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1 Introduction

(X, d, µ): a metric measure space
X: a set, d: a metric on X, µ: a Borel regular measure on (X, d)

A heat equation on X:
∂u

∂t
= Lu, L is a “Laplacian” on X

⇓
Heat kernel: p(t, x, y), t > 0, x, y ∈ X.

u(t, x)
||∫

X
p(t, x, y)u0(y)µ(dy)

||
Ex(u0(Xt))

Transition density: p(t, x, y)
⇑

({Xt}t>0, {Px}x∈X): a Markov process (Hunt process) on X
⇑

A regular Dirichlet form (E ,F): a quadratic form on L2(X,µ) with the
“Markov” property

E(u, v) = −
∫

X

u(Lv)dµ
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Heat kernel estimates:

(1) Brownian motion on Rn ↔ the heat equation:
∂u

∂t
= c

n∑
i=1

∂2u

∂xi
2

Gaussian : p(t, x, y) =
c1

tn/2
exp

(
− c2

|x − y|2

t

)

(2) Riemannian manifold: Li-Yau(1986)
(X, d): complete Riemannan manifold with the Ricci curvature ≥ 0

p(t, x, y) ≈ c1

Vd(x, t1/2)
exp

(
− c2

d(x, y)2

t

)
,

where Vd(x, r): the volume of a Ball = µ(Bd(x, r)),
Bd(x, r) = {y|d(x, y) < r}.

(3) Brownian motions on Fractals:
Sierpinski gasket (Barlow-Perkins), Sierpinski carpet (Barlow-Bass)

sub-Gaussian : p(t, x, y) ≈ c1

tα/β
exp

(
− c2

(
d(x, y)β

t

)1/(β−1)
)

β > 2: the walk dimension, α: the Hausdorff dimension

(4) the Li-Yau type sub-Gaussian (LY):

p(t, x, y) ≈ c1

Vd(x, t1/β)
exp

(
− c2

(
d(x, y)β

t

)1/(β−1)
)

General “desirable” estimate for diffusion processes
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(5) α-stable process on Rn: α ∈ (0, 2)
↑

Jump process (Pathes of the process are not continuous.)

E (α)(u, u) =

∫
Rn

∫
Rn

|u(x) − u(y)|2

|x − y|n+α
dxdy =

∫
Rn

u(x)
(
(−∆)α/2u

)
(x)dx

Laplacian L = −(−∆)α/2: not a local operator

p(t, x, y) ≈ min

{
t−n/α,

t

|x − y|n+α

}

Convension: f, g : X → [0,∞). f ³ g ⇔
def

∃c1, c2 > 0 such that

c1f(x) ≤ g(x) ≤ c2f(x)

4



Aim of Study 1: Intrinsic meatic

The original metric is not always the best.

“Good” heat kernel esimate may not always hold under the original metric
d. There may exist a metric which is suitable for describing asymptotic
behaviors of the heat kernel.

When and How can we find such a metric?

Aim of Study 2: Regulation of Jumps
If the process is not diffusion, the jumps may cause troubles to describe
asymptotic behaviors.

How can we regulate Jumps?

We will study those problems in the case of
Hunt processes associated with resistance forms.

↑
strongly recurrent Hunt process
Capacity of a point is positive
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Definition of resistance forms

Definition 1.1. X: a set.
(E ,F) is called a resistance form on X ⇔

def
(RF1) through (RF5) hold.

(RF1) F is a linear subspace of `(X), 1 ∈ F ,
E : F × F → R, non-negative symmetric
E(u, u) = 0 if and only if u is constant on X.
(RF2) Let ∼ be an equivalent relation on F defined by u ∼ v if and only if
u − v is constant on X. Then (F/∼, E) is a Hilbert space.
(RF3) x 6= y ⇒ ∃u ∈ F such that u(x) 6= u(y).
(RF4) For any x, y ∈ X,

R(E,F)(x, y) = sup
{ |u(x) − u(y)|2

E(u, u)
: u ∈ F , E(u, u) > 0

}
< +∞

(RF5) Markov property: Define u by

u(p) =


1 if u(p) ≥ 1,

u(p) if 0 < u(p) < 1,

0 if u(p) ≤ 0.

Then u ∈ F and E(ū, ū) ≤ E(u, u) for any u ∈ F .

R(E,F)(x, y): the resistance metric on X associated with (E ,F)

Theorem 1.2. R(E,F)(·, ·) is a meric on X. For any u ∈ F ,

|u(x) − u(y)|2 ≤ R(E,F)(x, y)E(u, u)

for any x, y ∈ X.

For simplicity, we use R(x, y) instead of R(E,F)(x, y).
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Figure 1: Approximation of the Sierpinski gasket by graphs Gm

Examples of resistance forms

(1) 1-dim. Brownian motion:

E(u, v) =

∫
R

du

dx

dv

dx
dx

F = {u|E(u, u) < +∞} = H1(R)

R(x, y) = |x − y|
(2) Standard resistance form on the Sierpinski gasket: For i = 1, 2, 3,

Fi(z) = (z − pi)/2 + pi

K: the Sierpinski gasket

K = F1(K) ∪ F2(K) ∪ F3(K)

V0 = {p1, p2, p3}
Vm+1 = F1(Vm) ∪ F2(Vm) ∪ F3(Vm)

Em(u, u) =
1

2

∑
(p, q) is an edge of the Graph Gm

(5

3

)m

(u(p) − u(q))2

F = {u| lim
m→∞

Em(u, u) < +∞}

E(u, v) = lim
m→∞

Em(u, v)

(E ,F): the standard resistance form on K

R(x, y) ³ |x − y|(log 5−log 3)/ log 2
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(3) Random walks on (weighted) graphs (V,C):
V : a countable set,
{C(x, y)}x,y∈V : the conductances, C(x, y) = C(y, x) ≥ 0, C(x, x) = 0
Assume that
Locally finite: {y|C(x, y) > 0} is finite
Connected(irreducible): For any x, y ∈ V , ∃{x1, . . . , xn} such that
x1 = x, xn = y and C(xi, xi+1) > 0 for any i

Random walk associated with (V,C):

C(x) =
∑

y

C(x, y): the weight of x

P (x, y) =
C(x, y)

C(x)
: the transition probability from x to y

P n(x, y) =
∑
z∈V

P n−1(x, z)P (z, y): the transition probability at the time n

P n(x, y): the “heat kernel” associated with the random walk

Resistance form associated with (V,C):

F = {u|u : V → R,
∑
x,y

C(x, y)(u(x) − u(y))2 < +∞}

E(u, v) =
1

2

∑
x,y

C(x, y)(u(x) − u(y))(v(x) − v(y)).

(E ,F) is a resistance form on V .

Barlow-Coulhon-Kumagai: relations between the heat kernel estimate and
the geometric property of the resistance metric
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Plan: to find a metric d which satisfies (RVD)β:

Resistance × Volume ³ (Distance)β,

⇓
“good” heat kernel estimate

(This “principle” is known to work well for other situations as well.)
To preserve some desirable properties of the resistance form, we require

d: quasisymmetric with respect to R.

Quasisymmetric maps (QS maps for short): Tukia & Väisälä
↑

a generalization of quasiconformal functions on C

Definition 1.3. (X, d) and (X, ρ): metric spaces
ρ: quasisymmetric, or QS for short, with respect to d ⇔

def

∃ a homeomorphism h : [0,∞) → [0,∞) such that h(0) = 0 and

d(x, z) < td(x, y) ⇒ ρ(x, z) < h(t)ρ(x, y)

We write ρ ∼
QS

d.

Fact: ρ ∼
QS

d ⇔ d ∼
QS

ρ.
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Regulation of Jumps: Annulus comparable condition
(E ,F): a resistance form on X

(E ,F) is local ⇔
def

E(u, v) = 0 if inf{R(x, y)|x ∈ supp(u), y ∈ supp(v)} > 0

⇓
No Jumps

Definition 1.4. (E ,F) satisfies the Annulus Comparable Condition,
(ACC) for short, ⇔

def
(X,R) is uniformly perfect and ∃ ε > 0 such that

R(x, BR(x, r)c) ³ R
(
x, BR(x, (1 + ε)r) ∩ BR(x, r)c

)
(1.1)

↑
Annulus

for any x ∈ X and any r > 0 with BR(x, r) 6= X.

R(A,B) =
(

inf{E(u, u)|u|A ≡ 1, u|B ≡ 0, u ∈ F}
)−1

Local ⇒ Equality in (1.1) ⇒ (ACC)
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Volume doubling property

Definition 1.5. (X, d, µ): a measure metric space
µ is volume doulbing with respect to d, (VD)d for short ⇔

def

∃ c > 0 such that
µ(Bd(x, 2r)) ≤ cµ(Bd(x, r))

for any r > 0 and any x ∈ X.

(QS) preserves the volume doubling prperty: if d ∼
QS

ρ, then

µ is (VD)d ⇔ µ is (VD)ρ

Conclusion: (ACC) and µ is (VD)R

m
(ACC) and ∃d : d ∼

QS
R, ∃β > 0 such that

p(t, x, x) ³ 1

Vd(x, t1/β)
: the diagonal heat kernel estimate (DHK)β,

and

p(t, x, x) ≤ Cp(2t, x, x) : the kernel doubling property (KD)
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Resistance forms

Quasisymmetric maps

Heat kernel estimate
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2 Resistance forms

(E ,F): a resistance form on a set X

2.1 Topology given by a resistance form

B ⊆ X. Define

F(B) = {u|u ∈ F , u|B ≡ 0}
BF = {x|x ∈ X, u(x) = 0 for any u ∈ F(B)}

CF = {B|B ⊆ X,BF = B} satisfies the axiom of closed sets.
||

F-topology
l

R-topology: the topology given by the resistance meric R.

Proposition 2.1. (1) F-closed ⇒ R-closed
(2) If (X,R) is compact, then the converse of (1) is also true.
(3) In general, the converse of (1) is not true.

Notation.
C(X) = {u|u is continuous with respect to R-topology}
C0(X) = {u|u ∈ C(X), supp(u) is R-compact.}

Definition 2.2. (E ,F) is regular ⇔
def

F ∩ C0(X) is dense in C0(X) in the sense of ||u||∞ = supx∈X |u(x)|.

Theorem 2.3. (E ,F): regular ⇔ F-toplogy = R-topology
In particular, (X,R): compact ⇒ (E ,F): regular

Hereafter, we always assume that (E ,F) is regular.
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2.2 Green’s function

Theorem 2.4. B ⊆ X: closed
∃ Unique gB : X × X → [0, +∞) with
(GF) Define gx

B(y) = gB(x, y). Then gx
B ∈ F(B). For any u ∈ F(B) and

any x ∈ X,

E(gx
B, u) = u(x)

gB(x, y): the Green function with the boundary B
or the B-Green function

gB(x, x) ≥ gB(x, y) ≥ 0

gB(x, y) = gB(y, x)

gB(x, x) > 0 ⇔ x /∈ B

|gB(x, y) − gB(x, z)| ≤ RB(y, z) ≤ R(y, z)
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Moreover, define

FB = F(B) + R = {u|u ∈ F , u is constant on B}
XB = (X\B) ∪ {B} : shrinking B into a point

Then (E ,FB) is a resistance form on XB.
RB(·, ·): associated resistance metric on XB.
Then, (due to Metz in case B = {z}),

gB(x, y) =
RB(x, B) + RB(y,B) − RB(x, y)

2

↑
Gromov product of the metric RB

If B = {z}, then RB(x, y) = R(x, y).

In general,
(X, d): a metric space. Define

k(x, y) =
d(x, z) + d(y, z) − d(x, y)

2

(Au)(x) =

∫
X

k(x, y)f(y)µ(dy)

What is A?
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2.3 Harmonic functions and Traces

B ⊆ X: closed
Define

F|B = {u|B : u ∈ F}.

Proposition 2.5. For any ϕ ∈ F|B, ∃ unique f ∈ F such that f |B = ϕ and

E(f, f) = min
u∈F ,u|B=ϕ

E(u, u)

f : the harmonic function with boundary value ϕ on the boundary B
or the B-harmonic function with boundary value ϕ.

Define f = hB(ϕ) and HB = hB(F|B). Then

hB : F|B → HB ⊆ F is linear.

F = HB ⊕F(B) (**)

↑
E(u, v) = 0 if u ∈ HB and v ∈ F(B).

In the case of Dirichlet forms, analogous decomposition as (**) is known.
See Fukushima-Oshima-Takeda.
Define

E|B(ϕ, ψ) = E(hB(ϕ), hB(ψ))

for any ϕ, ψ ∈ F|B. Then

Proposition 2.6. (E|B,F|B) is a resistance form on B.
The corresponding resistance metric = R|B×B.
(E ,F): regular ⇒ (E|B,F|B): regular

(E|B,F|B): the trace of (E ,F) on B.
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2.4 Dirichlet form associated with (E ,F)

Assume that
µ: a Radon measure on (X,R)
0 < µ(BR(x, r)) < +∞ for any x ∈ X and any r > 0.
Define

E1(u, v) = E(u, v) +

∫
X

uvdµ

D = E1-closure of F ∩ C0(X).

Theorem 2.7.
(E ,F): regular ⇒ (E ,D): a regular Dirichlet form on L2(X,µ)
Moreover, (E ,F): local ⇒ (E ,D): local.

a regular Dirichlet form
↓

a Hunt process, i.e. a strong Markov process with right continuous pathes

local ⇒ pathes are continuous. (Diffusion)
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Definition 2.8 (Capacity). (1) U ⊆ X: open,

CapU = inf{E1(u, u)|u ∈ F , u ≥ 1 on U}

(2) A ⊆ X,
CapA = inf{CapU|U : open, A ⊆ U}

Fact For any x ∈ X, ∃cx > 0 such that, for any u ∈ D,
|u(x)| ≤ cx

√
E1(u, u)

⇓
K ⊆ X: compact, 0 < infx∈K Cap{x}.

⇓
the Hunt process is determined for all x ∈ X.

In general, the Hunt process associated with a regular Dirichlet form is
determined up to “excpetionl sets”.
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2.5 Transition density/Heat kernel

µ: a Radon measure on (X,R), 0 < µ(BR(x, r)) < +∞
(E ,F): a regular resistance form on X.

↓
(E ,D): a regular Dirichlet form on L2(X,µ)

↓
({Xt}t>0, {Px}x∈X): a Hunt process on X

(defined for every x ∈ X)

Theorem 2.9. Assume that BR(x, r) is compact for any x,∈ X and r > 0.
Then there exists p(t, x, y) : (0,∞) × X × X → [0,∞), continuous with
(TD1) pt,x ∈ D, where pt,x(y) = p(t, x, y).
(TD2) p(t, x, y) = p(t, y, x)
(TD3) For any mesurable u ≥ 0,

Ex(u(Xt)) =

∫
X

p(t, x, y)u(y)µ(dy).

(TD4)

p(t + s, x, y) =

∫
X

p(t, x, z)p(s, z, y)µ(dz)

p(t, x, y): the transition density/heat kernel

Existence and continuity of the transition density
Chen et al: general regular Dirichlet forms, ultarcontractive ⇒
quasicontinuous
Grigor’yan: general regular Dirichlet, locally ultracontractive ⇒
quasicontinuous
Croydon: resistance forms, ultracontractive ⇒ continuous
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Proposition 2.10. Without any further assumption,

p(rµ(BR(x, r)), x, x) ≤ 2 +
√

2

µ(BR(x, r))
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3 Goemetry and analysis on (X,R) via

quasisymmetric maps

3.1 Exit time, resistance and annulus comparablity

Definition 3.1. (X, d): a metric space
(X, d): uniformly perfect ⇔

def
∃ε > 0 such that

Bd(x, (1 + ε)r)\Bd(x, r) 6= ∅ for any x ∈ X and r > 0 with X\Bd(x, r) 6= ∅.

Hereafter, (E ,F): a regular resistance form on X
µ: a randon measure on (X,R)

BR(x, r): compact
↓

(E ,D) a regular Dirichlet form on L2(X,µ)
({Xt}t>0, {Px}x>0): regular Hunt process

p(t, x, y): the transition density

For simplicity, we only give statements the case where (X,R) is not
bounded.
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Recall the Annulus comparable condition (ACC): ∃ε > 0 such that

R(x,BR(x, r)c) ³ R(x, BR(x, (1 + ε)r) ∩ BR(x, r)c).

Definition 3.2 (Exit time). A ⊆ X,

τA = inf{t > 0|Xt /∈ A}.

Proposition 3.3.

Ex(τA) =

∫
X

gAc(x, y)µ(dy) =

∫
A

RAc(x,Ac) + RAc(y,Ac) − RAc(x, y)

2
µ(dy)

Theorem 3.4. Assume
µ: (VD)R, i.e. volume doublig with repsect to R,
(X,R): uniformly perfect
d: a metric on X, d ∼

QS
R, i.e. d is quasisymmetric with respect to R.

Then
(ACC)

m
Exit time estimate (Exit)d: Ex(τBd(x,r)) ³ Rd(x, r)Vd(x, r)

m
Resistance estimate (Res)d: R(x,Bd(x, r)c) ³ Rd(x, r),

where Rd(x, r) = supy∈Bd(x,r) R(x, y).

Exit time estimate: Resistance × Volume ³ Exit time
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Assume that (X,R) is uniformly perfect.

Theorem 3.5. If d ∼
QS

R, (ACC) holds, µ: (VD)R, then

p(Rd(x, r)Vd(x, r), x, x) ³ 1

Vd(x, r)
: Diagonal estimate

and

p(Rd(x, r)Vd(x, r), x, y) ≥ c

Vd(x, r)
: Near diagonal lower estimate

for x, y ∈ X with d(x, y) ≤ cr.

In particular, if d = R, then

p(rVR(x, r), x, x) ³ 1

VR(x, r)

X is a graph, random walk, d = R: Barlow-Coulhon-Kumagai
d = R, continuous: Kumagai

Observation: In the diagonal estimate, if Rd(x, r)Vd(x, r) ³ rβ, then

p(t, x, x) ³ 1

Vd(x, t1/β)
.

Find d ∼
QS

R such that Resistance × Volume = (Distance)β : (RVD)β!!
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3.2 Construction of quasisymmetric metric

(X, ρ, µ): a metric measure space
Assume that (X, ρ) is uniformly perfect.

Theorem 3.6. Fix a ≥ 0.
If µ: (VD)ρ then, for sufficiently large β > 0, ∃ d: a metric on X such that
ρ ∼

QS
d and

ρ(x, y)aVd(x, d(x, y)) ³ d(x, y)β (M)

(M) is a natural analogue of (RVD)β.

Remark. In the case a = 0, the above theorem recovers the following
famous result:
If (X, ρ) is uniformly perfect and µ is (VD)ρ, then there exists a metric d on
X such that d ∼

QS
ρ and µ is Ahlfors regular, i.e.

µ(Bd(x, r)) ³ rβ

For γ > 0, define the condition (SD)γ: slow decay of volume
∃η : (0, 1] → (0,∞), η(λ) ↓ 0 as λ ↓ 0 monotonically, and, for any λ ∈ (0, 1],
any x, y ∈ X,

Vd(x, λd(x, y))

Vd(x, d(x, y))
≥ λγ

η(λ)

Theorem 3.7. Fix a > 0. Assume that (X, d) is uniformly perfect. Then
(SD)β ∧ (M) ⇔ ρ ∼

QS
d ∧ (M)

⇓
µ is (VD)ρ and (VD)d.
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4 Heat kernel estimate

4.1 Main Theorems

List of Conditions:

(DHK)d,β: the diagonal heat kernel estimate

p(t, x, x) ³ 1

Vd(x, t1/β)

(KD): kernel doubling, ∃c > 0,

p(t, x, x) ≤ cp(2t, x, x)

(RVD)d,β: Resistance × Volume = Distanceβ

R(x, y)Vd(x, d(x, y)) ³ d(x, y)β

(SD)d,β: slow decay of volume
∃η : (0, 1] → (0, +∞), η(λ) ↓ 0 as λ ↓ 0 monotonically and

Vd(x, λd(x, y))

Vd(x, d(x, y))
≥ λβ

η(λ)
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Theorem 4.1. Assume that (X,R) is uniformly perfect. Then

(X, d): uniformly perfect ∧ (SD)d,β ∧ (RVD)d,β

m
d ∼

QS
R ∧ (RVD)d,β

m
d ∼

QS
R ∧ (DHK)d,β ∧ (KD)

Moreover, if (E ,F) is local, then the above set of conditioins implies

p(t, x, y) ≤ c1

Vd(x, t1/β)
exp

(
− c2

(
d(x, y)β

t

)1/(β−1)
)

If (E ,F) is local and d is geodesic, then

c3

Vd(x, t1/β)
exp

(
− c4

(
d(x, y)β

t

)1/(β−1)
)

≤ p(t, x, y)

26



Theorem 4.2. Assume (X,R) is uniformly perfect. Then

µ: (VD)R ∧ (ACC)

m
µ: (VD)R ∧ R(x,BR(x, r)c) ³ r

m
(ACC) ∧ ∃d and β > 0 such that d ∼

QS
R, (DHK)d,β and (KD)

Remark. local ⇒ (ACC) and/or R(x,BR(x, r)c) ³ r
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4.2 Applicaition to traces

Assume that (X,R) is uniformly perfect.

B ⊆ X: closed
Consider the trace (E|B,F|B) of (E ,F) on B.
Recall that

(E ,F): regular ⇒ (E|B,F|B): regular

Theorem 4.3. Assume that (B,R|B) is uniformly perfect.

(ACC) for (E ,F) ⇒ (ACC) for (E|B,F|B).

Assumptions:
(X,R) and (B,R|B): uniformly perfect
(E ,F): regular
(ACC) holds for (E ,F).
BR(x, r): compact

ν: a Radon measure on (B,R|B)
↓

(E|B,DB): a regular Dirichlet form on L2(B, ν).
↓

Transition density: pB
ν (t, x, y) on B

Theorem 4.4. Assume that d ∼
QS

R and (DHK)d,β.

If ∃γ > 0 such that

µ(Bd(x, r)) ³ rγν(Bd(x, r) ∩ B),

then β > γ and

pB
ν (t, x, x) ³ 1

ν(Bd(x, t1/(β−γ)) ∩ B)

Moreover, if µ(Bd(x, r)) ³ rα, then

pB
ν (t, x, x) ³ t

α−γ
β−γ .
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4.3 Examples

α-stable process on R1: α ∈ (1, 2]

E (α)(u, v) =

∫
R2

|u(x) − u(y)|2

|x − y|1+α
dx

F (α) = {u|u ∈ C(R), E (α)(u, u) < +∞}
R(α)(x, y) = c|x − y|α−1

for α ∈ (1, 2). For α = 2, it corresponds to the Brownian motion on R1.
(ACC) is OK.

Case 1: µ = dx the Lebesgue measure. Then µ is (VD)R.

p(t, x, x) ³ 1

t1/α
.

Case 2: µ = xδdx for δ > −1 ⇒ µ is (VD)R.

pµ(t, 0, 0) ³ t−τ : τ =
δ + 1

δ + α

Case 3: Trace onto the middle 3rd Cantor set K:
ν: the log 3/ log 2-dim. Hausdorff measure on K. Let µ∗ be the Lebesgue
measure.

µ∗(BR(x, r)) ³ r
log 2

(α−1) log 3 ν(BR(x, r))

pK
ν (t, x, x) ³ t−η : η =

log 2

(α − 1) log 3 + log 2
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The standard resistance form on the Sierpinski gasket
Natural measure µ = the log 3/ log 2-dim. Hausdorff measure.

p(t, x, y) ≈ c1

tα/β
exp

(
− c2

(
d(x, y)β

t

)1/(β−1)
)

,

where α =
log 3

log 2
, β =

log 5

log 2
and d(x, y) = |x − y| = R(x, y)

log 2
log 5−log 2 .

Case 1: Change the measure µ:

Case 2: Trace onto an Ahlfors δ-regular set B:
∃ν on Y such that

ν(Bd(x, r) ∩ B) ³ rδ

Then

pB
ν (t, x, x) ³ t−η : η =

δ log 2

log 5 − log 3 + δ log 2

In particular, B = the line segment of the outer triangle: δ = 1
Characterization of F|B as a Besov space: Alf Jonsson

α =
log 5 − log 3 + log 2

log 2
↓

F|B = F (α) = the domain for the α-stable process on R.
E|B(u, u) ³ E (α)(u, u)

But...................
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