∗, Γ) be any random Sierpinski
gasket generated by generated by {L1,L2}. Let µ∗ be the random self-similar
measure generated by ((µ(j)

i )i∈Sj
)j=1,2 and let R be the resistance distance

on K = K(W∗,Γ) associated with ((Dh, r(j)))j=1,2. Then µ∗ has the volume
doubling property with respect to R.

The rest of this section is devoted to the proof of Theorem 22.8.

Proof of Theorem 22.8. Let ω(1) = ω(1)1ω(1)2 . . . , ω(2) = ω(2)1ω(2)2 . . . ∈
Σ(W∗, Γ). Assume that ω(1) = wi1(k)∞, ω(2) = wi2(l)∞ ∈ Σ(W∗, Γ), where
w ∈ W∗\W0, i1 ̸= i2 ∈ SΓ(w), k, l ∈ {1, 2, 3} and π(ω(1)) = π(ω(2)). Set
ri,n = r

(Γ([ω(i)]n−1))
ω(i)n

and µi,n = µ
(Γ([ω(i)]n−1))
ω(i)n

for i = 1, 2 and n ≥ 1. Define
{mn}n≥0 and {Mn}n≥0 inductively by

m0 = M0 = |w|
mn+1 = inf{m|m > mn, r[ω(1)]m = r[ω(2)]m′ for some m′}
Mn+1 = inf{m|m > Mn, r[ω(1)]m′ = r[ω(2)]m for some m′}
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(If inf{m|m > mn, r[ω(1)]m = r[ω(2)]m′ for some m′} = ∅, then we define mN =
MN = ∞ for all N ≥ n + 1.) Also define sn = r[ω(1)]mn

for n ≥ 0. (If mn = ∞,
then define sn = 0.) Note that sn = r[ω(1)]mn

= r[ω(2)]Mn
.

Claim 1 Let n ≥ 1. Then there exists αn such that µ1,m = (r1,m)αn for any
m = mn + 1, . . .mn+1 and µ2,m = (r2,m)αn for any m = Mn + 1, . . . ,Mn+1.
Proof of Claim 1 For sufficiently small ϵ > 0, [w(1)]mn+1, [w(2)]Mn+1 ∈ Λsn+ϵ.
Hence (Γ([w(1)]mn), k), (Γ([w(2)]Mn), l) is an adjoint pair. By (22.2),

log µ1,mn+1

log r1,mn+1
=

log µ2,Mn+1

log r2,Mn+1
(22.3)

Set αn = log µ1,mn+1/log r1,mn+1. Let mn + 1 ≤ m < mn+1. Then there
exists m′ ∈ [Mn,Mn+1 − 1] such that r[w(2)]m′ < r[w(1)]m < r[w(2)]m′+1

. Set
s∗ = r[w(1)]m . Then [w(1)]m, [w(2)]m′+1 ∈ Λs∗ and [w(1)]m+1, [w(2)]m′+1 ∈
Λs∗+ϵ for sufficiently small ϵ > 0. Hence ((Γ([w(1)]m−1), k), (Γ([w(2)]m′), l))
and ((Γ([w(1)]m, k), (Γ([w(2)]m′ , l)) are adjoint pairs. Using (22.2), we see that

log µ1,m

log r1,m
=

log µ2,m′+1

log r2,m′+1
=

log µ1,m+1

log r1,m+1
. (22.4)

By the similar arguments,

log µ2,m

log r2,m
=

log µ2,m+1

log r2,m+1
(22.5)

for any m = Mn + 1, . . . ,Mn+1 − 1. The equations (22.3), (22.4) and (22.5)
immediately imply the claim. (End of Proof of Claim 1)
Claim 2 Set s∗ = min{rwi1 , rwi2}. Define m∗ = min{m|s∗ > r[ω(1)]m ≥ s1}
and M∗ = min{m′|s∗ > r[ω(2)]m′ ≥ s1}. There exists α0 > 0 such that
µ1,m = (r1,m)α0 and µ2,m′ = (r2,m′)α0 for any m = m∗, . . . ,m1 and any
m′ = M∗, . . . ,M1.
Proof of Claim 2 If m1 = m0 + 1, then s∗ = s1. Hence we have Claim 2.
Similarly, if M1 = M0 + 1, then we have Claim 2. Thus we may assume that
m1 ≥ m0 + 2 and M1 ≥ M0 + 2. Then [ω(1)]m1 , [ω(2)]M1 ∈ Λs1 , and so
(Γ([ω(1)]m1−1), k), (Γ([ω(2)]M1−1), l)) is an adjoining pair. By (22.2),

log µ1,m1

log r1,m1

=
log µ2,M1

log r2,M1

(22.6)

Let m ∈ {m∗, . . . ,m1 − 1}. Then there exists m′ ∈ [M0 + 1,M1 − 1] such that
r[w(2)]m′ < r[w(1)]m < r[w(2)]m′+1

. Using the similar arguments as in the proof
of Claim 1, we obtain counterparts of (22.4) and (22.5). These equalities along
with (22.6) yield the claim. (End of Proof of Claim 2)
Claim 3 Define L = min{n|n ∈ N, rn < r}. If [ω(1)]m, [ω(2)]m′ ∈ Λs for some
s ∈ [s1, s0), then

(µ)L(r)α0(L+1)µ[ω(1)]m ≤ µ[ω(2)]m′ ≤ (µ)−L(r)−α0(L+1)µ[ω(1)]m , (22.7)
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where µ = min{µ(j)
i |j ∈ {1, . . . ,M}, i ∈ {1, 2, 3}}.

Proof of Claim 3 Assume that rwi1 = s∗. Note that m∗ = m0 + 2. First we
consider the case where s ∈ [s∗, s0). It follows that m = m0 + 1 and wi1 ∈ Λs.
Since r[ω(2)]m′−1

≥ s∗ = rwi1 , we have r2,M0+1· · ·r2,m′−1 ≥ r1,m0+1. This shows
that rm′−M0−1 ≥ r. Therefore, m′−M0 ≤ L. Now µw ≤ µwi1 ≤ µwµ and µw ≤
µ[ω(2)]m′ ≤ µw(µ)m′−M0 ≤ µw(µ)L. This immediately imply Claim3 in this case.
Next suppose s ∈ [s1, s∗). By Claim 2, µ1,m0+2 · · ·µ1,m = (r1,m0+2 · · · r1,m)α0

and µ2,M∗ · · ·µ2,m′ = (r2,M∗ · · · r2,m′)α0 . On the other hand, r[ω(1)]m−1 > s ≥
r[ω(1)]m . Hence

s

rwi1

≥ r1,m0+2 · · · r1,m ≥ rs

rwi1

.

This implies
µwsα0

(rw)α0

1
r
≥ µ[ω(1)]m ≥ µwsα0

(rw)α0
rα0µ. (22.8)

Similarly, we have

s

r[ω(2)]M∗−1

≥ r2,M∗ · · · r2,m′ ≥ rs

r[ω(2)]M∗−1

and hence
µwsα0

(rw)α0

1
rα0L

≥ µ[ω(2)]m′ ≥
µwsα0

(rw)α0
µLrα0 (22.9)

Combining (22.8) and (22.9), we have the claim. If rwi2 = s∗, then an analogous
discussion yields the claim as well. (End of Proof of Claim 3)
Claim 4 Define α∗ = max{log µ

(j)
i / log r

(j)
i |j ∈ {1, . . . ,M}, i ∈ {1, 2, 3}}. If

[ω(1)]m, [ω(2)]m′ ∈ Λs for some s ∈ (0, s0), then

(µ)L(r)α∗(L+2)µ[ω(1)]m ≤ µ[ω(2)]m′ ≤ (µ)−L(r)−α∗(L+2)µ[ω(1)]m (22.10)

Proof of Claim 4 By Claim 1, µ1,mn+1 · · ·µ2,mn+1 = (r1,mn+1 · · · r1,mn+1)
αn =

(r2,Mn+1 · · · r2,Mn+1)
αn = µ2,Mn+1 · · ·µ2,Mn+1 . for any n ≥ 1. Suppose s ∈

[sp+1, sp) for some p ≥ 1. Then

µ[ω(1)]p

µ[ω(2)]p

=
µ1,m0+1 · · ·µ1,m1

µ2,M0+1 · · ·µ2,M1

×
µ1,mp+1 · · ·µ1,m

µ2,Mp+1 · · ·µ2,m′
.

By Claim 3, we have an estimate of the first part of the right-hand side of the
above equality. For the second part, µ1,mp+1 · · ·µ1,m = (r1,mp+1 · · · r1,m′)αp .
On the other hand, s/sp ≥ r1,mp+1 · · · r1,m ≥ rs/sp. Hence we have( s

sp

)αp

≥ µ1,mp+1 · · ·µ1,m ≥ (r)αp

( s

sp

)αp

.

Similarly, ( s

sp

)αp

≥ µ2,Mp+1 · · ·µ2,m′ ≥ (r)αp

( s

sp

)αp

.

86



Hence (µ1,mp+1 · · ·µ1,m)/(µ2,Mp+1 · · ·µ2,m′) ≤ (r)−αp ≤ (r)−α∗ . Combining
this with Claim 3, we obtain Clam 4. (End of Proof of Claim 4)

Finally, we give a proof of the theorem. If w(1), w(2) ∈ Λs for some s ∈ (0, 1],
w(1) ̸= w(2) and Kw(1) ∩ Kw(2) ̸= ∅, then w(1) = [ω(1)]m and w(2) = [ω(2)]m′

for some ω(1) = wi1(k)∞, ω(2) = wi2(l)∞ ∈ Σ(W∗,Γ), where w ∈ W∗\W0,
i1 ̸= i2 ∈ SΓ(w), k, l ∈ {1, 2, 3} and π(ω(1)) = π(ω(2)). By Claim 4, µ(Kw(2)) ≤
(µ)−L(r)−α∗(L+2)µ(Kw(1)). Hence we have (GE). Proposition 22.5 shows that
µ satisfies (EL). Using Theorem 22.2, we see that µ has the volume doubling
property with respect to R.

23 Homogeneous case

In this section, we treat a special class of random Sierpinski gasket called ho-
mogeneous random Sierpinski gaskets. In this case, the Hausdorff measure is
a random self-similar measure and it is always volume doubling with respect
to the resistance metric. The associated diffusion process has been extensively
studied in [23, 25, 7]. Most of the results in this section are the reproduction of
their works from the our view point.

As in the previous sections, Lj = (K(j), Sj , {F i
j}i∈Sj ) is a generalized Sier-

pinski gasket for j = 1, . . . ,M and Sj = {1, . . . , Nj}.

Definition 23.1. Let (W∗,Γ) be a random Sierpinski gasket generated by
{L1, . . . ,LM}.
(1) (W∗, Γ) is called homogeneous if and only if Γ(w) = Γ(v) for any w, v ∈ Wm

and for any m ≥ 0.
(2) Let (W∗, Γ) be homogeneous. For m ≥ 1, we define Γm = Γ(w) for
w ∈ Wm−1. Set ν

(j)
i = (Nj)−1 for any j = 1, . . . ,M and any i ∈ Sj . The random

self-similar measure ν on (W∗, Γ) generated by {(ν(1)
i )i∈S1 , . . . , (ν

(M)
i )i∈SM } is

called the canonical measure on (W∗,Γ).

This canonical measure coincides with the measure used in [23, 24, 25].
We will show in Theorem 23.5 that the canonical measure is equivalent to the
Hausdorff measure associated with the resistance metric.

Throughout this section, (W∗,Γ) is a homogeneous random Sierpinski gasket.
Let (D, r(j)) be a regular harmonic structure on Lj for each j = 1, . . . ,M . We
will also require homogeneity for the resistance scaling ratio r(j). Namely, the
following condition (HG):
(HG) r

(j)
i1

= r
(j)
i2

for any j and any i1, i2 ∈ Sj .
is assumed hereafter in this section. Under (HG), we write r

(j)
i = r(j).

Proposition 23.2. Assume (HG).
(1) Define r(m) = r(Γ1) · · · r(Γm). Then Λs = Wm for s ∈ (r(m − 1), r(m)].
(2) Let ν be the canonical measure on (W∗, Γ). Then ν(Kw) = #(Wm)−1 =
(NΓ1 · · ·NΓm)−1 for any w ∈ Wm.
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Figure 3: Homogeneous random Sierpinski gaskets

Note that j1 = j2 for any adjoining pair ((j1, i1), (j2, i2)) in the case of a ho-
mogeneous random Sierpinski gasket. Hence by Theorem 22.8, we immediately
obtain the following result.

Theorem 23.3. Assume (HG). The canonical measure ν has the volume dou-
bling property with respect to the resistance metric R on K = K(W∗, Γ) associ-
ated with ((D, r(j)))j=1,...,M .

We can describe more detailed structure of the canonical measure ν in terms
of the resistance metric.

Definition 23.4. Define ψ(s) = #(Λs)−1 for any s ∈ (0, 1]. For s ≥ 1, we
define ψ(s) = ψ(1). For any δ > 0 and any A ⊆ K, we define

Hψ
δ (A) = inf

{ ∑
i≥1

ψ(diam(Ui, R))|A ⊆ ∪i≥1Ui, diam(Ui, R) ≤ δ for any i ≥ 1
}

and Hψ(A) = limδ↓0 Hψ
δ (A). Hψ is called the ψ-Hausdorff measure on (K,R).

It is known that Hψ is a Borel regular measure. See [41]. The next theorem
shows that ν is equivalent to the ψ-Hausdorff measure.

Theorem 23.5. Assume (HG). The canonical measure ν is equivalent to the
ψ-dimensional Hausdorff measure Hψ on (K,R). More precisely, there exist
c1, c2 > 0 such that

c1ν(A) ≤ Hψ(A) ≤ c2ν(A) (23.1)

for any Borel set A ⊆ K and

c1ψ(r) ≤ ν(BR(x, r)) ≤ c2ψ(r) (23.2)

for any x ∈ X and any r ∈ (0, 1].
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Proof. Note that ψ has the doubling property, i.e. ψ(2s) ≤ cψ(s) for any s,
where c is independent of s. Now, if w ∈ Λs, then ν(Kw) = ψ(s). Since
1 ≤ #(Λ1

s,x) ≤ 45,
ψ(s) ≤ ν(Us(x)) ≤ 45ψ(s) (23.3)

By Corollary 21.8, ν(BR(x, α1s)) ≤ ν(Us(x)) ≤ ν(BR(x, α2s)). This along with
(23.3) and the doubling property of ψ implies (23.2).

Next we show (23.1). By Lemma 21.5-(1), α3rw ≤ diam(Kw, R) ≤ α4rw for
any w ∈ W∗, where α3 and α4 are independent of w. Since ψ(rw) = ν(Kw), we
have α6ν(Kw) ≤ ψ(diam(Kw, R)) ≤ α7ν(Kw). Let A be a compact subset of
K. Define Λs(A) = {w|w ∈ Λs,Kw ∩ A ̸= ∅} and Ks(A) = ∪w∈Λs(A)Kw. Then
∩n≥1K1/n(A) = A. Note that maxw∈Λs diam(Kw, R) ≤ α8s. Hence,

Hψ
α8s(A) ≤

∑
w∈Λs(A)

ψ(diam(Kw, R)) ≤
∑

w∈Λs(A)

α7ν(Kw) ≤ α7ν(Ks(A)).

Letting s ↓ 0, we obtain Hψ(A) ≤ α7ν(A) for any compact set A. Since both
Hψ and ν are Borel regular, Hψ(A) ≤ α7ν(A) for any Borel set A. Finally, let
A be a Borel set and let A ⊆ ∪i≥1Ui. Choose xi ∈ Ui. Then by (23.2)

ν(A) ≤
∑
i≥1

ν(Ui) ≤
∑
i≥1

µ(BR(x,diam(Ui, R))) ≤ c2

∑
i≥1

ψ(diam(Ui, R))

This shows ν(A) ≤ c2Hψ(A). Thus we have (23.1).

By (23.3), we have the uniform volume doubling property, which has been
defined in [37]. By the above theorem, we have

R(x, y)VR(x,R(x, y)) ≃ R(x, y)ψ(R(x, y)),

Hence Theorem 14.10 implies the following theorem. (In fact, since we have the
uniform volume doubling property, [37, Theorem 3.1] suffices to have (23.4) and
(23.5).)

Theorem 23.6. Let (E , D) be the regular local Dirichlet form on L2(K, ν) asso-
ciated with ((D, r(j)))j=1,...,M . Assume (HG). There exists a jointly continuous
heat kernel p(t, x, y) associated with the Dirichlet form (E ,D) on L2(K, ν). De-
fine g(r) = rψ(r). (Note that ψ(g−1(t)) ≃ t/g−1(t).) Then

p(t, x, x) ≃ g−1(t)
t

(23.4)

for any t > 0 and any x ∈ K and

p(t, x, y) ≤ c1g
−1(t)
t

exp

(
− c2

(
R(x, y)

ψ−1(t/R(x, y))

))
(23.5)

for any t > 0 and any x, y ∈ K.
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By (23.4), the fluctuation from a power law in the on-diagonal behavior of
heat kernels given in [23, 25] is now understood as the fluctuation of ψ(r) versus
rα, where α is the Hausdorff dimension of (K,R).

Unfortunately, the resistance metric is not (equivalent to a power of) a
geodesic metric in general, and hence (23.5) may not be best possible. To
construct a geodesic metric, we define the notion of n-paths for homogeneous
random Sierpinski gaslets in the similar way as in Definition 19.5.

Theorem 23.7. Assume that Lj admits a symmetric self-similar geodesic met-
ric with the ration γj. Set γ(m) = γΓ1 . . . γΓj . Then there exists a geodesic
metric d on K which satisfies

d(p, q) = γ(n)min{m − 1|(p1, . . . , pm) is an n-path between p and q}

for any p, q ∈ Vn. Moreover, assume (HG) and that r(j)/Nj < γj for any
j = 1, . . . ,M . Set ν(m) = #(Wm)−1 and Tm = ν(m)r(m) for any m ≥ 0.
Define βm = log Tm/ log γ(m) and

h(s) =

{
sβm if Tm ≤ s < Tm−1,
s2 if t ≥ 1.

Then

c1

Vd(x, h−1(t))
exp

(
− c2

(
d(x, y)

Φ−1(t/d(x, y))

))
≤ p(t, x, y)

≤ c3

Vd(x, h−1(t))
exp

(
− c4

(
d(x, y)

Φ−1(t/d(x, y))

))
, (23.6)

where Φ(s) = h(s)/s.

The above both-side off-diagonal estimate is essentially same as that ob-
tained by Barlow and Hambly in [7]. More precisely, they have shown (23.7)
and (23.8) given below.

We will prove this theorem at the end of this section.

Remark. (23.6) has equivalent expressions. Set αm = log ν(m)/ log γ(m). Then
(23.6) is equivalent to

c5

tαm/βm
exp

(
− c6

(
d(x, y)βn

t

) 1
βn−1

)
≤ p(t, x, y)

≤ c7

tαm/βm
exp

(
− c8

(
d(x, y)βn

t

) 1
βn−1

)
. (23.7)

if Tm ≤ t < Tm−1 and Tn/γ(n) ≤ t/d(x, y) < Tn−1/γ(n − 1).
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Also (23.6) is equivalent to

c9

ν(m)
exp

(
− c10

Tm

Tn

)
≤ p(t, x, y) ≤ c11

ν(m)
exp

(
− c12

Tm

Tn

)
. (23.8)

if Tm ≤ t < Tm−1 and Tn/γ(n) ≤ t/d(x, y) < Tn−1/γ(n − 1).

Example 23.8. As in Example 22.9, let L1 = LSG and let L2 = LSP . We
consider homogeneous random Sierpinski gasket generated by {L1,L2}. See
Figure 3. Fix h = 1 and set r(1) = (3/5, 3/5, 3/5) and r(2) = (1/3, 1/3, 1/3, 1/3).
Then (D1, r(j)) is a regular harmonic structure on Lj for j = 1, 2. Note that
((D1, r(j)))j=1,2 satisfies the assumption (HG). In this case, ν

(1)
i = 1/3 for

i ∈ S1 and ν
(2)
i = 1/4 for i ∈ S2. Also in this case, by Examples 19.8 and 19.9,

both L1 and L2 admit symmetric self-similar geodesic metrics with geodesic
ratio γ1 = 1/2 and γ2 = 1/3 respectively. Since r(1)/N1 = 1/5 < γ1 and
r(2)/N2 = 1/12 < γ2, we have (23.6), (23.7) and (23.8).

The rest of this section is devoted to proving Theorem 23.7. The existence
of a geodesic distance d is shown by the similar arguments in the proof of [32,
Theorem 4.3]. Using the same arguments, we obtain the following lemma at the
same time.

Lemma 23.9. Define γ(m) = maxw∈Wm maxx,y∈Kw d(x, y). Then γ(m) ≃
γ(m).

Lemma 23.10. For x, y ∈ K, define M(x, y) = inf{m|y /∈ Ur(m)(x)}. Then
(1) For some m∗ ∈ N,

1 ≤ inf{n|(p0, . . . , pn) is an M(x, y)-path and there exist
w(1), w(2) ∈ WM(x,y) such that x, p0 ∈ Kw(1) and pn, y ∈ Kw(2)} ≤ m∗

for any x, y ∈ K,
(2) R(x, y) ≃ r(M(x, y)),
(3) d(x, y) ≃ γ(M(x, y))

Proof. Note that Λr(k) = Wk for any k. Since y ∈ Ur(m−1)(x)\Ur(m)(x) for
m = M(x, y), we have (1). Combining (1) and Corollary 21.8, we obtain (2).
(3) follows from Lemma 23.9 and (1).

Lemma 23.11. d ∼
QS

R.

Proof. By Lemma 23.10-(2), for any n ≥ 1, there exists δn > 0 such that
R(x, z) ≤ δnR(x, y) implies M(x, z) ≥ M(x, y) + n. Fix ϵ ∈ (0, 1). By
Lemma 23.10-(2), M(x, z) ≥ M(x, y) + n implies d(x, z) ≤ ϵd(x, y) for suffi-
ciently large n. Hence d is (SQS)R. The similar discussion shows that R is
(SQS)d. Hence Theorem 11.3 shows that d ∼

QS
R.

Lemma 23.12. Vd(x, d(x, y)) ≃ ν(M(x, y)).
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Proof. Since ν is (VD)R and d ∼
QS

R, ν is (VD)d. Lemma 23.10-(3) implies

Vd(x, d(x, y)) ≃ Vd(x, γ(M(x, y)). Set m = M(x, y). Note that Bd(x, γ(m)) ⊆
Ur(m)(x). Hence

Vd(x, γ(m)) ≤ ν(Ur(m)(x)) ≤ #(Λ1
r(m),x)ν(m) ≤ Cν(m),

where C is independent of x and m. On the other hand, if w ∈ Wm and
x ∈ Kw, then Kw ⊆ Bd(x, γ(m)). Combining this with Lemma 23.9, we obtain
ν(m) = ν(Kw) ≤ Vd(x, γ(m)) ≤ cVd(x, γ(m)). Thus, we have shown the desired
result.

Proof of Theorem 23.7. By Lemmas 23.10 and 23.12, we obtain

R(x, y)Vd(x, d(x, y)) ≃ TM(x,y) ≃ h(d(x, y)).

Hence we obtain (DM2)h,g. Also, h is a monotone function with full range and
doubling. Now we have the condition (b) of Theorem 14.10. Moreover, since
r(j)/Nj < γj for any j, Φ is a monotone function with full range and decays
uniformly. Hence Theorem 14.10 implies (23.6).

24 Introducing randomness

Finally in this section, we introduce randomness in the random Sierpinski gas-
kets. As is mentioned before, the Hausdorff measure associated with the resis-
tance metric is almost surely not (equivalent to) a random self-similar measure.

As in the previous section, we fix a family of generalized Sierpinski gaskets
{L1, . . . ,LM}. Let Lj = (K(j), Sj , {F j

i }i∈Sj ), where Sj = {1, . . . , Nj}. Set
N = maxj=1,...,M Nj and S = {1, . . . , N} as before.

Definition 24.1. Let Ω =

{(W∗, Γ)|(W∗, Γ) is a random Sierpinski gasket generated by {L1, . . . ,LM}}.

Define Ωw,j = {(W∗, Γ)|(W∗, Γ) ∈ Ω, w ∈ W∗, Γ(i) = j} for i ∈ W∗(S) and j ∈
{1, . . . ,M}. Let Bm be the σ-algebra generated by {Ωw,j |w ∈ ∪m−1

n=0 Wn(S), j ∈
{1, . . . ,M}} and define B = ∪m≥1Bm.

For ω = (W∗, Γ) ∈ Ω, we write W∗(ω) = W∗,Γ(ω) = Γ, Kω = K(W∗, Γ),
Wω

m = Wm(W∗, Γ) and so on.
According to [24, 25], we have the following fact.

Proposition 24.2. Let (pj)j=1,...,M ∈ (0, 1)M satisfy
∑M

j=1 pj = 1. Then
there exists a probability measure P on (Ω,B) such that {Ωw,j |w ∈ W∗(S), j ∈
{1, . . . ,M}} is independent and P (Γ(w) = j|w ∈ W∗) = pj for any w ∈ W∗(S)
and any j ∈ {1, . . . ,M}.
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We fix such a probability measure P on (Ω,B) as in Proposition 24.2.
Now let (D, r(j)) be a regular harmonic structure on Lj for j = 1, . . . ,M .

We use (Eω,Fω) to denote the resistance form on Kω associated with {(D, r(j))
for ω ∈ Ω. In [24], Hambly has introduced a probability measure µ on Kω which
is natural from the view point of the resistance metric in the following way.

Definition 24.3. Let ω = (W∗,Γ) ∈ Ω. Choose xw ∈ Kω
w for w ∈ W∗. For

n ≥ 1, define

µn =
∑

w∈W ω
m

(rw)−1∑
v∈W ω

m
(rv)−1

δxw ,

where δx is the Dirac’s point mass. Let µ = µω be one of the accumulating
points of {µn} in the weak sense.

Note that since Kω is compact, {µn} has accumulating points. This measure
µω is known to be equivalent to the proper dimensional Hausdorff measure and
it is not a random self-similar measure for P -a. s. ω ∈ Ω. See [24, 25] for
details. In [24, 26], Hambly and Kumagai have shown some fluctuations in the
asymptotic behavior of heat kerenels associated with the Dirichlet form (Eω,Fω)
on L2(Kω, µω) for P -a. s. ω ∈ Ω. In particular, by [26, Theorem 5.5], we have
the following theorem.

Theorem 24.4. µω is not (VD)R for P -a. s. ω.

As in the homogeneous case, a fluctuation of the diagonal behavior of heat
kerenels from a power law has been shown in [26] as well. By the above theorem,
however, the fluctuation in this case may be caused by the lack of volume
doubling property. (Recall that the volume doubling property always holds
in the homogeneous case.) Hence those two fluctuations in homogeneous and
non-homogeneous cases are completely different in nature.

Proof. Using [26, Theorem 5.5], we see that (GE) do not hold for P -a. s. ω.
Hence by Theorem 22.2, µω is not (VD)R for P -a. s. ω.
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