数値解析・応用解析セミナー 1月16日(木) 15:00 -- 16:30 Michael C. Koch (京都大学農学研究科) ``Development of Hamiltonian Monte Carlo based inverse methods for parameter identification in geomechanical problems.'' <研究発表要旨> General inverse problems in geomechanics are solved in a Bayesian framework to yield probabilistic descriptions of the underlying posterior probability distributions. Exploration of such probability distributions is usually done through Markov Chain Monte Carlo (MCMC) methods, which are prohibitively expensive. Methods are developed for the solution of three inverse problems in a Hamiltonian Monte Carlo (HMC) framework, which is a statistically efficient variant of MCMC. Firstly, efficient identification of spatial field parameters (e.g. elastic modulus) is attempted from elastic wave propagation data. An adjoint HMC algorithm is developed that combines the Karhunen-Loeve expansion for dimensionality reduction and adjoint method for efficient gradient computation. The second problem involves the explicit identification of solid-void interfaces. A novel parameter update from a reference configuration is designed to maintain HMC reversibility. Finite element mesh quality is maintained through mesh moving methods and HMC gradients are computed using shape derivatives. Finally, these two methods are combined for simultaneous estimation of spatial field (hydraulic conductivity) and solid-void interface (piping zone) in two ways: approximate and exact, whose sampling efficiency is compared. ●セミナー室: 京都大学 総合研究12号館 2階203号 (応用解析学講座セミナー室) ●総合研究12号館はキャンパスマップでは「京都大学本部構内 54番建物」です。 ------------------------------------------------------------- セミナー連絡先: 京都大学大学院 情報学研究科 先端数理科学専攻 磯 祐介 e-mail; iso@i.kyoto-u.ac.jp