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Abstract

Dendrites are tree-like topological spaces, and in this thesis, the physical characteris-

tics of various random fractal versions of this type of set are investigated. This work

will contribute to the development of analysis on fractals, an area which has grown

considerably over the last twenty years.

First, a collection of random self-similar dendrites is constructed, and their Haus-

dorff dimension is calculated. Previous results determining this quantity for random

self-similar structures have often relied on the scaling factors being bounded uniformly

away from zero. However, using a percolative argument, and taking advantage of the

tree-like structure of the sets considered here, it is shown that this condition is not

necessary; a simple condition on the tail of the distribution of the scaling factors at

zero is all that is assumed. The scaling factors of these recursively defined structures

form what is known as a multiplicative cascade, and results about the height of this

random object are also obtained.

With important physical and probabilistic applications, the heat equation has jus-

tifiably received a substantial amount of attention in a variety of settings. For certain

types of fractals, it has become clear that a key factor in estimating the heat kernel is

the volume growth with respect to the resistance metric on the space. In particular,

uniform polynomial volume growth, which occurs for many deterministic self-similar

fractals, immediately implies uniform (on-diagonal) heat kernel behaviour. However,

in the random fractal setting, this is frequently not the case, and volume fluctuations

are often observed. Motivated by this, an analysis of how volume fluctuations lead

to corresponding heat kernel fluctuations for measure-metric spaces equipped with a

resistance form is conducted here. These results apply to the aforementioned random

self-similar dendrites, amongst other examples.

The continuum random tree (CRT) of Aldous is an important random example

of a measure-metric space, and fits naturally into the framework of the previous

paragraph. In this thesis, quenched (almost-sure) volume growth asymptotics for the

CRT are deduced, which show that the behaviour in almost-every realisation is not

uniform. Applying the results introduced above, these yield heat kernel bounds for

the CRT, demonstrating that heat kernel fluctuations occur almost-surely. Finally, a

new representation of the CRT as a random self-similar dendrite is presented.
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Introduction

This thesis contains a study of the geometrical and analytical properties of a range

of random fractal dendrites. Throughout, we use the definition that a dendrite is

a path-connected Hausdorff space containing no subset homeomorphic to the circle.

Thus a dendrite is most easily thought of as the topological analogue of a graph tree.

Although we assign no precise meaning to the word fractal, the term is included in

the title to allude to the fact that the more interesting examples to which the results

of this work apply all have some kind of fine structure, precluding them from being

investigated by some of the standard tools of classical analysis. Finally, the majority

of the objects of interest will be built as random variables on some underlying prob-

ability space. As we shall demonstrate in several cases, this can lead to a qualitative

distinction between the properties of the structures considered here and those of the

associated deterministic structures.

The nature of the thesis is such that the three chapters, although being interlinked

by a common theme, are mathematically and notationally independent. As such, it

seems more sensible to introduce the background material and notation at the start

of each chapter separately, rather than collecting it all here. Instead, we shall simply

summarise the main contribution of each chapter in words, leaving the presentation

of the precise mathematical statements until the preparations are in place.

In Chapter 1, the focus of study is a class of self-similar dendrites. The particu-

larly high level of symmetry of the so-called post-critically finite self-similar fractals,

of which these are a subset, has allowed through analytical and probabilistic methods

a mathematical development of an analysis on fractals. At the centre of this work has

been the solution of the heat equation on fractals and calculation of related spectral

properties. For these problems, possibly the most powerful approach currently avail-

able is that of [39], in which the first step is to build an intrinsic self-similar Dirichlet

form on the relevant sets. It is the randomisation of this construction that we under-

take, resulting in a Dirichlet form which is only statistically self-similar. It should be

noted that such an approach has been considered on specific fractals before, see [32]
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for example. However, the simplicity of the structures on which we are working has

allowed a weakening of the conditions on the random scaling factors involved. In par-

ticular, we are able to avoid uniform bounds, and only require simple tail estimates

to complete our arguments. Furthermore, we are also able to avoid having to choose

the scaling factors to be consistent at each stage by introducing random “resistance

perturbations”, which take into account the tail fluctuations in the construction.

Perhaps establishing the existence of a random Dirichlet form on a fixed set seems

a trifle contrived. However, there is a more natural way to view the results we

prove. In fact, the Dirichlet form we build also satisfies the definition of a resistance

form, see [38]. In this article, it was shown that on dendrites there is a one-to-one

correspondence between these quadratic forms and resistance metrics, where, in this

setting, such metrics can be viewed simply as shortest path (additive along paths)

metrics. Thus it is also an accurate description to say that we have constructed a

statistically self-similar dendrite and the naturally associated Dirichlet form. In the

course of doing this, we are required to prove some results of interest in their own right

about the height of multiplicative cascades, which are probabilistic objects appearing

in a number of diverse settings. In the latter half of the chapter, we investigate some

of the geometrical properties of the random dendrites. Specifically, we calculate the

Hausdorff dimension of the fractals, and also present some measure bounds for the

innate statistically self-similar measure on the sets. Finally, we discuss some examples

to illustrate the conclusions of the chapter.

Chapter 2 sees a more general approach to the study of the heat equation on

fractals, which is motivated by results arising in the random fractal setting. It has

been seen that for measure-metric spaces equipped with a resistance form one major

factor in obtaining heat kernel estimates for the associated Laplacian is knowledge

about the volume growth of the space with respect to the resistance metric. In

particular, if uniform volume doubling occurs, then it is possible to obtain sharp

bounds, at least for the on-diagonal part of the heat kernel, see [41]. For volume

doubling, it is required that the volume of a ball of a certain radius is controlled

uniformly by the volume of a ball, centred on the same point, with only half of its

radius. However, although many deterministic sets satisfy this condition, it has been

demonstrated that certain random fractals do not and display fluctuations in the

volume about a leading order doubling term, see [33]. In a specific case, Hambly

and Kumagai showed that this leads to fluctuations in the heat kernel, see [34]. In

Chapter 2, we prove similar results in a much wider setting, making no assumptions

on the structure of the space, and only relatively weak assumptions on the volume

2



fluctuations. In this setting, we are able to deduce global and local (point-wise)

bounds which confirm that non-trivial volume fluctuations will always lead to non-

trivial heat kernel fluctuations. Although the results proved here are not specifically

targeted at dendrites, the condition that is necessary to apply the off-diagonal bounds

holds most naturally in this case. The chapter is concluded by a brief presentation of

the effect of small polynomial or logarithmic volume fluctuations about a leading order

polynomial term. These cases both arise naturally for random fractals, including the

dendrites of Chapter 1.

The final chapter is nothing more than an, albeit significant, example. In it, we

deduce volume growth asymptotics for the continuum random tree of Aldous, see [1].

Since the continuum random tree is a random dendrite, the results of the previous

chapter are readily applicable and so we are immediately able to deduce from these

heat kernel asymptotics for this set. We provide global and local quenched (almost-

sure) versions of these results, as well as annealed (expected) bounds at the root.

To obtain the volume bounds, we conduct a sample path analysis of the normalised

Brownian excursion, which is the contour process of the continuum random tree.

The chapter also contains a construction of the Brownian motion on the continuum

random tree that is substantially more concise than the construction appearing in the

literature, see [40].

In fact, it transpires that the continuum random tree is also an example of a

statistically self-similar dendrite, as discussed in Chapter 1. In Appendix A, we use

inductively the observation of Aldous, [5], that the continuum random tree has a

random self-similarity to show that it may be constructed via a random change of

metric on a fixed subset of R2. This model for the continuum random tree gives us an

extremely clear picture of the structure and symmetry of the set and measure, which

is not obvious from the graph tree descriptions that are available.

Throughout this thesis, we use numbered constants of the form c1.1 and t1 to

represent (possibly random) constants whose precise value is unimportant to our

study. Exponents of the form θ· are always deterministic, and we will provide some

bounds for these in certain results.
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Chapter 1

Random self-similar dendrites

In this chapter we randomise the construction presented in [39] of a Dirichlet form on

a post-critically finite self-similar (p.c.f.s.s.) set, when this set is a dendrite. We then

calculate the Hausdorff dimension in the resistance metric of the random p.c.f.s.s.

dendrite to be almost-surely equal to the solution of a stochastic version of the equa-

tion which gives the Hausdorff dimension in the deterministic case. This result is

analogous to the expression derived for the Hausdorff dimension of the random re-

cursive constructions in [23] and [47]. We provide measure bounds for a class of these

sets, where the measure that we consider is the stochastically self-similar measure nat-

urally associated with the random set. Finally, we present three examples to which

we are able to apply the results of this chapter.

1.1 Background and notation

We start by outlining briefly the procedure used in [39] to build a Dirichlet form on

a p.c.f.s.s. set, which will provide a template for our random construction, and also

allow us to introduce much of the notation that will be used throughout the chapter.

It should be noted that a similar treatment can also be found in [9]. To define a self-

similar set it suffices to define a finite collection of contractions on (X, d), a complete

metric space. For the arguments in later sections, it will be useful to restrict to

continuous injections. Hence we fix a finite index set S, define N := |S|, and let

(Fi)i∈S be a set of continuous injections on (X, d), with contraction ratios strictly less

than 1. Throughout, we shall assume that N ≥ 2 to exclude the trivial case that

arises when N = 1. For A ⊆ X, define

F (A) :=
⋃
i∈S

Fi(A). (1.1)
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Our self-similar set, T , is the non-empty compact fixed point of the equation F (A) =

A. The existence and uniqueness of T is guaranteed by an extension of the usual

contraction principle for complete metric spaces, see [39], Theorem 1.1.4.

An important idea in the understanding of the topological structure of self-similar

sets is the relation with what is known as the shift space, which is made up of infinite

sequences of elements of S. We denote this by Σ := SN. The corresponding finite

sequences we write as, for n ≥ 0,

Σn := Sn, Σ∗ :=
⋃
m≥0

Σm, (1.2)

where Σ0 := {∅}. These spaces also serve as useful address spaces for labelling

various objects in the discussion and we now introduce some related notation. For

i ∈ Σm, j ∈ Σn, k ∈ Σ, write ij = i1 . . . imj1 . . . jn, and ik = i1 . . . imk1k2 . . . . For

i ∈ Σ∗, denote by |i| the integer n such that i ∈ Σn and call this the length of i. For

i ∈ Σn ∪ Σ, n ≥ m, the truncation of i to length m is written as i|m := i1 . . . im. For

i ∈ Σn and A ⊆ T , we define Ai to be equal to Fi(A), where Fi := Fi1 ◦ · · · ◦ Fin

and for a function f : T → R, let fi := f ◦ Fi. The following theorem provides the

connection between the shift space Σ and the self-similar set T .

Theorem 1.1.1 ([39], Theorem 1.2.3) For any i ∈ Σ, the set ∩m≥1Ti|m contains

only one point. If we define π : Σ → T by {π(i)} = ∩m≥1Ti|m, then π is a continuous

surjective map. Moreover, if we define for i ∈ S the map σi : Σ → Σ by σi(j) =

ij1j2 . . . , then π ◦ σi = Fi ◦ π.

This result gives us that (T, S, (Fi)i∈S) is a self-similar structure in the sense of

[39], Definition 1.3.1. In the analysis of a self-similar structure, a particularly useful

condition for the structure to satisfy is post-critical finiteness, which makes precise

the idea that the intersections of the sets (Ti)i∈S should not be too large. If we write

the union of the pairwise intersections of sets in (Ti)i∈S as

C ′ :=
⋃

i,j∈S

i6=j

Ti ∩ Tj,

then the critical set is the pre-image under π of this set, C := π−1(C ′), and the

post-critical set is defined to be

P :=
⋃
n≥1

σn(C),
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where σ : Σ → Σ is the shift map, characterised by σ(i) = i2i3 . . . for i ∈ Σ. The

self-similar structure (T, S, (Fi)i∈S) is said to be post-critically finite if |P| < ∞. The

main obstacles to |P| being finite are when T is not finitely ramified, as in the case of

the Sierpinski carpet (see [39], Example 1.3.17), or when there is too much overlap of

the sets (Ti)i∈S. Since we will be focussing on dendrites, which are certainly finitely

ramified, the first of these problems will not arise and it is the second problem we

want to rule out. Henceforth, we assume that (T, S, (Fi)i∈S) is a p.c.f.s.s. set.

The Dirichlet form on T of [39] is constructed as the limit of a sequence of Dirichlet

forms on the approximating finite subsets of T that we now introduce. First, let

V 0 := π(P), which may be thought of as the boundary of T , and define

V n :=
⋃

i∈Σn

V 0
i .

The sequence (V n)n≥0 satisfies V n ⊆ V n+1 and it is also a fact that V ∗ :=
⋃

n≥0 V n is

dense in T with respect to the metric d whenever V 0 6= ∅, ([39], Lemma 1.3.11). We

exclude the trivial case V 0 = ∅ in all of what follows. A result that holds for p.c.f.s.s.

sets that we will apply repeatedly is, ([39], Proposition 1.3.5), for i, j ∈ Σn, i 6= j,

Ti ∩ Tj = V 0
i ∩ V 0

j . (1.3)

Now, consider a Dirichlet form on the finite set V 0 defined by

D(f, f) :=
1

2

∑

x,y∈V 0:
x6=y

Hxy((f(x)− f(y))2, ∀f ∈ C(V 0),

where for a countable set, A, we denote C(A) := {f : A → R}. To make this a Dirich-

let form we require Hxy ≥ 0, ∀x, y ∈ V 0, x 6= y, and if Hxx := −∑
y∈V 0, y 6=x Hxy, then

we also require the matrix H := (Hxy)x,y∈V 0 to be non-positive definite. Furthermore,

we make the assumption of irreducibility, so that Hf = 0 if and only if f ∈ C(V 0)

is constant. Given this form and a set of scaling factors r := (ri)i∈S with ri > 0 for

each i ∈ S, we can use D to define a Dirichlet form on each of the V n by setting, for

n ≥ 0,

En(f, f) :=
∑
i∈Σn

1

ri

D(fi, fi), ∀f ∈ C(V n), (1.4)

where ri := ri1 . . . rin for i ∈ Σn and r∅ := 1. Whilst each En is a Dirichlet form,

to establish the existence of a non-trivial limit as n → ∞, we need to place some

restrictions on the choice of (D, r) so that the sequence {(V n, En)}n≥0 is compatible

in a sense that we shall now define. First, we introduce the trace operator, which
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gives a natural restriction of a Dirichlet form, E , from a set A to a finite set B ⊆ A

and is defined by

Tr(E|B)(f, f) := inf{E(g, g) : g ∈ F , g|B = f}, ∀f ∈ C(B), (1.5)

where F is the domain of E . The domain of Tr(E|B) is defined to be the set of

functions for which the above infimum is finite. The sequence {(V n, En)}n≥0 is said

to be compatible if En = Tr(En+1|V n) for each n, and in this case (D, r) is said to be

a harmonic structure. A harmonic structure (D, r) is said to be regular if 0 < ri < 1,

∀i ∈ S.

The general problem of finding a harmonic structure is known ([39], Proposition

3.1.3) to be equivalent to finding a Dirichlet form D on V 0 such that, when we define

E1 by (1.4), we have Tr(E1|V 0) = D. Proving the existence of a solution to this

renormalisation problem is not trivial and has not been achieved for p.c.f.s.s sets

in general. A significant step towards answering this question was taken by Sabot,

[53], who provided conditions for the existence and uniqueness of such a Dirichlet

form. One particular application of this work is that for nested fractals, which are

a special class of p.c.f.s.s. sets, there is precisely one solution to the renormalisation

problem (up to multiplicative constants) associated with equal weights (ri = rj, for

all i, j ∈ S).

Suppose now that (D, r) is a regular harmonic structure, so that the sequence

{(V n, En)}n≥0 is compatible. Before taking limits, we introduce the notion of a re-

sistance form. A non-negative symmetric quadratic form (E ,F) is called a resistance

form on a set X if it satisfies the following conditions:

• F is a linear subspace containing constants. E(f, f) = 0 if and only if f is

constant.

• Let f ∼ g if and only if f − g is constant on X. Then (F/ ∼, E) is a Hilbert

space.

• If V is a finite subset of X and f ∈ C(V ), then there exists g ∈ F such that

g|V = f .

• For any x, y ∈ X,

sup

{ |f(x)− f(y)|2
E(f, f)

: f ∈ F , E(f, f) > 0

}
< ∞.

• If f ∈ F and f := (0 ∨ f) ∧ 1, then f ∈ F and E(f, f) ≤ E(f, f).
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In fact, the quadratic forms {(En, C(V n))}n≥0 are also resistance forms. Working

in a greater generality than the p.c.f.s.s. case, Kigami shows that if we define

E ′(f, f) := lim
n→∞

En(f, f), ∀f ∈ F ′, (1.6)

where

F ′ := {f ∈ C(V ∗) : lim
n→∞

En(f, f) < ∞}, (1.7)

then (E ′,F ′) is a resistance form on V ∗. Note that we have abused notation slightly

by using the convention that if a form E is defined for functions on a set A and f is

a function defined on B ⊇ A, then we write E(f, f) to mean E(f |A, f |A). There are

now two steps remaining: we first need to extend (E ′,F ′) from V ∗ to T , and finally

we need to check that it satisfies the definition of a Dirichlet form.

Naturally associated with a resistance form (E ,F) on a set X is a resistance

metric, R, which as the name suggests is a metric on X and may be defined by, for

x, y ∈ X, x 6= y,

R(x, y)−1 := inf{E(f, f) : f ∈ F , f(x) = 1, f(y) = 0}, (1.8)

and R(x, x) = 0. We can define such a function R′ on V ∗ × V ∗ from our resistance

form (E ′,F ′), and because we are considering a p.c.f.s.s. set with a regular harmonic

structure we have that (T, R) is the completion of the metric space (V ∗, R′), where

R is the natural extension of R′ to T . Moreover, the topology of (T, R) is compatible

with the original topology of (T, d), see [39], Theorem 3.3.4. Furthermore, if we define

E(f, f) := E ′(f, f), ∀f ∈ F , (1.9)

where

F := {f ∈ C(T ) : f |V ∗ ∈ F ′}, (1.10)

and we use C(T ) to represent the continuous functions on T (with respect to d or R),

then (E ,F) is a resistance form on on T and has associated resistance metric R. To

complete the construction of a Dirichlet form we need a measure on our p.c.f.s.s. set,

and we shall assume that µ is a Borel probability measure on T that charges every

non-empty open set. Under this assumption, it follows from results in Chapter 2 of

[39] that (E ,F) is actually an irreducible, conservative, local, regular Dirichlet form

on L2(T, µ).

One of the main goals of this chapter is to calculate the Hausdorff dimension of a

random p.c.f.s.s. dendrite. For comparison, we note that the Hausdorff dimension of

8



the fixed metric space (T, R) is the unique positive α that satisfies

∑
i∈S

rα
i = 1, (1.11)

see [9], Corollary 8.10. This is analogous to the result proved by Moran in 1946 for the

Hausdorff dimension of Euclidean self-similar sets satisfying an open set condition,

[48].

Finally, we summarise the concept of a self-similar measure on T . If p := (pi)i∈S

is a set of weights satisfying
∑

i∈S pi = 1, 0 < pi < 1 for i ∈ S, then there exists a

Borel probability measure, µ on T that satisfies the following self-similarity relation

µ(A) =
∑
i∈S

piµ(F−1
i (A)),

for any Borel set A ⊆ T . For this measure, it is possible to show that

µ(Ti) = pi, ∀i ∈ Σ∗, (1.12)

where pi := pi1 . . . pin for i ∈ Σn, and p∅ := 1. In particular, when pi := rα
i , with α

defined as at (1.11), the measure µ may be used in the computation of the Hausdorff

dimension of (T, R). In the case of T being a random p.c.f.s.s. dendrite, we will use

a stochastically self-similar measure that satisfies a randomised version of (1.12) to

prove the corresponding dimension result.

1.2 Geometry of p.c.f.s.s. dendrites

We saw in the previous section the standard method of approximating a p.c.f.s.s. set

T by the finite subsets (V n)n≥0. Henceforth, we restrict our attention to the case

when we have a p.c.f.s.s. structure, (T, S, {Fi}i∈S), with T a dendrite, as defined in

the introduction. For a graph on V n, the natural edge set is

En := {{x, y} : x, y ∈ Ti, for some i ∈ Σn}.

However, for our purposes, the graphs (V n, En) are not the best way to approximate

T . The main problem is that, even though T is a dendrite and contains no loops, the

graphs (V n, En) do not in general reflect this and may contain cycles. For example,

this is the case for the well-known Vicsek set and Hata’s tree-like set (see Examples

1.2 and 1.3). In this section, we introduce the graphs that we will use to approximate

T and present a discussion of some of their simpler properties. In particular, we
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will show that they are graph trees, which has as an advantage that the resistance

between vertices will simply be the sum of edge resistances along the path between

them, making much of the analysis in subsequent sections more tractable.

We do not disregard the idea of (V n, En) completely. We shall use the idea of

refinement to obtain a sequence of vertex sets based on (V n)n≥0, and then choose

edge sets more closely related to the underlying dendrite T , so that the resulting

graph sequence has the properties that we would like. First though, we introduce

some further notation. It is a consequence of the definition of a dendrite that, for

any x, y ∈ T there exists a unique path connecting x and y. Precisely, there exists a

continuous injection γ : [0, 1] → T such that γ(0) = x and γ(1) = y. We shall denote

a function with these properties γxy. The path connecting x and y can be defined to

be the image of such a map, and we shall write it as Gxy, i.e. Gxy := γxy([0, 1]). For

a finite subset V ⊆ T , define the direct neighbours of x ∈ V by

V (x) := {x′ : x′ ∈ V, x′ 6= x, Gxx′ ∩ V = {x, x′}}.

We say V is fine if and only if Gxx1 ∩Gxx2 = {x} for all x ∈ V and distinct x1, x2 ∈
V (x). A fine subset U containing V is called a refinement of V . The lemma we now

state guarantees we can always find a finite refinement for a finite subset of T .

Lemma 1.2.1 ([39], Lemma 5.3). Let T be a dendrite. For any finite subset V ⊆ T ,

there exists a finite set U ⊆ T which is a refinement of V .

In the proof of the above lemma, the following refinement of V is introduced:

U := V ∪ {b(x, x1, x2) : x ∈ V, x1, x2 ∈ V (x), x1 6= x2}, (1.13)

where b = b(x, x1, x2) is defined to be the unique point in T such that Gxx1 ∩Gxx2 =

Gxb. The function b picks out the branch point of the three vertices in its arguments,

and so U is simply the set V with its branch points added. This is the minimal

refinement in the sense that U ⊆ U ′ for every refinement U ′ of V . The following

lemma allows us to write down the minimal refinement in a more concise way.

Lemma 1.2.2 Let V be a finite subset of T and U be defined by (1.13). Then

b(x1, x2, x3) ∈ U for any x1, x2, x3 ∈ V .

Proof: Throughout this proof, write b = b(x1, x2, x3). First, suppose x1 = x2, then

Gx1x2 ∩ Gx1x3 = Gx1x1 , and so b = x1 ∈ V . Similarly for x1 = x3. If x2 = x3, then

Gx1x2 ∩ Gx1x3 = Gx1x2 , and so b = x2 ∈ V . Hence we can assume that x1, x2, x3 are

distinct. Clearly, if b ∈ V , then we are done. Suppose b 6∈ V . Let

ti = inf{t ≥ 0 : γbxi
(t) ∈ V },

10



which takes values in (0, 1], because γbxi
(1) ∈ V , for i = 1, 2, 3. Furthermore, define

x′i = γbxi
(ti) ∈ V . Now, by definition, b ∈ Gx1x2 , and so applying the path uniqueness

property of a dendrite, we find that Gbx1 ∩Gbx2 = {b}. Similarly, Gbx1 ∩Gbx3 = {b}.
Suppose x′ ∈ Gbx2 ∩ Gbx3 , then clearly x′ ∈ Gx1x2 ∩ Gx1x3 = Gx1b. Consequently, we

also have x′ ∈ Gbx1 ∩Gbx2 = {b}, and so Gbx2 ∩Gbx3 = {b}. Noting that Gbx′i ⊆ Gbxi
,

i = 1, 2, 3, it follows that

Gbx′1 ∩Gbx′2 = Gbx′1 ∩Gbx′3 = Gbx′2 ∩Gbx′3 = {b}.

Using these formulae, it is elementary to check that b = b(x′1, x
′
2, x

′
3) and x′1 ∈ V ,

x′2, x
′
3 ∈ V (x′1), x′2 6= x′3. Thus b ∈ U . ¤

For a finite subset V ⊆ T , we shall denote

R(V ) := {b(x1, x2, x3) : x1, x2, x3 ∈ V },

which, by the previous lemma, is simply another way of representing the minimal

refinement of V . It is clear from the minimal fineness of this set that, if V is fine,

then R(V ) = V . We are now ready to define our alternative sequence of finite subsets

of T . Let Ṽ 0 := R(V 0), and define

Ṽ n :=
⋃

i∈Σn

Ṽ 0
i .

By Lemma 1.2.1, Ṽ 0 is a finite set and consequently, so is Ṽ n for all n ≥ 0. Analogous

to the definition of V ∗, we also define Ṽ ∗ := ∪n≥0Ṽ
n.

Since Ṽ 0 is a non-empty compact set, Ṽ n → T with respect to the Hausdorff

metric on (T, d), ([39], Theorem 1.1.7). From this fact it follows that T is the closure

of Ṽ ∗. Note that is only the closure with respect to the metric d, which we are

only interested in for the construction of T . We shall show later that, as in the

deterministic case when we had a regular harmonic form, the topology induced by

the random resistance metric that we construct in Section 1.4 is the same as that of d,

(Proposition 1.4.8). This means that the closure of Ṽ ∗ with respect to the resistance

metric is also equal to T , and so (Ṽ n)n≥0 is a reasonable sequence to approximate T

by.

As a corollary of the next three lemmas we have that (Ṽ n)n≥0 is an increasing

sequence of finite subsets of T . This is important for the construction of the Dirichlet

form on T . We start the series by showing, in Lemma 1.2.3, that R preserves order

of finite subsets of T . Next, in Lemma 1.2.4, we demonstrate that Ṽ n is fine. From
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this, it is straightforward to show that R and F n commute on V 0, where F is the

function defined at (1.1). To clarify this statement, we note that Lemma 1.2.5 may

be presented in the following alternative notation R(F n(V 0)) = F n(R(V 0)).

Lemma 1.2.3 Let V and V ′ be two finite subsets of T . If V ⊆ V ′, then R(V ) ⊆
R(V ′).

Proof: Applying the definition of R(·) we obtain, for V ⊆ V ′,

R(V ) = {b(x1, x2, x3) : x1, x2, x3 ∈ V } ⊆ {b(x1, x2, x3) : x1, x2, x3 ∈ V ′} = R(V ′).

¤

Lemma 1.2.4

(a) For x, y ∈ T and f : T → T a continuous injection, f(Gxy) = Gf(x)f(y).

(b) Let V be a finite subset of T such that V 0 ⊆ V , and define V ′ = F (V ). Then, for

x ∈ V ′, x′ ∈ V ′(x), we have Gxx′ ⊆ Ti for some i ∈ S.

(c) Let V be a fine finite subset of T such that V 0 ⊆ V , then V ′ = F (V ) is a fine

finite subset of T with V 0 ⊆ V ′.

(d) Ṽ n is fine.

Proof: Let x, y ∈ T and suppose f : T → T is a continuous injection. By definition,

we have that γxy is a continuous injection with γ(0) = x and γ(1) = y. Hence f ◦ γxy

is a continuous injection with (f ◦ γxy)(0) = f(x) and (f ◦ γxy)(1) = f(y), and so

(f ◦ γxy)([0, 1]) = Gf(x)f(y).

We also have that γxy([0, 1]) = Gxy, which means that

(f ◦ γxy)([0, 1]) = f(γxy([0, 1])) = f(Gxy).

Comparing the two expressions for (f ◦ γxy)([0, 1]) yields part (a).

Let V be a finite subset of T such that V 0 ⊆ V , define V ′ = F (V ). If (b) does

not hold, then we can find x ∈ V ′ and x′ ∈ V ′(x) such that there exists t0 ∈ (0, 1],

i, j ∈ S, i 6= j with γxx′(0) ∈ Ti\Tj and γxx′(t0) ∈ Tj\Ti. Let t1 = inf{t : γxx′(t) /∈ Ti}.
Clearly, t1 is well-defined and not greater than t0. Furthermore, by the continuity of

γxx′ and the compactness of the sets Ti′ , i′ ∈ S, we must have that t1 ∈ (0, 1) and

γxx′(t1) ∈ Ti ∩ Tk, for some i, k ∈ S, i 6= k.

By (1.3), this means that γxx′(t1) ∈ V 0
i ∩V 0

k ⊆ F (V 0) ⊆ V ′. However, this contradicts

that x′ ∈ V ′(x) and so (b) must hold.
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Now assume that V is fine. Fix x ∈ V ′ and let x1 and x2 be distinct points of

V ′(x). By part (b) we know that Gxx1 ⊆ Ti, Gxx2 ⊆ Tj, for some i, j ∈ S. First

suppose i = j. We can write x = Fi(x
′), x1 = Fi(x

′
1) and x2 = Fi(x

′
2), where x′, x′1

and x′2 are distinct points of V . Now if y ∈ Gx′x′1 ∩ V then, by (a) this would imply

that Fi(y) ∈ Gxx1∩V ′, and so Fi(y) ∈ {x, x1}, because x and x1 are direct neighbours

in V ′. Hence y ∈ {x′, x′1} and so x′1 ∈ V (x′). Similarly, x′2 ∈ V (x′). Thus, because V

is fine we have that Gx′x′1 ∩ Gx′x′2 = {x′}. By (a), applying Fi to both sides of this

equation yields Gxx1 ∩Gxx2 = {x} and so V ′ is fine.

Now suppose i 6= j. This means that Gxx1 ∩ Gxx2 ⊆ Ti ∩ Tj ⊆ F (V 0) ⊆ V ′.

However, Gxx1 ∩ V ′ = {x, x1} and Gxx2 ∩ V ′ = {x, x2}. Thus

Gxx1 ∩Gxx2 = Gxx1 ∩Gxx2 ∩ V ′ = {x, x1} ∩ {x, x2} = {x}.

This completes the proof that V ′ is fine. The last part of (c) is trivial on noting that

V 0 ⊆ F (V 0).

Part (d) is obtained by applying part (c) repeatedly to Ṽ 0, which is fine by defi-

nition. ¤

Lemma 1.2.5 For n ≥ 0, R(V n) = Ṽ n.

Proof: By definition, V 0 ⊆ Ṽ 0. Applying F n to this we obtain V n ⊆ Ṽ n. Thus,

by Lemma 1.2.3, we have R(V n) ⊆ R(Ṽ n) = Ṽ n, where the equality is a result of

Lemma 1.2.4(d).

It remains to show that Ṽ n ⊆ R(V n). Let x ∈ Ṽ n, then x = Fi(x
′) for some

x′ ∈ Ṽ 0 and i ∈ Σn. Since Ṽ 0 = R(V 0) we must have x′ = b(x1, x2, x3) for some

x1, x2, x3 ∈ V 0. This means that x′ is the unique point in T such that Gx1x2∩Gx1x3 =

Gx1x′ . Applying Fi to this equation, and using Lemma 1.2.4(a) yields GFi(x1)Fi(x2) ∩
GFi(x1)Fi(x3) = GFi(x1)x. Thus x = b(Fi(x1), Fi(x2), Fi(x3)) ∈ R(V n). ¤

Corollary 1.2.6 For n ≥ 0, Ṽ n ⊆ Ṽ n+1.

Proof: From the previous lemma, we know that R(V n) = Ṽ n. Since V n ⊆ V n+1,

Lemma 1.2.3 implies the claim. ¤

To complete this section, we shall define a sequence of graphs on the nested

sequence of vertex sets, (Ṽ n)n≥0. We shall take the natural choice of edges on Ṽ n

given by pairs of direct neighbours. Precisely, we define the edge set by

Ẽn := {{x, y} : x ∈ Ṽ n, y ∈ Ṽ n(x)}.
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The next proposition gives use that the graphs (Ṽ n, Ẽn) form a sequence of graph

trees. This result is followed by a presentation of some other properties of the graphs

that we will apply in later sections.

Proposition 1.2.7 (Ṽ n, Ẽn) is a graph tree for each n ≥ 0.

Proof: Let x, y ∈ Ṽ n, and set t0 = 0. Define

tn+1 := inf{t > tn : γxy(t) ∈ Ṽ n},

xi := γxy(ti) and M := inf{n : xn = y}. By the injectivity of γxy, we must have

that M ≤ |Ṽ n| < ∞. Using elementary arguments, it is possible to check that x =

x0, . . . , xM = y is a path from x to y with {xm−1, xm} ∈ Ẽn for every m = 1, . . . , M .

Hence (Ṽ n, Ẽn) is connected.

It remains to show that (Ṽ n, Ẽn) is acyclic and we shall do this using a proof by

contradiction. Suppose x0, . . . , xM = x0 is a cycle in (Ṽ n, Ẽn), necessarily we have

3 ≤ M < ∞ and x0, . . . , xM−1 distinct. We first note that, since Ṽ n is fine, we must

have Gx0x1 ∩GxM−1xM
= {x0}, and so by adjoining the two paths end-to-end we have

Gx1xM−1
= Gx0x1∪GxM−1xM

. Furthermore, it is immediate from our assumptions that

Gx1x2 ∪ · · · ∪ GxM−2xM−1
is a path-connected subspace of T containing the points x1

and xM−1. By the uniqueness of paths on T , it follows that Gx1xM−1
is a subset of

this union. Combining these facts we find that x0 ∈ Gx1x2 ∪ · · · ∪GxM−2xM−1
, and in

particular x0 ∈ Gxmxm+1 for some m ∈ {1, . . . , M − 2}. However, by the definition

of the edges as direct neighbours we have that Gxmxm+1 ∩ Ṽ n = {xm, xm+1}. Thus

x0 = xm for some m ∈ {1, . . . , M − 1}, which is a contradiction and so no such cycle

can exist. ¤

The following lemma gives us an alternative representation for edges in Ẽn. In

the proof, we will use the obvious notation Ge := Gxy for an edge e = {x, y}.

Lemma 1.2.8 For every edge e ∈ Ẽn, there exists a unique e′ ∈ Ẽ0 and i ∈ Σn such

that e = Fi(e
′).

Proof: We first prove existence. Let e = {x, y} ∈ Ẽn. Applying the obvious generali-

sation of Lemma 1.2.4(b), we immediately have {x, y} ⊆ Ti for some i ∈ Σn and hence

x = Fi(x
′), y = Fi(y

′) for some x′, y′ ∈ T . We are required to show that {x′, y′} ∈ Ẽ0.

Suppose there exists a j 6= i such that x = Fj(x
′′). Then x ∈ Ti ∩ Tj = V 0

i ∩ V 0
j ,

by (1.3). It follows from this and the injectivity of Fi that x′ ∈ V 0 ⊆ Ṽ 0. If no

such j exists then x ∈ Ṽ n ∩ (∪j∈Σn, j 6=iT
c
j ) ⊆ Ṽ 0

i . Again, by the injectivity of Fi,

this implies that x′ ∈ Ṽ 0. Similarly, y′ ∈ Ṽ 0. Suppose now z′ ∈ Gx′y′ ∩ Ṽ 0, then
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Fi(z
′) ∈ Gxy ∩ Ṽ n = {x, y}, where we use the fineness property of the set Ṽ n for the

equality. Thus z′ ∈ {x′, y′} by injectivity, and so x′ and y′ are direct neighbours in

Ṽ 0. This means that e = Fi(e
′), where e′ = {x′, y′} ∈ Ẽ0, and it remains to show this

expression is unique.

Suppose e = Fi(e
′) = Fj(e

′′) for some i, j ∈ Σn, e′, e′′ ∈ Ẽ0. First note that

by Lemma 1.2.4(a), Ge = Fi(Ge′) and also Ge = Fj(Ge′′). Thus, if i 6= j, we have

Ge ⊆ Ti ∩ Tj ⊆ V 0
i ∩ V 0

j . This is a contradiction, because Ge is an uncountable set,

whereas V 0
i ∩ V 0

j is a finite set. Hence i = j. In this case, we have Fi(e
′) = Fi(e

′′)

and it follows from injectivity that e′ = e′′ and the proof is complete. ¤

We now prove the converse result.

Lemma 1.2.9 If e ∈ Ẽ0, i ∈ Σn, then Fi(e) ∈ Ẽn.

Proof: Suppose e = {x, y} ∈ Ẽ0, i ∈ Σn. Clearly we have Fi(x), Fi(y) ∈ Ṽ n and also

GFi(x)Fi(y) ⊆ Ti by Lemma 1.2.4(a). Now, Ṽ n ∩ Ti =
⋃

j∈Σn
Ṽ 0

j ∩ Ṽ 0
i = Ṽ 0

i . Hence

GFi(x)Fi(y) ∩ Ṽ n = GFi(x)Fi(y) ∩ Ṽ 0
i

= Fi(Gxy ∩ Ṽ 0)

= Fi({x, y})
= {Fi(x), Fi(y)},

where the third equality holds because e ∈ Ẽ0. This means that Fi(x) and Fi(y) are

direct neighbours in Ṽ n, which proves the lemma. ¤

The identity we prove now will be particularly useful in proving the compatibility

of the sequence of resistance forms introduced in Section 1.4.

Lemma 1.2.10 Let e ∈ Ẽk, e′ ∈ Ẽl, i ∈ Σm, j ∈ Σn, then

1{Fij(Ge′ )⊆Ge} =
∑

e′′∈Ẽ0

1{Fj(Ge′ )⊆Ge′′}1{Fi(Ge′′)⊆Ge}. (1.14)

Proof: We prove only the result when k = l = 0 as the full result is easily deduced

from this case. Fix e, e′ ∈ Ẽ0, i ∈ Σm, j ∈ Σn. First, note that if e1, e2 are distinct

edges in Ẽ0 then, by the fineness of Ṽ 0, we necessarily have #(Ge1 ∩Ge2) ≤ 1. Hence

the uncountably infinite set Fj(Ge′) can not be contained in Ge1 ∩ Ge2 and so the

right-hand side of (1.14) is less than or equal to 1. Thus it will be sufficient to show

that Fij(Ge′) ⊆ Ge if and only if

Fj(Ge′) ⊆ Ge′′ and Fi(Ge′′) ⊆ Ge for some e′′ ∈ Ẽ0.
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Since the ⇐ implication is obvious, it remains to show ⇒. To do this, write

e = {e+, e−} and consider the path from e+ to e− in Ṽ m constructed similarly to the

path in the proof of Proposition 1.2.7. Denote this by e+ = x0, . . . , xm′ = e−. Let

e+ = y0, . . . , yn′ = e− be the corresponding path in Ṽ m+n. Since Ṽ m ⊆ Ṽ m+n, this

construction immediately implies that for every l ∈ {1, . . . , n′}, Gyl−1yl
⊆ Gxl′−1xl′

for some l′ ∈ {1, . . . , m′}. Thus, by the uniqueness of paths in T , if en ∈ Ẽm+n and

Gen ⊆ Ge, then there exists an em ∈ Ẽm such that Gen ⊆ Gem ⊆ Ge.

Now suppose Fij(Ge′) ⊆ Ge. By the previous paragraph and the two previous

lemmas, there exists e′′ ∈ Ẽ0, i′ ∈ Σm such that Fij(Ge′) ⊆ Fi′(Ge′′) ⊆ Ge. If i 6= i′,

then Fij(Ge′) ⊆ V 0
i ∩ V 0

i′ , which cannot be true, and so i′ = i. Hence Fi(Ge′′) ⊆ Ge

and by injectivity, we also have that Fj(Ge′) ⊆ Ge′′ , which completes the proof. ¤

Finally for this section, we prove a result about the paths on vertices of (Ṽ n)n≥0.

Lemma 1.2.11 If x ∈ Ṽ 0, y ∈ Ṽ n, then we can find a sequence x0, . . . , xm, with

x0 = x, xm = y, {xl−1, xl} ∈ ∪n′≥0Ẽ
n′ for l ∈ {1, . . . m}, and such that:

(1) for n′ > n, {xl−1, xl} 6∈ Ẽn′ for any l ∈ {1, . . . m},
(2) for n′ ≤ n, {xl−1, xl} ∈ Ẽn′ for at most N |Ẽ0| of the l ∈ {1, . . . m}.
Proof: We shall proceed by induction on n. Clearly the assertion is true for n = 0.

Hence assume that n ≥ 1 and the conclusion holds for elements of Ṽ n−1. If y ∈ Ṽ n,

then y = Fi(y
′) for some y′ ∈ Ṽ 1, i ∈ Σn−1. Now choose y′′ ∈ Ṽ 0. Note that

by Corollary 1.2.6, y′′ ∈ Ṽ 1 and so there exists a path y′ = y0, . . . , ym′ = y′′ with

length m′ ≤ |Ẽ1| and edges {yl−1, yl} ∈ Ẽ1. Note that, Lemma 1.2.8 implies that

|Ẽ1| ≤ N |Ẽ0|. Hence Fi(y0), . . . , Fi(ym′) is a path of length m′ ≤ N |Ẽ0|. Also

by Lemma 1.2.8, for each l, we must have {yl−1, yl} = {Fj(e−), Fj(e+)} for some

j ∈ S, e ∈ Ẽ0, and so {Fi(yl−1), Fi(yl)} = {Fij(e−), Fij(e+)} ∈ Ẽn, by Lemma 1.2.9.

This path starts at Fi(y
′) = y and ends at Fi(y

′′) ∈ Ṽ n−1. Applying the inductive

hypothesis, the proof is complete. ¤

1.3 Height of a multiplicative cascade

The results that we obtain in this section about the height of a multiplicative cascade

will be useful in establishing various properties of the random fractal dendrite intro-

duced in the next section, but they are also of interest in their own right. Following

Theorem 1.3.6, we discuss the connection between our results and the classical results

about the extinction time of a Galton-Watson branching process.
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We will use the alphabet S and address spaces Σn, Σ∗ and Σ defined at (1.2). We

define a multiplicative cascade to be a collection of random variables, (w(i))i∈Σ∗\{∅},

which take values in (0, 1] and satisfy the following assumption. The N -tuples

(w(ij))j∈S, i ∈ Σ∗\{∅}, (1.15)

are independent copies of (w(j))j∈S. The multiplicative cascade has a naturally as-

sociated filtration, (Fn)n≥0, defined by

Fn := σ(w(i) : |i| ≤ n). (1.16)

Furthermore, let

l(i) :=

{ ∏|i|
n=1 w(i|n) if i ∈ Σ∗\{∅},

1 if i = ∅. (1.17)

Models of this type have been studied extensively. In the case when (w(i))i∈S

are independent we have what is known as Mandelbrot’s multiplicative cascade, see

[46]. For further examples of work on such multiplicative cascades, see [24], [44], [45].

Unlike the focus of this section, much of the previous work on multiplicative cascades

has been targeted at determining properties of the limit of the martingale Zθ(n),

which is introduced below, rather than the height of the cascade.

Throughout the arguments, we use the following function

φ(θ) := E

(∑
i∈S

w(i)θ

)
, θ > 0. (1.18)

It is useful because it allows estimates to be made over moments of all the random

variables (w(i))i∈S simultaneously. Note that φ is a decreasing, continuous function.

A simple result that is important in what follows is

φ(θ) →
∑
i∈S

P(w(i) = 1), as θ →∞. (1.19)

The function φ is also used as a scaling function in the following definition of the

so-called tree-martingale (this term was introduced in [24]) associated with our mul-

tiplicative cascade. Let

Zθ(n) :=

∑
i∈Σn

l(i)θ

φ(θ)n
. (1.20)

It is straightforward to check that, for each θ > 0, (Zθ(n))n≥0 is an (Fn)n≥0 martin-

gale. In particular, E
(
Zθ(n)

)
= E

(
Zθ(0)

)
= 1.
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To generalise our cascade model, we introduce random perturbations of the l(i),

denoted by (Xi)i∈Σ∗ . We assume that the Xi are identically distributed non-negative

random variables satisfying the following conditions

E(Xd
i ) < ∞, ∀d > 0, (1.21)

Xi ⊥ F|i|, ∀i ∈ Σ∗, (1.22)

where ⊥ is taken to mean “is independent of”. The reason for the introduction of the

factors (Xi)i∈Σ∗ will become apparent in later sections where perturbations with these

properties arise naturally in the construction of our random self-similar dendrite.

We can consider the cascade model as a weighted graph tree, rooted at ∅ with

vertex set Σ∗ and edge set {{i, i|(|i|−1)} : i ∈ Σ∗\{∅}}; where the edge {i, i|(|i|−1)}
has length l(i)Xi. For two vertices in Σ∗, we define the distance between them to

be the sum of edge lengths along the shortest path in the graph. This is indeed a

distance and allows the height, H, of the tree (the supremum of distances to the root)

to be written as

H = sup
i∈Σ

∞∑
n=0

l(i|n)Xi|n.

Strictly, the sum should be from n = 1, but this definition will be more convenient

for our purposes.

The main result of this section is Theorem 1.3.4, a corollary of which gives a

relatively weak sufficient condition for the expected value of the height of our tree to

be finite. In Theorem 1.3.6, we deal with the unperturbed cascade and show that the

condition is necessary in this case. We start by estimating how fast l(i)Xi decays as

|i| → ∞.

Lemma 1.3.1 Suppose
∑

i∈S P(w(i) = 1) < 1 and d ≥ 1, then

(i) there exist constants c1.1, c1.2 such that

E

((
sup
i∈Σn

l(i)Xi

)d
)
≤ c1.1e

−c1.2n, ∀n ≥ 0.

(ii) P-a.s., there exist constants c1.3, c1.4 such that

sup
i∈Σn

l(i)Xi ≤ c1.3e
−c1.4n, ∀n ≥ 0.

Proof: To prove (i) we first look for bounds on the tail of the distribution of
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supi∈Σn
l(i)Xi. Using the definition of Zθ(n), Markov’s inequality and the indepen-

dence assumption of the Xis we obtain, for θ > 0,

P

(
sup
i∈Σn

l(i)Xi ≥ λ

)
≤ P

(∑
i∈Σn

l(i)θXθ
i ≥ λθ

)

≤ λ−θE
(
Xθ
∅
)
E

(
Zθ(n)

)
φ(θ)n

= λ−θE
(
Xθ
∅
)
φ(θ)n. (1.23)

The condition
∑

i∈S P(w(i) = 1) < 1 and (1.19) imply that we can find θ0 > d large

enough so that φ(θ0) < 1. Set x := ‖X∅‖θ0 (< ∞ by assumption) and define

λn := xφ(θ0)
n
θ0 ,

which is less than 1 for n ≥ n0 for some n0 ≥ 0. Assume for now that n ≥ n0

and θ = θ0. For λ ≥ λn, the upper bound at (1.23) is ≤ 1 and so is non-trivial.

For λ < λn, we merely use the fact that we are trying to bound a probability, i.e.

P(supi∈Σn
l(i)Xi ≥ λ) ≤ 1. We apply these estimates to bound the moments of

supi∈Σn
l(i)Xi as follows:

E

((
sup
i∈Σn

l(i)Xi

)d
)

= d

∫ ∞

0

λd−1P

(
sup
i∈Σn

l(i)Xi ≥ λ

)
dλ

≤ d

∫ λn

0

λd−1dλ + d

∫ ∞

λn

λd−1−θ0xθ0φ(θ0)
ndλ

=
xdθ0

θ0 − d
φ(θ0)

dn
θ0

Hence taking c1.2 = − d
θ0

ln φ(θ0) and c1.1 suitably large gives us part (i) of the lemma.

To prove (ii) we again look to bound the tail probability of supi∈Σn
l(i)Xi. We

proceed as above to obtain the bound

P

(
sup
i∈Σn

l(i)Xi ≥ λn

)
≤ λ−nθE

(
Xθ
∅
)
φ(θ)n.

If we fix θ = θ0 we can find a λ0 ∈ (0, 1) such that λ−θ0
0 φ(θ0) < 1, and so

∞∑
n=0

P

(
sup
i∈Σn

l(i)Xi ≥ λn
0

)
≤ E

(
Xθ0

∅
) ∞∑

n=0

(
λ−θ0

0 φ(θ0)
)n

< ∞.

An application of the Borel-Cantelli lemma then gives us part (ii) of the lemma. ¤

In the lines of the argument leading up to (1.23) we use the fact that l(i)θXθ
i ≤∑

j∈Σn
l(j)θXθ

j , which may seem rather crude. However, we show in the following

proposition that if P(w(i) = 0) = 0, for each i, then the l(i) cannot decay quicker

than exponentially.
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Proposition 1.3.2 Suppose
∑

i∈S P(w(i) = 1) < 1 and that P(w(i) = 0) = 0, for

every i ∈ S. There exist constants θ1.1, θ1.2 such that, P-a.s., given ε > 0, there exist

constants c1.5, . . . , c1.8 satisfying

c1.5e
−(θ1.1+ε)n ≤ inf

i∈Σn

l(i) ≤ c1.6e
−(θ1.1−ε)n, ∀n ≥ 0,

and

c1.7e
−(θ1.2+ε)n ≤ sup

i∈Σn

l(i) ≤ c1.8e
−(θ1.2−ε)n, ∀n ≥ 0.

Proof: If we define z
(n)
i := ln l(i), i ∈ Σn to be the positions of a collection of particles

at time n, then the z
(n)
i form a branching random walk. Similarly, we may define a

branching walk by setting z
(n)
i := − ln l(i). The results are an immediate application

of the results deduced in [15] to these branching random walks. ¤

Remark 1.1 In general we find that θ1.1 > θ1.2. When this occurs, this result tells

us that the variation of the relative branch size grows exponentially with the level of

the tree.

In the proof of the main result of this section, Theorem 1.3.4, we apply the fol-

lowing elementary lemma, which we state without proof.

Lemma 1.3.3 Let (xn)n≥0 be a sequence of non-negative real numbers, then
( ∞∑

n=0

xn

)d

≤ Kd

∞∑
n=0

xd
n(1 + n)d, ∀d ≥ 1,

where

Kd :=

{ (∑∞
n=0(1 + n)−

d
d−1

)d−1

if d > 1

1 if d = 1.

Theorem 1.3.4 Let
∑

i∈S P(w(i) = 1) < 1 and d ≥ 0, then

E




( ∞∑
n=0

sup
i∈Σn

l(i)Xi

)d

 < ∞.

Proof: For d ≥ 1, applying Lemmas 1.3.1 and 1.3.3 yields

E




( ∞∑
n=0

sup
i∈Σn

l(i)Xi

)d

 ≤ KdE

( ∞∑
n=0

(
sup
i∈Σn

l(i)Xi

)d

(1 + n)d

)

≤ c1.1Kd

∞∑
n=0

(1 + n)de−c1.2n,
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which is clearly finite. The result for d ∈ [0, 1) follows from the case when d = 1 by

applying the inequality xd ≤ 1 + x, which holds for all x ≥ 0. ¤

Corollary 1.3.5 Let
∑

i∈S P(w(i) = 1) < 1 and d ≥ 0, then E(Hd) < ∞.

Proof: This follows from Theorem 1.3.4 on noting that

H = sup
i∈Σ

∞∑
n=0

l(i|n)Xi|n ≤
∞∑

n=0

sup
i∈Σn

l(i)Xi.

¤

In the final result of this section, we show how for unperturbed cascades the

condition
∑

i∈S P(w(i) = 1) < 1 is also necessary for finite moments of H.

Theorem 1.3.6 Assume Xi ≡ 1, ∀i ∈ Σ∗, then

(a) if
∑

i∈S P(w(i) = 1) < 1, EHd < ∞, ∀d ∈ R.

(b) if
∑

i∈S P(w(i) = 1) = 1, EH = ∞.

(c) if
∑

i∈S P(w(i) = 1) > 1, P(H = ∞) > 0.

Proof: Assume
∑

i∈S P(w(i) = 1) < 1. Clearly, if Xi ≡ 1, ∀i ∈ Σ∗, then (Xi)i∈Σ∗

satisfies the conditions that enable us to apply the previous results of the section.

Hence, if d ≥ 0, E(Hd) < ∞ follows from Corollary 1.3.5. We note that, because

l(∅) = 1, H ≥ 1. Hence, for d < 0, E(Hd) ≤ 1 < ∞. Thus part (a) holds.

To prove the remaining parts of the theorem, we use a Galton-Watson branching

process related to our tree, which we now define. Given (w(i))i∈Σ∗\{∅}, let

w̃(i) :=

{
1 if w(i) = 1,
0 otherwise,

and

l̃(i) :=

|i|∏
n=1

w̃(i|n).

It is then easy to check that if

Zn :=
∑
i∈Σn

l̃(i), n ≥ 0

then (Zn)n≥0 is a Galton-Watson process. Importantly, if Zn > 0 then we must have

l̃(i) = 1 for some i ∈ Σn, and so l(i|m) = 1 for 1 ≤ m ≤ n. Consequently, H ≥ n.

This means we can use known results about the extinction of the Galton-Watson

process to infer results about H.
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A simple calculation yields that the expected number of offspring for this Galton-

Watson process is equal to EZ1 =
∑

i∈S P(w(i) = 1). Hence, if
∑

i∈S P(w(i) = 1)

is strictly greater than one, then the branching process is supercritical and survives

with positive probability (see [8], Theorem I-5.1). This implies that P(H = ∞) > 0,

which proves (c).

Assume now EZ1 =
∑

i∈S P(w(i) = 1) = 1. From [8], Theorem I-9.1, it follows

that, if ε > 0, then

P (Zn > 0) ≥ 1

n
(

σ2

2
+ ε

) (1.24)

for n ≥ n0 for some n0 ≥ 0, and where σ2 = VarZ1. Note that σ2 ≤ N < ∞. If X

is the extinction time of our Galton-Watson process then we have H ≥ X and also

{X > n} = {Zn > 0} and so

EH ≥ EX =
∞∑

n=0

P (X > n) =
∞∑

n=0

P (Zn > 0) ≥
∞∑

n=n0

1

n
(

σ2

2
+ ε

) .

The proof of (b) is completed on noting that this sum is infinite. ¤

Remark 1.2 By defining an associated multiplicative cascade, we may recover the

result that a sub-critical Galton-Watson branching process with bounded offspring

distribution becomes extinct, P-a.s. Let (Z̃n)n≥0 be a Galton-Watson process with

offspring distribution Z̃1 satisfying EZ̃1 < 1. Assume Z̃1 ≤ N , P-a.s., and define

pn := P(Z1 = n) and S := {1, . . . , N}. We can then define a multiplicative cascade

such that

P(w(1) = · · · = w(m) = 1, w(m + 1) = · · · = w(N) = 0) = pm,

and also (Zn)n≥0 to be a Galton-Watson process as in the proof of the above theorem.

It is clear that (Zn)n≥0
d
= (Z̃n)n≥0. We also have

∑
i∈S

P(w(i) = 1) =
N∑

n=1

N∑
m=n

pm =
N∑

n=0

npn = EZ̃1.

Since EZ̃1 < 1, we have
∑

i∈S P(w(i) = 1) < 1, and so EH < ∞. It follows that the

process (Z̃n)n≥0 eventually becomes extinct, P-a.s.

Remark 1.3 At criticality, the Galton-Watson process exhibits two distinct types

of behaviour. First, there is the trivial case when N = 1, P-a.s., and in this
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case, the process survives. This corresponds to a multiplicative cascade that satis-

fies
∑

i∈S P(w(i) = 1) = 1 and P(supi∈S w(i) = 1) = 1. In this case H = ∞, P-a.s.

In the non-trivial case, P(N = 1) < 1, the Galton-Watson process becomes extinct

with probability 1. Hence, using the construction in Remark 1.2, we can find a mul-

tiplicative cascade with
∑

i∈S P(w(i) = 1) = 1 and H < ∞, P-a.s. The problem of

whether H < ∞ in the general non-trivial case is left open.

Remark 1.4 If N = ∞, there exist random variables (w(i))i∈S that satisfy the con-

ditions
∑

i∈S P(w(i) = 1) < 1 and also supi∈S w(i) = 1, P-a.s. In this case we have

H = ∞, and so the conclusion of the theorem does not hold in general when N = ∞.

Remark 1.5 The condition w(i) ∈ [0, 1], P-a.s., is not essential. It is an elementary

probability exercise to show that, if (w(i))i∈S are independent, identically-distributed

uniform [0, x] random variables and |S| ≥ 2, then to first order in |S|−1 we have

1 +
1

|S|e ≤ sup{x : P(H < ∞) = 1} ≤ 1 +
1

|S| .

1.4 Random p.c.f.s.s. dendrite construction

In this section we construct a random resistance metric and Dirichlet form on the

p.c.f.s.s. dendrite T . We take as a starting point the existence of a Dirichlet form

on (Ṽ 0, Ẽ0) which is invariant under a renormalisation analogous to that used in the

definition of a harmonic structure in Section 1.1. In particular, define D by

D(f, f) :=
∑

e∈Ẽ0

He(f(e+)− f(e−))2, ∀f ∈ C(Ṽ 0), (1.25)

where He > 0 for every e ∈ Ẽ0, and we write e = {e+, e−}. Let r := (ri)i∈S, ri > 0,

be a set of scaling factors. Using the terminology of Section 1.1, we shall say (D, r)

is a harmonic structure if

H−1
e =

∑
i∈S

∑

e′∈Ẽ0

ri1{Fi(Ge′ )⊆Ge}
He′

, ∀e ∈ Ẽ0, (1.26)

and that it is regular if 0 < ri < 1 for every i ∈ S. This will be consistent with

our previous understanding of the term regular harmonic structure in that it will

allow the construction of a compatible sequence of Dirichlet forms on (Ṽ n)n≥0 using
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a similar procedure to the non-random case. From now on, we assume a regular

harmonic structure (D, r) exists on T .

In our Dirichlet form construction, rather than rescaling simply using the de-

terministic scale factors ri, we use random scaling factors (w(i))i∈Σ∗\{∅} which are

assumed to satisfy the properties of a multiplicative cascade, as introduced in Sec-

tion 1.3. Specifically, this means that the w(i) are (0, 1] random variables satisfying

the distributional assumption stated at (1.15). Whilst these are the only a priori

assumptions we make on the (w(i))i∈Σ∗\{∅}, we shall also have cause to use the follow-

ing assumptions. For clarity, we will explicitly state when we require these further

restrictions.

Assumption (W1): The expected values of the random scaling factors are equal

to the deterministic scaling factors of the regular harmonic structure (D, r). i.e.

Ew(i) = ri for all i ∈ S.

Assumption (W2): The random variables (w(i))i∈S have a distribution which does

not place too much mass at one. In particular,
∑

i∈S P(w(i) = 1) < 1.

Assumption (W3a): The random variables (w(i))i∈S are bounded away from zero.

Specifically, there exists an ε > 0 such that P(w(i) > ε) = 1, for all i ∈ S.

Assumption (W3b): The random variables (w(i))i∈S are independent and their

distributions satisfy the following tail condition. If p ∈ (0, 1), there exists a constant

ε > 0, such that

P(w(i) ≤ εx| w(i) ≤ x) ≤ p, ∀x ∈ (0, 1], i ∈ S.

Assumption (W4): The random variables (w(i))i∈S are bounded away from one.

Specifically, there exists an η < 1 such that P(w(i) < η) = 1, for all i ∈ S.

Although we would like to simply replace the scaling factors ri with the random

variables w(i) in a formula similar to (1.4), a sequence of forms defined in this way

will not be compatible in general and taking limits will no longer be straightforward.

To deal with the this problem, we introduce the random variables

Re
i := lim

n→∞

∑
j∈Σn

∑

e′∈Ẽ0

l(ij)He1{Fj(Ge′ )⊆Ge}
l(i)He′

, ∀e ∈ Ẽ0, i ∈ Σ∗, (1.27)

which we shall term resistance perturbations. The questions of convergence and dis-

tribution of (Re
i )e∈Ẽ0,i∈Σ∗ may be answered in terms of the random scaling factors
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(w(i))i∈S by means of multiplicative cascade or multi-type branching random walk

arguments, but we postpone the discussion of this until Section 1.6. For now, we sim-

ply state the properties that we will need to prove the results of this and subsequent

sections.

Assumption (R1): P-a.s., the limit at (1.27) exists and moreover, Re
i ∈ (0,∞) for

all e ∈ Ẽ0, i ∈ Σ∗.

Assumption (R2): The resistance perturbations have finite positive moments of all

orders. i.e. E
(
(Re

i )
d
)

< ∞ for all e ∈ Ẽ0, i ∈ Σ∗, d ≥ 0.

Assumption (R3): The resistance perturbations have finite negative moments of

some order. i.e. There exists a β > 0 such that E
(
(Re

i )
−β

)
< ∞ for all e ∈ Ẽ0,

i ∈ Σ∗.

In the following lemma we derive a decomposition for the random variables Re
i which

will be useful in proving the compatibility of the sequence of resistance forms that

we introduce shortly. We also show that in the deterministic case w(i) ≡ ri|i| for all

i ∈ Σ∗\{∅}, the assumption at (1.26) implies that Re
i ≡ 1, and so the assumptions

(R1), (R2) and (R3) clearly hold.

Lemma 1.4.1

(a) Assume (R1). P-a.s., for each e ∈ Ẽ0, i ∈ Σ∗, the resistance perturbations satisfy

Re
i =

∑
j∈Σn

∑

e′∈Ẽ0

l(ij)He1{Fj(Ge′ )⊆Ge}R
e′
ij

l(i)He′
.

(b) In the case w(i) ≡ ri|i|, for all i ∈ Σ∗\{∅}, we have Re
i ≡ 1, for every e ∈ Ẽ0,

i ∈ Σ∗.

Proof: For n ≥ 0, define the random variables

Re
i (n) =

∑
j∈Σn

∑

e′∈Ẽ0

l(ij)He1{Fj(Ge′ )⊆Ge}
l(i)He′

, ∀e ∈ Ẽ0, i ∈ Σ∗, (1.28)

so that Re
i (n) → Re

i as n → ∞, P-a.s. Applying this definition and the identity of

Lemma 1.2.10, we obtain

Re
i (n + m) =

∑
j∈Σn

∑

k∈Σm

∑

e′∈Ẽ0

l(ijk)He

l(i)He′

∑

e′′∈Ẽ0

1{Fk(Ge′ )⊆Ge′′}1{Fj(Ge′′ )⊆Ge}

=
∑
j∈Σn

∑

e′′∈Ẽ0

l(ij)He1{Fj(Ge′′ )⊆Ge}
l(i)He′′

∑

k∈Σm

∑

e′∈Ẽ0

l(ijk)He′′1{Fk(Ge′ )⊆Ge′′}
l(ij)He′

(1.29)

=
∑
j∈Σn

∑

e′′∈Ẽ0

l(ij)He1{Fj(Ge′′ )⊆Ge}R
e′′
ij (m)

l(i)He′′
.
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Letting m → ∞ we get part (a) of the lemma. Now assume that w(i) ≡ ri|i| for all

i ∈ Σ∗\{∅}. Letting m = 1 in (1.29), we find that

Re
i (n + 1) =

∑
j∈Σn

∑

e′′∈Ẽ0

l(ij)He1{Fj(Ge′′ )⊆Ge}
l(i)He′′

∑

k∈S

∑

e′∈Ẽ0

rkHe′′1{Fk(Ge′ )⊆Ge′′}
He′

.

However, the renormalisation property (1.26) implies that the two innermost sums

(those over k and e′) contribute exactly 1 for each j ∈ Σn, e′′ ∈ Ẽ0. Thus we observe

that Re
i (n + 1) = Re

i (n) for every n ≥ 0. Since Re
i (0) = 1, the result follows. ¤

Given the random scaling factors, (w(i))i∈Σ∗\{∅}, and resistance perturbations sat-

isfying (R1), we can define a sequence of resistance forms on the sequence of vertex

sets, (Ṽ n)n≥0. Similarly to (1.4), let

En(f, f) :=
∑
j∈Σn

1

l(j)
Dj(fj, fj), ∀f ∈ C(Ṽ n),

where l(j) is defined by (1.17), and Dj is the perturbed version of D given by

Dj(f, f) :=
∑

e∈Ẽ0

He

Re
j

(f(e+)− f(e−))2.

In the next lemma we show that this definition gives us a compatible sequence of

resistance forms, and the only assumption we need for the proof of this is (R1).

Theorem 1.4.2 Under the assumption (R1), the sequence {(Ṽ n, En)}n≥0 is a com-

patible sequence, P-a.s.

Proof: Since (R1) holds, we can assume that Re
i ∈ (0,∞) for every i ∈ Σ∗,

e ∈ Ẽ0. Now, by Lemma 1.2.9, for j ∈ Σn, e′ ∈ Ẽ0, we have Fj(e
′) ∈ Ẽn,

and furthermore, Lemma 1.2.8 tells us this representation is unique. Thus we have∑
e∈Ẽn 1{Fj(Ge′ )=Ge} = 1. Consequently, we can write

En(f, f) =
∑

e∈Ẽn


∑

j∈Σn

∑

e′∈Ẽ0

He′1{Fj(Ge′ )⊆Ge}
l(j)Re′

j


 (f(e+)− f(e−))2 , (1.30)

and moreover, for each e ∈ Ẽn, we know exactly one term in the internal double sum

has a strictly positive contribution. Hence the related electrical network on Ṽ n can

only have strictly positive conductances on the edges of Ẽn. Now, fix e ∈ Ẽn. Using

the fact that (Ṽ n, Ẽn) is a graph tree (Lemma 1.2.7), if e = Fj(e
′) for e′ ∈ Ẽ0, j ∈ Σn,

then it also follows from (1.30) that

R(n)(e+, e−) =
l(j)Re′

j

He′
, (1.31)
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where R(n) is the resistance metric associated with En by (1.8). Similarly, define

R(n+1) to be the resistance metric associated with En+1. Since (Ṽ n+1, Ẽn+1) is a

graph tree, R(n+1) is additive along paths. In particular, we have

R(n+1)(e+, e−) =
∑

e′∈Ẽn+1

R(n+1)(e′+, e′−)1{Ge′⊆Ge}

=
∑

j∈Σn+1

∑

e′∈Ẽ0

l(j)Re′
j 1{Fj(Ge′ )⊆Ge}

He′
.

From this and the identity of Lemma 1.2.10, it follows that

R(n+1)(e+, e−) =
∑
j∈Σn

∑

k∈S

∑

e′∈Ẽ0

∑

e′′∈Ẽ0

l(jk)Re′
jk1{Fk(Ge′ )⊆Ge′′}1{Fj(Ge′′ )⊆Ge}

He′

=
∑
j∈Σn

∑

e′∈Ẽ0

l(j)Re′
j 1{Fj(Ge′ )⊆Ge}

He′
,

which may be seen to be equal to R(n)(e+, e−) by applying again the uniqueness

of the representation of edges in Ẽn. Note also that to obtain the second equality

we have used the resistance perturbation decomposition of Lemma 1.4.1(a). Hence

R(n+1) = R(n) on Ṽ n. By [39], Corollary 2.1.13, this is sufficient for the compatibility

of En and En+1, and so the proof is complete. ¤

We can now write down a resistance form on the countable set Ṽ ∗ as the limit of

the compatible sequence of resistance forms on Ṽ n. When the sequence (En)n≥0 is

defined, set

E ′(f, f) := lim
n→∞

En(f, f), ∀f ∈ F ′,

where

F ′ := {f ∈ C(Ṽ ∗) : lim
n→∞

En(f, f) < ∞}.
Note that, by the compatibility of the sequence of resistance forms, the sequence

(En(f, f))n≥0 is increasing in n and so it always has a limit in [0,∞].

Lemma 1.4.3 Under the assumption (R1), (E ′,F ′) is a resistance form on Ṽ ∗, P-

a.s.

Proof: From the previous lemma we have that {(Ṽ n, En)}n≥0 is compatible, P-a.s.

This allows us to apply [39], Theorem 2.2.6, to deduce the result. ¤

As described at (1.8), naturally associated with a resistance form is a resistance

metric. We shall denote by R′ the resistance metric associated with (E ′,F ′) when
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this is defined. To extend our resistance form to a resistance form on the whole of T

it will be necessary to show that T is the completion of Ṽ ∗ with respect to the metric

R′. Before demonstrating that this is the case, we prove some preliminary results

about the diameter of sets of the form (Ṽ ∗
i )i∈Σ∗ in the metric R′. Throughout the

remainder of the chapter, for a subset A of a metric space (X, d), we shall denote the

diameter of A by

diamdA := sup{d(x, y) : x, y ∈ A}.
In the proof of the next result, we will also use the notation

Ri :=
∑

e∈Ẽ0

Re
i , ∀i ∈ Σ∗.

Note that the random variables (Ri)i∈Σ∗ are identically distributed.

Lemma 1.4.4 If we assume (W2), (R1) and (R2), then E((diamR′Ṽ
∗)d) < ∞, for

all d > 0.

Proof: Let x ∈ Ṽ ∗ and y ∈ Ṽ 0. Necessarily, x ∈ Ṽ n for some n ≥ 0. Using the

description of paths in Ṽ ∗ that was proved in Lemma 1.2.11, we find that

R′(x, y) ≤ N |Ẽ0|
n∑

m=0

sup
e∈Ẽm

R′(e+, e−).

From the expression that was given at (1.31) for the resistance along an edge in Ẽm,

we obtain from this that

diamR′Ṽ
∗ ≤ 2N |Ẽ0|

H∗

∞∑
m=0

sup
i∈Σm

l(i)Ri, (1.32)

where H∗ := min{He : e ∈ Ẽ0}. Note that, if Fn is the filtration introduced at (1.16),

then it is clear from the definition that, for each i ∈ Σ∗, Re
i is independent of F|i|

for each e. Hence so is Ri. By assumption (R2), Ri has finite positive moments of

all orders. Thus the expression on the right-hand side of (1.32) is the multiplicative

cascade quantity considered in Theorem 1.3.4, where the multiplicative cascade is

defined by (w(i))i∈Σ∗\{∅}, and the perturbations, (Ri)i∈Σ∗ , satisfy the assumptions

of (1.21) and (1.22). Since (W2) holds, Theorem 1.3.4 tells us that this has finite

positive moments of all orders. ¤

We now introduce random variables (Wi)i∈Σ∗ to represent the normalised diame-

ters of the sets (Ṽ ∗
i )i∈Σ∗ . Set

Wi :=
diamR′Ṽ

∗
i

l(i)
, i ∈ Σ∗,
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whenever the resistance metric R′ is defined. In the next lemma we show that these

random variables satisfy the assumptions placed on the perturbations of a multiplica-

tive cascade in Section 1.3.

Lemma 1.4.5 Assume (W2), (R1) and (R2). The random variables (Wi)i∈Σ∗ are

identically distributed, non-negative and satisfy, for all i ∈ Σ∗, d > 0,

E(W d
i ) < ∞, and Wi ⊥ F|i|.

Proof: We have

l(i)Wi = sup
n

sup
x,y∈Ṽ n

i

R′(x, y)

= sup
n

sup
x,y∈Ṽ n

i

∑
j∈Σn+|i|

∑

e∈Ẽ0

l(j)Re
j1{Fj(Ge)⊆Gxy}

He

,

where we have used the description of edges in Ẽn+|i| from Lemma 1.2.8, and the

expression for the resistance along an edge from (1.31). If x, y ∈ Ṽ n
i , then x =

Fi(x
′), y = Fi(y

′) for some x′, y′ ∈ Ṽ n, and Gxy = Fi(Gx′y′), by Lemma 1.2.4(a).

Consequently, for j ∈ Σn+|i|, Fj(Ge) ⊆ Gxy if and only if j||i| = i. From the injectivity

of Fi, it follows that

Wi = sup
n

sup
x,y∈Ṽ n

∑
j∈Σn

∑

e∈Ẽ0

l(ij)Re
ij1{Fj(Ge)⊆Gxy}
l(i)He

.

As noted in the proof of Lemma 1.4.4, Rij is independent of F|ij|, and so we certainly

have that Rij is independent of F|i|, because F|i| ⊆ F|ij|. Also, l(ij)/l(i) is clearly

independent of F|i|. Thus Wi ⊥ F|i|.
Using the similarity of the distributions of (w(ij))j∈S, for i ∈ Σ∗, it may be

deduced from the above expression for Wi that

Wi
d
= sup

n
sup

x,y∈Ṽ n

∑
j∈Σn

∑

e∈Ẽ0

l(j)Re
j1{Fj(Ge)⊆Gxy}

He

= W∅ = diamR′Ṽ
∗.

Hence the (Wi)i∈Σ∗ are identically distributed, non-negative random variables and,

by Lemma 1.4.4, have finite positive moments of all orders. ¤

It is now easy to show that the diameters of the sets (Ṽi)i∈Σ∗ decrease to 0 uni-

formly as |i| → ∞.
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Lemma 1.4.6 Under the assumptions (W2), (R1) and (R2), we have

sup
i∈Σn

diamR′Ṽ
∗
i → 0, P-a.s.

Proof: This result is an immediate corollary of Lemma 1.4.5 and the corresponding

multiplicative cascade result, Lemma 1.3.1(ii). ¤

This uniform decay of the diameter of the sets (Ti)i∈Σ∗ allows us to extend the

definition of R′ to the whole of T . Recall that T is the closure of Ṽ ∗ with respect to

the original metric, d. Hence, for any x, y ∈ T , there exist sequences (xn)n∈N, (yn)n∈N
in Ṽ ∗ with d(xn, x) → 0 and d(yn, y) → 0. Define

R(x, y) = lim
n→∞

R′(xn, yn).

Before proceeding with the proof of Proposition 1.4.8, in which we show that this is

a sensible definition for R, we introduce some further notation. For x ∈ T ,

Tn(x) :=
⋃
{Ti : i ∈ Σn, x ∈ Ti}, (1.33)

T̃n(x) :=
⋃
{Ti : i ∈ Σn, Ti ∩ Tn(x) 6= ∅}. (1.34)

We will also apply the following result of [39], Proposition 1.3.6.

Lemma 1.4.7 (Tn(x))n∈N forms a base of neighbourhoods of x, with respect to the

original metric, d.

Proposition 1.4.8 Assume (W2), (R1) and (R2). R is a well-defined metric on T ,

topologically equivalent to the original metric, P-a.s.

Proof: Under the assumptions of the lemma, the argument that we give holds P-a.s.

Let x, y ∈ T and suppose there exist, for m = 1, 2, sequences (xm
n ) and (ym

n ) in Ṽ ∗

such that d(xm
n , x) → 0 and d(ym

n , y) → 0. Fix ε > 0. By Lemma 1.4.6, we can choose

n0 ≥ 0 such that supi∈Σn
diamR′Ṽ

∗
i < ε/4, for every n ≥ n0. Furthermore, we can use

the convergence of the sequences and Lemma 1.4.7 to show that there exists n1 ≥ n0

such that xm
n ∈ Tn0(x), ym

n ∈ Tn0(y), for m = 1, 2 and n ≥ n1. Thus

|R′(x1
n, y

1
n)−R′(xm

n′ , y
m
n′)| ≤ R′(x1

n, x
m
n′) + R′(y1

n, ym
n′) < ε,

for m = 1, 2 and n, n′ ≥ n1. Taking m = 1, this implies that (R(x1
n, y1

n))n≥0 is a

Cauchy sequence and has a limit. Taking m = 2, n′ = n, this implies that the limit is

unique and so the function R is well-defined on T × T . It follows immediately from
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the fact that R′ is a metric on Ṽ ∗ that R is positive, symmetric and satisfies the

triangle inequality. To prove R is a metric on T , it remains to show that R(x, y) = 0

implies that x = y. We shall prove the stronger claim that R(xn, y) → 0 implies that

d(xn, y) → 0.

Suppose (xn)n≥0 is a sequence in T with R(xn, y) → 0 for some y ∈ T . Let

δ ∈ (0, 1) be the largest of the contraction ratios of (Fi)i∈S, define c1.9 := diamdT ,

fix ε > 0, and choose n0 such that 2c1.9δ
n0 < ε. For z 6∈ T̃n0(y), we must have that

z ∈ Ti, y ∈ Tj for some i, j ∈ Σn0 with Ti ∩ Tj = ∅. For any z′ ∈ Ṽ ∗
i , y′ ∈ Ṽ ∗

j , using

the additivity along paths of the metric R′ and the fact that the sets (Tk)k∈Σn0
only

intersect at vertices of Ṽ n0 , it is possible to show that

R(z′, y′) = R′(z′, y′) ≥ inf
e∈Ẽn0

R′(e+, e−) =: c1.10.

It follows that R(z, y) ≥ c1.10. Since c1.10 > 0 and R(xn, y) → 0, there exists an n1

such that R(xn, y) < c1.10, for all n ≥ n1. Consequently, xn ∈ T̃n0(y) for n ≥ n1.

By our choice of n0, this implies that d(xn, y) ≤ 2c1.9δ
n0 < ε, for n ≥ n1. Hence

d(xn, y) → 0.

To prove the equivalence of the metrics, it remains to show that, for all sequences

(xn)n∈N in T with d(xn, x) → 0 for some x ∈ T , we have R(xn, x) → 0. We note that

if y ∈ Ti, then there exists a sequence (yn)n∈N in Ṽ ∗
i with d(yn, y) → 0. Consequently,

diamRTi = sup
x,y∈Ti

R(x, y) = sup
x,y∈Ṽ ∗i

R′(x, y) = diamR′Ṽ
∗
i . (1.35)

Applying this fact and Lemma 1.4.6, we have that, given ε > 0, there exists an n0

such that supi∈Σn0
diamRTi < ε. By Lemma 1.4.7, we have that xn ∈ Tn0(x), ∀n ≥ n1,

for some n1. It follows that R(xn, x) < ε, for all n ≥ n1, and so R(xn, x) → 0 as

desired. ¤

The following result is a simple but important consequence of this proposition.

Proposition 1.4.9 Assume (W2), (R1) and (R2). The metric space (T, R) is the

completion of (Ṽ ∗, R′), P-a.s.

Proof: Recall from Section 1.2 that Ṽ ∗ is dense in (T, d). By the previous result, the

topologies induced by R and d are the same, P-a.s. Hence Ṽ ∗ is dense in (T,R) and

trivially, we also have that (Ṽ ∗, R′) is isometric to (Ṽ ∗, R), P-a.s. The result follows.

¤
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This result allows us to extend the resistance form (E ′,F ′) to the whole of T .

Define E and F from (E ′,F ′), when they are defined, by the formulae (1.9) and

(1.10), exactly as in the deterministic case.

Theorem 1.4.10 Assume (W2), (R1) and (R2). (E ,F) is a resistance form on T

and has associated resistance metric R, P-a.s.

Proof: The fact that (T, R) is the completion of (Ṽ ∗, R′), P-a.s. allows us to apply

[39], Theorem 2.3.10, to obtain the result. ¤

We have now constructed a random self-similar dendrite (T,R). Furthermore,

because T is a dendrite, it is elementary to check that R must be a shortest path

metric (additive along paths). To complete this section we show that the quadratic

form (E ,F) is actually Dirichlet form for any Borel measure on (T, R) which charges

non-empty open sets. To do so, we will apply the following inequality, which is easily

verified from the definition of the resistance metric,

|f(x)− f(y)|2 ≤ R(x, y)E(f, f), ∀x, y ∈ T, ∀f ∈ F . (1.36)

Before proceeding with the final theorem of this section, we state a result which was

proved by Kigami.

Theorem 1.4.11 ([38], Theorem 5.4). Let K be a dendrite and let d be a shortest

path metric on K. Suppose (K, d) is locally compact and complete, then (E ,F ∩
L2(K, ν)), where (E ,F) is the finite resistance form associated with (K, d), is an

irreducible, conservative, local, regular Dirichlet form on L2(K, ν) for any σ-finite

Borel measure ν on K that charges every non-empty open set A ⊆ K.

Theorem 1.4.12 Assume (W2), (R1) and (R2). If µ is a (possibly random) finite

Borel measure on (T,R) which charges every non-empty open subset of T , P-a.s.,

then (E ,F) is an irreducible, conservative, local, regular Dirichlet form on L2(T, µ),

P-a.s.

Proof: This result will clearly follow from Theorems 1.4.10 and 1.4.11 if we can

show that F ⊆ L2(T, µ), P-a.s. When T is compact and µ is a finite Borel measure,

which is the case P-a.s., we have that C(T ) ⊆ L2(T, µ). Since the inequality at (1.36)

implies that F ⊆ C(T ), P-a.s., the proof is complete. ¤
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1.5 Random p.c.f.s.s. dendrite properties

We collect in this section several properties of the random resistance metric and

Dirichlet form we have constructed. Some of the results are of interest in their own

right, whereas others will be useful in proving Hausdorff dimension and measure

results for T . To prove an upper bound for the Hausdorff dimension of (T,R), we

will require knowledge of the diameter of (T,R) and subsets of the form Ti, i ∈ Σ∗.

We start by presenting some preliminary results regarding these random variables

that are simple extensions of the corresponding results for diamR′Ṽ
∗ proved in the

previous section.

Lemma 1.5.1 If we assume (W2), (R1) and (R2), then

(a) Wi = l(i)−1diamRTi, for all i ∈ Σ∗, P-a.s.

(b) E((diamRT )d) < ∞, for all d > 0.

(c) supi∈Σn
diamRTi → 0, P-a.s.

Proof: Observe from (1.35) that under the assumptions of this lemma, diamRTi =

diamR′Ṽ
∗
i , P-a.s. The assertions follow immediately from this fact and the definition

of (Wi)i∈Σ∗ , Lemma 1.4.4 and Lemma 1.4.6, respectively. ¤

On a deterministic p.c.f.s.s. set, the Dirichlet form that is constructed has a strict

self-similarity, see [39], Proposition 3.3.1. In the next proposition we show that the

random Dirichlet form we have constructed satisfies a similar stochastic self-similarity.

Proposition 1.5.2 Assume (W2), (R1) and (R2). P-a.s., for n ≥ 0,

E(f, f) =
∑
i∈Σn

1

l(i)
Ei(fi, fi), ∀f ∈ F , (1.37)

where Ei, i ∈ Σn, are independent copies of E, and are also independent of Fn.

Proof: Define for i ∈ Σ∗, n ≥ 0,

En
i (f, f) :=

∑
j∈Σn

l(i)

l(ij)
Dij(fj, fj), ∀f ∈ C(Ṽ n).

By relabelling, we can repeat the arguments of Section 1.4 to obtain a resistance form

(Ei,Fi) which is a limit of this sequence, P-a.s. By definition, for f ∈ C(Ṽ n+m),

En+m(f, f) =
∑
i∈Σn

∑
j∈Σm

1

l(ij)

∑

e∈Ẽ0

He

Re
ij

(fij(e+)− fij(e−))2

=
∑
i∈Σn

1

l(i)

∑
j∈Σm

l(i)

l(ij)
Dij(fij, fij)

=
∑
i∈Σn

1

l(i)
Em

i (fi, fi).
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Taking the limit m →∞ implies the identity at (1.37). It is easy to check that Em
i is

statistically identical to Em for each i, and that the sequences (Em
i )m≥0, i ∈ Σn, are

defined from collections of random variables that are independent of each other and

of F|i|, which completes the proof. ¤

In the final result of this section we prove two analytic properties of the form

(E ,F). Part (a) is the statement that the form we have constructed satisfies a

Poincaré inequality. Part (b) implies that the Markov process naturally associated

with (E ,F) hits points of the dendrite, P-a.s.

Proposition 1.5.3 If we assume (W2), (R1) and (R2), then

(a) P-a.s., there exists a constant c1.11 such that, if µ is a Borel probability measure

on (T, R), then

Varµf :=

∫

T

f 2dµ−
(∫

T

fdµ

)2

≤ c1.11E(f, f), ∀f ∈ F .

(b) P-a.s., all non-empty subsets of T have strictly positive capacity with respect to the

Dirichlet form (E ,F) on L2(T, µ), where µ is a Borel probability measure on (T, R)

which charges every non-empty open set.

Proof: Part (a) may be proved in exactly the same way as Proposition 7.16 of [9].

We only need to use the fact that diamRT < ∞, P-a.s., which follows from Lemma

1.5.1(b).

Suppose that we are able to construct the Dirichlet form, (E ,F). By Lemma 3.2.2

of [27], if ν is a positive Radon measure on T with finite energy integral, i.e.,

(∫

T

|f |dν

)2

≤ c1.12

(
E(f, f) +

∫

T

f 2dµ

)
, ∀f ∈ F ,

for some finite constant c1.12, then ν charges no set of zero capacity. Hence, by

monotonicity, it is sufficient to show that δx has finite energy integral for any x ∈ T ,

where δx is the probability measure putting all its mass at the point x. For any

x, y ∈ T , (∫

T

|f |dδx

)2

= f(x)2 ≤ 2(f(x)− f(y))2 + 2f(y)2. (1.38)

Applying the bound at (1.36), and integrating (1.38) with respect to y gives

(∫

T

|f |dδx

)2

≤ 2 diamRTE(f, f) + 2

∫

T

f 2dµ,

which completes the proof of (b), because diamRT is finite, P-a.s. ¤
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Remark 1.6 One reason for establishing a Poincaré inequality for the form (E ,F)

is that it provides a lower bound for the associated spectral gap, λ∗ say. One way of

defining this quantity is as the infimum of E(f, f)/Varµf over functions in F with

non-zero µ-variance. In our case, it is possible to take c1.11 = 1
2
diamRT in part (a)

of the previous lemma. Hence the above result implies that, P-a.s.,

λ∗ ≥ 2

diamRT
.

1.6 Resistance perturbations and scaling factors

Although we state many of the results in this chapter in terms of the conditions on the

resistance perturbations, it is preferable to reduce these to conditions on the scaling

factor distributions alone, and that is the aim of the discussion in this section.

We start by presenting a condition which eliminates the need for resistance per-

turbations by fixing them to be identically equal to 1. Define the |Ẽ0| × |Ẽ0| random

matrix M = (mee′)e,e′∈Ẽ0 by

mee′ :=
∑
i∈S

w(i)He1{Fi(Ge′ )⊆Ge}
He′

, (1.39)

and consider the following assumption on M , which implies that the resistance per-

turbations are non-random, see Lemma 1.6.1.

Assumption (M): P-a.s., the matrix M is stochastic.

Lemma 1.6.1 Under the assumption (M), Re
i ≡ 1, for every e ∈ Ẽ0, i ∈ Σ∗.

Proof: This may be proved using an argument similar to the deterministic case which

was part (b) of Lemma 1.4.1. ¤

This has the following obvious corollary.

Corollary 1.6.2 If assumption (M) holds, then so does (R1), (R2) and (R3).

What Lemma 1.6.1 means is that if each N -tuple of scaling factors, (w(ij))j∈S, is

for each i ∈ Σ∗ selected randomly from the space

{r : (D, r) is a harmonic structure. 0 < ri ≤ 1, i ∈ S}, (1.40)
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where D is the quadratic form defined by (He)e∈Ẽ0 at (1.25), then there is an in-

built consistency to the inductively defined sequence (En)n≥0, and we do not need to

introduce random resistance perturbations to achieve compatibility. In Section 1.11,

we give examples of when the collection of r contained in the set at (1.40) consists

of more than one element (and indeed may be multi-dimensional) and show that

random Dirichlet forms constructed from scaling factors satisfying the assumption

(M) actually do exist.

The most complete results about the resistance perturbations that we are able to

prove are when |V 0| = 2, or equivalently, when there is exactly one edge in Ẽ0. In

this case, the resistance perturbations are precisely limits of tree-martingales, about

which much is known. By applying the results of this area of probability theory, we

are able to obtain relatively mild sufficient conditions for the assumptions (R1), (R2)

and (R3) to hold. We start by showing that (W1) implies the conditions (R1) and

(R2) in this case. Since there is only one e ∈ Ẽ0, we will drop the superscripts from

the Re
i for the proofs of results with |V 0| = 2.

Proposition 1.6.3 Suppose |V 0| = 2. If assumption (W1) holds, then so does (R1)

and (R2).

Proof: We first check that the limit defining Ri exists. Let i ∈ Σ∗ and define Ri(n)

as at (1.28). Under (W1), it is straightforward to use the renormalisation property

of an harmonic form, (1.26), to deduce that

E(Ri(n + 1)|F|i|+n) = Ri(n), P-a.s.,

where (Fn)n≥0 is the filtration defined at (1.16). Hence (Ri(n))n≥0 is an (F|i|+n)n≥0

martingale and ERi(n) = 1. Thus Ri := limn→∞ Ri(n) exists P-a.s. by the almost-

sure martingale convergence theorem and, moreover, ERi ∈ [0, 1]. To prove that (R1)

holds, it remains to demonstrate that Ri is non-zero, P-a.s.

Applying the decomposition of Ri from Lemma 1.4.1(a) and noting that the scaling

factors are non-zero by assumption, we find that

P(Ri = 0) = P

(∑
j∈S

w(ij)1{Fj(Ge)⊆Ge}Rij = 0

)

= P
(
1{Fj(Ge)⊆Ge}Rij = 0, ∀j ∈ S

)

= P(Ri = 0)#{j: Fj(Ge)⊆Ge},

where we have used the fact that (Rij)j∈S are independent copies of Ri, and e is the

only edge in Ẽ0. Now, e+, e− ∈ Ṽ 1 and so decomposing the path from e+ to e− in T as

36



in the proof of Lemma 1.2.7, we can show that Ge = Ge1 ∪ · · · ∪Gen , where e1, . . . , en

are distinct edges Ẽ1. Suppose that there is only one such edge, so that Ge = Ge1 .

By Lemma 1.2.8, e1 = Fj(e) for some j ∈ S. Hence we must have e = Fj(e). This

implies that the contraction ratio of Fj is greater than or equal to 1, which is not

true by assumption. Consequently, #{j : Fj(Ge) ⊆ Ge} > 1, and we must have

P(Ri = 0) ∈ {0, 1}.
The proof that (R1) holds may be completed by checking the conditions of [44],

Theorem 2.0, to show that Ri(n) actually converges in mean to Ri and so ERi = 1.

Hence P(Ri = 0) = 0. That Ri has finite positive moments of all orders, i.e. (R2)

holds, is also a consequence of [44], Theorem 2.0, under the assumptions that we have

made on the scaling factors. ¤

The right tail of the distribution of a tree-martingale limit has been considered

by various authors, including Liu, who proves in [44], Theorem 2.1, a widely appli-

cable result demonstrating exponential tails. However, in proving that the resistance

perturbations have negative moments, (R3), we need some information about the tail

of the distribution at zero, which, to the author’s knowledge, has not been studied

previously when the scaling factors are not bounded away from zero. Under the as-

sumption that the scaling factors are independent and have finite negative moments

of some order, we are able to show that the distribution of the tree-martingale limit

also has exponential tails at zero, see Lemma 1.6.5. To prove this result we apply a

result of Barlow and Bass, [10], which allows a polynomial estimate for a distribution

function to be improved to an exponential one under suitable conditions. We start

by proving the polynomial bound we need to apply this result.

Lemma 1.6.4 Suppose |V 0| = 2 and (W1) holds. Fix β > 0, ε ∈ (0, 1). Then there

exists a constant c1.13 such that

P(R∅ ≤ x) ≤ ε + c1.13x
β, ∀x ≥ 0.

Proof: Fix β > 0, ε ∈ (0, 1). By Proposition 1.6.3, the resistance perturbations

satisfy (R1). Hence P(R∅ ≤ x) → 0 as x → 0. In particular, there is an x0 > 0 such

that P(R∅ ≤ x0) ≤ ε. Thus, for x ≥ 0, P(R∅ ≤ x) ≤ ε + x−β
0 xβ, which proves the

result. ¤
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Lemma 1.6.5 Suppose |V 0| = 2 and (W1) holds. Moreover, assume that (w(i))i∈S

are independent and there exists a β > 0 such that

sup
i∈S

E(w(i)−β) < ∞, (1.41)

then there exist constants c1.14, θ1.3 such that

P(Ri ≤ x) ≤ e−c1.14x−θ1.3 , ∀x ≥ 0.

Proof: Let β > 0 be a constant for which (1.41) holds and fix ε ∈ (0, 1). By the

previous lemma, we can find a c1.13 such that P(R∅ ≤ x) ≤ ε + c1.13x
β, for all x ≥ 0.

Applying the relevant independence assumptions and the fact that Ri
d
= R∅, we can

deduce from this that, for all x ≥ 0, i ∈ Σn,

P(l(i)Ri ≤ x) = E (P (l(i)Ri ≤ x Fn))

≤ E

(
ε + c1.13

xβ

l(i)β

)

≤ ε + c1.13c
n
1.15x

β,

where c1.15 := supi∈S E(w(i)−β) ∨ (Ñ + 1) and Ñ := #{j : Fj(Ge) ⊆ Ge}. That

Ñ ≥ 2 is demonstrated in the proof of Proposition 1.6.3.

By writing R∅ =
∑

i∈Σn
l(i)Ri1{Fi(Ge)⊆Ge}, one may easily check that the condi-

tions of [10], Lemma 1.1 hold. It is also possible to show that the number of non-zero

summands is Ñn. Consequently, we obtain the following estimate for the left tail of

the distribution of R∅,

P(R∅ ≤ x) ≤ exp
(
c1.16(c1.15Ñ)n/2xβ/2 + Ñnlnε

)
, ∀x ≥ 0, (1.42)

for some constant c1.16. We now look to choose n in a way that will give us the control

we require over this bound. Define n0 = n0(x) to be the unique solution to

(
c1.15

Ñ

)n0/2

=
− ln ε

xβ/2c1.16

,

and then set n = bn0 − 1c. We have c1.15 > Ñ and so we can find an c1.17 ∈ (0, 1)

such that Ñc1.15
−1 ≤ (1− c1.17)

2. Consequently, because n− n0 ∈ (−2,−1], we have

(c1.15Ñ)(n−n0)/2 − Ñn−n0 = Ñn−n0

((
c1.15Ñ

−1
)(n−n0)/2

− 1

)
≤ −c1.17Ñ

−2.
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By the choice of n0, our upper bound, (1.42), now becomes

lnP(R∅ ≤ x) ≤ c1.16(c1.15Ñ)n0/2xβ/2(c1.15Ñ)(n−n0)/2 + Ñn0Ñn−n0 ln ε

= −Ñn0

(
(c1.15Ñ)(n−n0)/2 − Ñn−n0

)
ln ε

≤ c1.17Ñ
n0−2 ln ε

= −c1.18x
− β ln Ñ

ln c1.15−ln Ñ ,

which proves the result. ¤

We now prove an alternative characterisation of the tail inequality of assumption

(W3b) that will prove useful in applying the previous result.

Lemma 1.6.6 Let X be a (0, 1] valued random variable with distribution function Φ,

then the following statements are equivalent:

(a) If p ∈ (0, 1), then there exists a constant ε ∈ (0, 1) such that

Φ(εx) ≤ pΦ(x), ∀x ∈ (0, 1]. (1.43)

(b) There exist constants ε ∈ (0, 1) and β > 0 such that

E

((
1− xβε

Xβ

)
1{X≤x}

)
≥ 0, ∀x ∈ (0, 1].

Proof: Assume (a) holds and fix p ∈ (0, 1). Choose ε so that (1.43) holds, and β > 0

so that p < εβ. Integration by parts yields

E(xβX−β1{X≤x}) = lim
δ→0

{[
xβy−βΦ(y)

]x

y=δ
+ β

∫ x

δ

xβy−β−1Φ(y)dy

}
.

Now, Φ(εn) ≤ pn, and so, for y ∈ (εn+1, εn], we have y−βΦ(y) ≤ ε−β(n+1)pn. It follows

that, because pε−β < 1,

lim
δ→0

[
xβy−βΦ(y)

]x

y=δ
= Φ(x). (1.44)

Also,

lim
δ→0

β

∫ x

δ

xβy−β−1Φ(y)dx =
∞∑

n=0

βxβ

∫ xεn

xεn+1

y−β−1Φ(y)dy

≤ βxβ

∞∑
n=0

∫ xεn

xεn+1

(xεn+1)−β−1pnΦ(x)dy

≤ βΦ(x)ε−β−1

∞∑
n=0

(pε−β)n

=
βΦ(x)

εβ+1(1− pε−β)
. (1.45)
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The results at (1.44) and (1.45) imply that (b) holds.

Conversely, suppose that (b) holds for some β ∈ (0, 1) and ε > 0. Fix p ∈ (0, 1)

and define ε′ := (pε)1/β. For x ∈ (0, 1], we obtain

Φ(ε′x) ≤ E

(
1{X≤ε′x}

ε′βxβ

Xβ

)
≤ pE

(
1{X≤x}

εxβ

Xβ

)
≤ pΦ(x),

which is statement (a). ¤

We can now write down the sufficient conditions for (R3) in terms of the scaling

factor assumptions introduced in Section 1.4.

Corollary 1.6.7 Suppose |V 0| = 2. If (W1) and (W3b) hold, then so does (R3).

Proof: Under (W3b), the scaling factors (w(i))i∈S are independent and by Lemma

1.6.6, they have finite negative moments of some order. Hence we may apply Lemma

1.6.5 to show that P(Ri ≤ x) ≤ e−c1.14x−θ1.3 . The result follows. ¤

When |V 0| ≥ 3, there is a class of p.c.f.s.s. sets for which the resistance perturba-

tions fit naturally into the multi-type branching random walk setting. In particular,

this is the case when

#{e′ ∈ Ẽ0 : Fj(Ge′) ⊆ Ge} ≤ 1, (1.46)

for all e ∈ Ẽ0, j ∈ S. We now explain the connection and why this condition is useful.

Consider that the zeroth generation of a branching process is made up of a single

particle, labelled (i, e), where i ∈ Σ∗ and e ∈ Ẽ0 is the type of the particle. We

assume that the particle is positioned at the origin in R. At time 1, this particle dies

and leaves offspring {(ij, e′) : j ∈ S, e′ ∈ Ẽ0, Fj(Ge′) ⊆ Ge}, where a particle (ij, e′)

is born at a position

− ln w(ij)− ln He + ln He′ ,

relative to its parent. Each particle in the first generation reproduces in a similar fash-

ion, and so on. The condition (1.46) means that there cannot be a pair of particles of

the form (ij, e′) and (ij, e′′) for e′ 6= e′′ born to (i, e). As a consequence, this means

that the particles of the first generation reproduce independently of one another.

Hence the process describes a multi-type branching random walk, with the nth gen-

eration being the particles in Gen(n) := {(ik, e′) : k ∈ Σn, , e′ ∈ Ẽ0, : Fk(Ge′) ⊆ Ge},
and the set of particle types being Ẽ0.

An important object in the analysis of such a process is the matrix made up of

Laplace transforms of the offspring point process. Define the |Ẽ0| × |Ẽ0| random
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matrix M(θ) = (mee′(θ))e,e′∈Ẽ0 by

mee′(θ) :=
∑
i∈S

(
w(i)He

He′

)θ

1{Fi(Ge′ )⊆Ge}, ∀θ > 0.

Note that the M defined at (1.39) is simply equal to M(1). The relevant matrix of

Laplace transforms is then given by M(θ) := EM(θ).

From the description of this branching process, we can check that Re
i (n), as defined

at (1.28), may be written

Re
i (n) =

∑

(ik,e′)∈Gen(n)

e−π(ik,e′),

where π(ik, e′) is the position of the particle (ik, e′). Furthermore, under the con-

dition (W1), the renormalisation property, (1.26), implies that M(1) is stochastic.

Consequently, Re
i := limn→∞ Re

i (n) is a martingale limit of a type which has received

a substantial amount of attention in probabilistic literature. Hence we can imme-

diately apply known results to give conditions on the scaling factors which lead to

non-degeneracy and mean convergence (see [42], Theorem 1), and the finiteness of

positive moments (the argument of [54], Theorem 2.1(ii) may easily be adapted to

our situation) of the resistance perturbations. However, since stating a general result

of this form would involve little more than verifying the conditions and regurgitating

the results of these references, we shall omit to do so here. Instead, we will highlight

some of the more important considerations for a particular p.c.f.s.s. dendrite, see

Example 1.3. See also Appendix B.

1.7 Hausdorff dimension upper bound

In this section, we prove an upper bound for the Hausdorff dimension of (T, R), which

holds under relatively weak assumptions. We start by explaining how the Hausdorff

dimension is defined. For further background, see [25].

Let (X, d) be a metric space. For δ > 0, call a finite or countable family of sets

(Ai)
∞
i=1 a δ-cover of A ⊆ X if diamdAi ≤ δ for all i and A ⊆ ⋃

i Ai. For 0 ≤ s < ∞,

define

Hs
δ(A) := inf

{ ∞∑
i=1

(diamdAi)
s : (Ai)

∞
i=1 is a δ-cover of A

}
.

This is non-decreasing as δ ↘ 0 and allows the following definition of what is a metric

outer measure, called the Hausdorff s-dimensional measure, Hs(A) := limδ→0Hs
δ(A).

For any set A ⊆ X it is straightforward to show that there exists an s such that, if
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t < s, then Ht(A) = ∞, and if t > s, then Ht(A) = 0. This s is termed the Hausdorff

dimension of A, and is denoted

dimH(A) = inf {s: Hs(A) < ∞} = sup {s: Hs(A) > 0} . (1.47)

Recall from (1.18) the definition of φ(θ). Since w(i) > 0 for every i ∈ S, P-a.s.,

then φ(0) = |S| ≥ 2. Also, if we assume (W2), then φ(θ) is strictly decreasing and is

strictly less than 1 for large θ. Hence there is a unique positive solution to

φ(θ) = 1, (1.48)

which is the stochastic version of (1.11). We shall denote this solution α and show

that, P-a.s., this provides an upper bound for the Hausdorff dimension of T with

respect to the metric R, which we will write as dimH(T ) throughout the remainder

of this chapter.

Deducing an upper bound for the Hausdorff dimension of a set generally relies on

finding a good δ-cover for the set and this is how we proceed here. In fact, Lemma

1.4.6 implies that (Ti)i∈Σn provides a suitable cover for large n and so there is little

work needed to complete the proof.

Theorem 1.7.1 Assume (W2), (R1) and (R2), then

dimH(T ) ≤ α, P-a.s.

Proof: P-a.s., by Lemma 1.4.6, we have that for large n, (Ti)i∈Σn is a δ-cover of T .

Thus

E
(Hθ(T )

)
= E

(
lim
δ→0

inf

{ ∞∑
i=1

(diamRAi)
θ : (Ai)

∞
i=1 is a δ-cover of T

})

≤ E

(
lim inf
n→∞

∑
i∈Σn

(diamRTi)
θ

)

≤ lim inf
n→∞

E

(∑
i∈Σn

(diamRTi)
θ

)

= lim inf
n→∞

E

(∑
i∈Σn

(l(i)Wi)
θ

)
,

where we have applied Fatou’s lemma for the penultimate inequality. By Lemma

1.4.5 and Lemma 1.5.1, the expectation appearing in the bottom line is equal to
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φ(θ)nE((diamRT )θ), and the second of these factors is finite. Furthermore, for θ > α,

φ(θ) < φ(α) = 1. Hence E(Hθ(T )) = 0, and so Hθ(T ) = 0, P-a.s. The result follows

from this using the characterisation of the Hausdorff dimension at (1.47). ¤

1.8 Stochastically self-similar measures

In Section 1.1, the concept of a self-similar measure was introduced. In our case,

the randomness of (T,R) means that the corresponding natural measure will only

be stochastically self-similar. To define such a measure on T , we initially define a

measure on the address space Σ and then use the natural projection to map it on to

T .

Generalising the definition at (1.20), let

Zθ
i (n) :=

∑
j∈Σn

l(ij)θ

l(i)θφ(θ)
,

and note that Zθ
i (n)

d
= Zθ(n) for every i ∈ Σ∗. As noted in Section 1.3, (Zθ(n))n≥0

is an (Fn)n≥0 martingale and so by the almost-sure martingale convergence theorem

Zθ(n) → Zθ, P-a.s., for some random variable with EZθ ∈ [0, 1]. Moreover, under the

assumption (W2) and for θ ≤ α, where α is defined by (1.48), we can show that EZθ =

1 using [44], Theorem 2.0. The same results will also apply to Zθ
i := limn→∞ Zθ

i (n)

for every i ∈ Σ∗, P-a.s. From the definition of Zθ
i (n), it may be deduced that we have

the decomposition

Zθ
i =

∑
j∈Σn

l(ij)θZθ
ij

l(i)θφ(θ)n
, (1.49)

and furthermore, (Zθ
i )i∈Σn is a collection of independent random variables for each

n. We now show that the Zθ
i are non-zero, P-a.s. using a proof similar to that of

Proposition 1.6.3.

Lemma 1.8.1 Assume (W2) and let θ ≤ α, then P(Zθ
i = 0) = 0, ∀i ∈ Σ∗.

Proof: Using the decomposition at (1.49) and the fact that w(i) > 0, P-a.s., for each

i, we obtain

P(Zθ
i = 0) = P

(∑
j∈S l(ij)θZθ

ij

l(i)θφ(θ)n
= 0

)

= P
(
Zθ

ij = 0, for j ∈ S
)

=
∏
j∈S

P
(
Zθ

ij = 0
)

= P(Zθ
i = 0)N ,
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where we have also applied the independence of (Zθ
ij)j∈S and the equality in distribu-

tion of (Zθ
i )i∈Σ∗ for the third and fourth equalities respectively. Since N ≥ 2, we must

have that P(Zθ
i = 0) ∈ {0, 1}. The assertion follows on noting that, as remarked in

the comments preceding this lemma, under the assumption of (W2), EZθ
i = 1. ¤

Assume for the remainder of this section that (W2) holds. To define a measure

on Σ it is sufficient to define it on the cylinder sets iΣ := {ij : j ∈ Σ}. Define µ̃θ by,

µ̃θ(iΣ) =
Zθ

i l(i)
θ

Zθφ(θ)n
, i ∈ Σn. (1.50)

For θ ≤ α, the decomposition identity at (1.49) and the fact that Zθ ∈ (0,∞), P-a.s.,

imply that this defines a probability measure, P-a.s. The reason for considering such

a measure natural is that it can be considered as the limit measure of the measures

µ̃θ
n on Σn which are defined by

µ̃θ
n(i) =

l(i)θ

∑
j∈Σn

l(j)θ
, i ∈ Σn.

On the finite sets Σn, these measures have the property of assigning weights propor-

tional to a power of the edge lengths. Taking θ = α removes the dependency on the

word length, which suggests that the natural exponent of edge lengths to choose is α.

It is, in fact, the natural projection of µ̃α onto T that we shall utilise in the next

section to prove lower bound results for the Hausdorff dimension of T . Assume now

that (R1) and (R2) also hold, so that we may build (T, R). We shall denote the

projection of µ̃α under the map π : Σ → T , which was defined in the statement of

Theorem 1.1.1, simply by µα := µ̃α ◦ π−1. It is possible to check that this is a non-

atomic Borel probability measure on (T, R), which satisfies, for measurable A ⊆ T ,

µα(A) = lim
n→∞

∑

i∈Σn: Ti∩A6=∅
µ̃α(iΣ).

In particular, it may be deduced that

µα(Ti) =
Zα

i l(i)α

Zα
, (1.51)

which is the stochastic analogue of (1.12).

1.9 Hausdorff dimension lower bound

Proving a tight lower bound for the Hausdorff dimension of a set is often more of a

challenge than proving the corresponding upper bound, and this is also the case here.
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To prove that the α defined at (1.48) is a lower bound for the Hausdorff dimension of

(T, R), we need to make more restrictive assumptions on the scaling factors, and we

shall derive the result in two special cases only. We will apply the following standard

density result, which is proved in [25], Proposition 4.9. For a metric space (X, d), we

use the notation

Bd(x, r) := {y ∈ X : d(x, y) < r}
to represent the open ball of radius r about a point x ∈ X.

Lemma 1.9.1 Let (X, d) be a metric space. Suppose that A ⊆ X supports a measure

µ with µ(A) ∈ (0,∞) and there exists a constant c1.19 such that

lim sup
δ→0

µ(Bd(x, δ) ∩ A)

δs
≤ c1.19, ∀x ∈ A,

then Hs(A) ≥ c−1
1.19µ(A).

So far, we have been able to use the fixed graphs (Ṽ n, Ẽn) to approximate T . As

suggested by Remark 1.1, in general the lengths of edges within these graphs will vary

widely as n → ∞. In proving the lower bound for the Hausdorff dimension, it will

be useful to to introduce graph approximations to T for which we have some more

uniform control over the edge lengths. The approximation we use here is similar to

that used in [32], Section 4, for proving results about a random recursive Sierpinski

gasket.

We first introduce the notion of a cut-set. We say that Λ ⊆ Σ∗ is a cut-set if for

every i ∈ Σ, there is a unique j ∈ Λ with i||j| = j, and there exists an n such that

|j| ≤ n for all j ∈ Λ. This final condition is included to ensure that there is only a

countable number of cut-sets. Naturally associated with each cut-set is a graph with

vertices in T . The vertex and edge set of the graph corresponding to the cut-set Λ

are defined by

Ṽ Λ := {Fi(x) : x ∈ Ṽ 0, i ∈ Λ}
and

ẼΛ := {{x, y} : x ∈ Ṽ Λ, y ∈ Ṽ Λ(x)},
respectively. We now demonstrate that (Ṽ Λ, ẼΛ) is a graph tree.

Lemma 1.9.2 If Λ is a cut-set, then (Ṽ Λ, ẼΛ) is a graph tree and for every edge

e ∈ ẼΛ, there exists a unique e′ ∈ Ẽ0 and i ∈ ΣΛ such that e = Fi(e
′).

Proof: That (Ṽ Λ, ẼΛ) is a graph tree may be proved by repeating the argument of
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Proposition 1.2.7, if we can demonstrate that Ṽ Λ is a fine subset of T . To do this, we

note that it is possible to show that parts (a), (b) and (c) of Lemma 1.2.4 still hold

when the set function F is replaced by FΛ, where, for A ⊆ T ,

FΛ(A) :=
⋃
i∈Λ

Fi(A).

The remaining claim is proved in the same way as Lemma 1.2.8. ¤

For δ > 0, we define a random cut-set, Σδ, by

Σδ := {i : l(i) ≤ δ < l(i|(|i| − 1))} .

Under the assumption (W2), Lemma 1.3.1(ii) guarantees that this is indeed a cut-set

for all δ > 0, P-a.s. The graphs of interest to us will be those associated with these

random cut-sets. For brevity, we will write (Ṽ δ, Ẽδ) to mean (Ṽ Σδ , ẼΣδ).

To be able to apply the density result of Lemma 1.9.1, we look for upper bounds

on the measure µα := µ̃α ◦ π−1, which was introduced in the previous section. Fur-

thermore, we will use collections of the sets (Ti)i∈Σδ
to cover the balls BR(x, δ). In a

slight change of notation from (1.33) and (1.34), for x ∈ T , define

Tδ(x) :=
⋃
{Ti: i ∈ Σδ, x ∈ Ti}

and a larger neighbourhood of x by

T̃δ,ε(x) :=
⋃
{Ti: i ∈ Σδ, R(Ti ↔ Tδ(x)) < δε}, (1.52)

where for A,B ⊆ T , R(A ↔ B) := inf{R(x, y) : x ∈ A, y ∈ B}. The number of sets

making up this union is

Nδ,ε(x) := #{i ∈ Σδ: Ti ⊆ T̃δ,ε(x)}.

It is clear that BR(x, δ) ⊆ T̃δ/ε,ε(x). Noting that, for i ∈ Σδ,

µα(Ti) =
Zα

i l(i)α

Zα
≤ δα

Zα
sup
i∈Σδ

Zα
i ,

it follows that

µα(BR(x, δ)) ≤ (Zα)−1ε−αδαNδ/ε,ε(x) sup
i∈Σδ/ε

Zα
i . (1.53)

To complete the argument, we estimate the factors supi∈Σδ
Zα

i and Nδ,ε(x) sep-

arately. In bounding the first of these terms, we shall require some control over

the growth of the mean of |Σδ|. The next lemma provides this using a related age-

dependent branching process.
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Lemma 1.9.3 Assume (W1). There exists a constant c1.20 such that

E|Σδ| ≤ c1.20δ
−α, ∀δ ∈ (0, 1).

Proof: Consider the following branching process. Start at time 0 with one particle,

labelled ∅. A particle i has N children at times (σi− ln w(ij))j∈S where σi := − ln l(i)

is the birth time of i. Label by ij the child born to i at σi − ln w(ij) ≡ − ln l(ij),

noting that children may not be labelled in birth order. It is not necessary to define

the time of dying explicitly in this proof. The independence assumptions on the N -

tuples (w(ij))j∈S mean that this setup describes a general branching process in the

sense of [36], Chapter 6.

The relevance of this process is in the following observation. If Yt is defined to be

the random variable counting the births before time t then it is easy to check that

|Σδ| ≤ NY− ln δ (1.54)

Noting that the Malthusian parameter for the branching process is precisely the α

defined at (1.48), standard arguments then give that EYt ≤ c1.21e
αt, for some constant

c1.21. Combining this bound with the inequality at (1.54) yields the result. ¤

We now proceed with demonstrating that the rate of growth of supi∈Σδ
Zα

i is less

than a power of ln δ−1 as δ → 0. To allow us to apply Borel-Cantelli arguments to

deduce P-a.s. properties such as this, it is useful to choose a particular subsequence

of δs to investigate. From here on, we consider (δn)n≥0, defined by δn := e−n.

Lemma 1.9.4 Assume (W1). There exists a constant θ1.4 such that

lim sup
n→∞

n−θ1.4 sup
i∈Σδn

Zα
i < ∞, P-a.s.

In particular, if P(
∑

i∈S w(i)α = 1) = 1, then any θ1.4 > 0 will suffice. Otherwise, we

can take

θ1.4 := inf

{
θ ∈ [0, 1) :

∑
i∈S

w(i)
α

1−θ ≤ 1, P-.a.s.

}
,

where inf ∅ := 1.

Proof: If P(
∑

i∈S w(i)α = 1) = 1 then Zα
i ≡ 1, P-a.s. for all i and so the result is

obvious. Assume now that P(
∑

i∈S w(i)α = 1) < 1. Define a subset, Σ̃i, of Σ∗ by

Σ̃i := {ik: k ∈ Σ∗}\{i} and related σ-algebras by

Fi := σ(w(j): j ∈ Σ̃i), Gi := σ(w(j): j ∈ Σ∗\Σ̃i).
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By the independence assumptions on the (w(j))j∈Σ∗ , we have Fi ⊥ Gi. It is also

straightforward to check that Zα
i is Fi measurable and {Σδ = Λ} ∈ Gi for any cut-set

Λ containing i. Thus, for i ∈ Λ, with Λ a cut-set we have, for λ ≥ 0,

P(Zα
i > λ, Σδ = Λ) = P(Σδ = Λ)P(Zα

i > λ) = P(Σδ = Λ)P(Zα > λ).

From which we may deduce, using the countability of cut-sets, for λ ≥ 0,

P

(
sup
i∈Σδ

Zα
i > λ

)
=

∑
Λ: Λ a cutset

P

(
sup
i∈Σδ

Zα
i > λ, Σδ = Λ

)

≤
∑

Λ: Λ a cutset

∑
i∈Λ

P (Zα
i > λ, Σδ = Λ)

=
∑

Λ: Λ a cutset

∑
i∈Λ

P (Zα > λ)P (Σδ = Λ)

= P (Zα > λ)
∑

Λ: Λ a cutset

|Λ|P (Σδ = Λ)

= P (Zα > λ)E|Σδ|.

Since Zα is the limit of a tree-martingale, we may check the conditions of [44], The-

orem 2.1, to give us the following bound on the tail of its distribution. There exist

constants c1.22, c1.23, such that

P(Zα > λ) ≤ c1.22e
−c1.23λ1/θ1.4 , ∀λ ≥ 0.

Applying this estimate and Lemma 1.9.3, we obtain

∞∑
n=1

P

(
n−θ1.4 sup

i∈Σδn

Zα
i > λ

)
≤

∞∑
n=1

c1.24e
−c1.23nλ1/θ1.4+nα,

which is finite for λ chosen suitably large. The result follows from this by an appli-

cation of the Borel-Cantelli lemma. ¤

Estimating Nδ,ε(x) is more difficult and to do so we require a bound on the max-

imum number of sets from (Ti)i∈Σδ
that intersect each other. In the next lemma, we

show that it is possible to bound this number uniformly over cut-sets. For a cut-set

Λ, we will use the notation ∆Λ := supx∈T #{i : x ∈ Ti, i ∈ Λ}.

Lemma 1.9.5 Let Λ be a cut-set, then

(a) ∆Λ ≤ N |V 0|.
(b) if i ∈ Λ, #{j ∈ Λ : Ti ∩ Tj 6= ∅} ≤ N |V 0|2.
Proof: Let n = maxj∈Λ |j| be the length of the longest word in Λ. By [9], Proposition
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5.2.1, we have that ∆Σn ≤ N |V 0|. However, each of the sets of the form Ti, i ∈ Σn,

is contained in at most one of the sets Ti, i ∈ Λ, and so ∆Λ ≤ ∆Σn , which completes

the proof of (a). For part (b), note that

Ti ∩ {x : x ∈ Tj for some j ∈ Λ, j 6= i} ⊆ V 0
i .

There are |V 0| elements of V 0
i . By part (a), each of the x ∈ V 0

i can be contained in

at most N |V 0| of the (Tj)j∈Λ, which proves the result. ¤

We are now in a position to be able to prove the lower Hausdorff dimension bound

in our first special case. The assumptions that we use here include the technical ones

of (W1), (W2) and (M) which allow us to construct the resistance metric, apply

Lemma 1.9.4 to control the variables (Zα
i )i∈Σ∗ , and also imply Re

i ≡ 1, P-a.s., which

eliminates one random variable from our consideration. The assumption that is most

specifically related to the problems which arise in the computation of a lower Haus-

dorff dimension bound is (W3a). Calculations of this kind become difficult if parts

of the fractal become, in some sense, too small too quickly. By bounding the scaling

factors uniformly below, we are able to prevent this from occurring here.

Theorem 1.9.6 Assume (W1), (W2), (W3a) and (M), then

dimH(T ) ≥ α, P-a.s.

Proof: It follows from (1.3) that intersection of distinct sets from (Ti)i∈Σδ
can only

happen at points in ∪i∈Σδ
V 0

i . Hence, using the tree structure of (Ṽ δ, Ẽδ) and the

shortest path property of R, it is possible to obtain that, for i, j ∈ Σδ,

R(Ti ↔ Tj) = min
x∈Ṽ 0

i , y∈Ṽ 0
j

∑

e∈Ẽδ

R(e+, e−)1{Ge⊆Gxy}. (1.55)

By Lemma 1.9.2, if e ∈ Ẽδ, then e = Fi(e
′) for some e′ ∈ Ẽ0, i ∈ Σδ. Similarly to

(1.31), this implies that R(e+, e−) = l(i)Re′
i /He′ . Since, by assumption (M), Re′

i ≡ 1

and, by assumption (W3a), l(i) ≥ δε, this is bounded below by δε/H∗, where H∗ :=

max{He′ : e′ ∈ Ẽ0}. Consequently, if R(Ti ↔ Tj) < δε/H∗, then R(Ti ↔ Tj) = 0.

Now fix x ∈ T . Suppose Ti ⊆ T̃δ,ε/H∗(x) for some i ∈ Σδ. By the previous

paragraph, we must have Ti ∩ Tj 6= ∅ for some Tj ⊆ Tδ(x), j ∈ Σδ. By Lemma 1.9.5,

there at most N |V 0| sets satisfying Tj ⊆ Tδ(x), j ∈ Σδ, and each of these can intersect
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with at most N |V 0|2 of the sets (Ti)i∈Σδ
. Hence Nδ,ε/H∗(x) ≤ N2|V 0|3. Substituting

this into the bound of (1.53), for δ ∈ [εe−(n+1)/H∗, εe−n/H∗), we obtain

µα(BR(x, δ)) ≤ |N |2|V 0|3(H∗)αeα

εαZα
δα sup

i∈Σδn

Zα
i

≤ c1.25δ
α(ln δ−1)θ1.4 ,

where we have applied Lemma 1.9.4 for the second inequality. Thus, if s < α, then

lim supδ→0 δ−sµα(BR(x, δ)) = 0 for all x ∈ T , P-a.s., and so the density result of

Lemma 1.9.1 implies the result. ¤

Remark 1.7 By Corollary 1.6.2, the assumption (M) implies (R1) and (R2). Thus,

combining this result and the upper bound for the Hausdorff dimension of Theorem

1.7.1, we have under the assumptions of this theorem that dimH(T ) = α, P-a.s.

For the second special case in which we prove a Hausdorff dimension lower bound,

we assume (W3b). Again, this is an assumption which stops the fractal getting too

small too quickly. Rather than bounding them uniformly below, as is the case under

the assumption (W3a), we assume independence of the scaling factors and restrict

the amount of build up of mass close to zero in the distributions of the scaling factors.

This independence allows us to use a percolation-type argument, which enables us

to avoid having to impose a uniform lower bound, which is an assumption that is

often used to prove results of this type. If w(i) has distribution function Φ, then the

inequality of assumption (W3b) is equivalent to

Φ(εx) ≤ pΦ(x), ∀x ∈ (0, 1].

From this, it is easy to see that if Φ is approximately polynomial (i.e. there exist

constants c1.26, c1.27 such that c1.26x
n ≤ Φ(x) ≤ c1.27x

n), then assumption (W3b)

holds. An example of when the build up of mass is too great for this to hold is the

distribution function Φ(x) = (1− ln x)−1.

We now use the alternative description of (W3b) provided by Lemma 1.6.6 to show

that, under the assumption of finite negative moments of the Re
i , the inequality of

(W3b) holds if the w(i) are multiplied by the resistance perturbations. We shall use

the ε0 that arises in this lemma to describe what constitutes a small edge of (Ṽ δ, Ẽδ).

Lemma 1.9.7 Assume (W2), (W3b), (R1), (R2) and (R3). Given q ∈ (0, 1), there

exists ε0 ∈ (0, 1) such that

P

(
w(i)Re

i

He

≤ ε0x for some e ∈ Ẽ0 w(i) ≤ x

)
≤ q, ∀x ∈ (0, 1].
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Proof: Assume (W3b) holds. By Lemma 1.6.6, we can find ε0, β > 0 such that

E

((
1− xβε0

w(i)β

)
1{w(i)≤x}

)
≥ 0, ∀x ∈ (0, 1], i ∈ Σ∗\{∅}. (1.56)

Note also that (R3) implies, after reducing β if necessary, E((Re
i )
−β) < c1.28, for all

e ∈ Ẽ0, i ∈ Σ∗. Furthermore, the inequality (1.56) will still hold if we reduce ε0.

Hence, for i ∈ Σ∗\{∅}, e ∈ Ẽ0, x ∈ (0, 1],

P

(
w(i)Re

i

He

≤ ε0x, w(i) ≤ x

)
≤ E

((
Heε0x

w(i)Re
i

)β

1{w(i)≤x}

)

= (Heε0)
βE((Re

∅)
−β)E

(
xβ

w(i)β
1{w(i)≤x}

)

≤ c1.29ε
β
0P (w(i) ≤ x) ,

where for the final step we apply the inequality at (1.56). It follows that, for i ∈
Σ∗\{∅},

P

(
w(i)Re

i

He

≤ ε0x for some e ∈ Ẽ0 w(i) ≤ x

)
≤ c1.29|Ẽ0|εβ

0 , ∀x ∈ (0, 1].

Thus the result holds for ε0 chosen suitably small. ¤

Henceforth, we shall consider q to be a deterministic constant and choose ε0 so

that the claim of the previous lemma holds. For reasons that will become clear in the

proof of Lemma 1.9.9, we will assume that q is strictly less than 2−N |V 0|2(N |V 0|2)−1.

To bound Nδ,ε0(x) we will show that the largest cluster of sets from (Ti)i∈Σδ
which

contain a small edge is not too large. It is convenient to use the language of percolation

theory to describe the setting for the next part of the discussion. We first define the

events (Ai(x))i∈Σ∗ by

Ai(x) :=

{
l(i)Re

i

He

≤ x for some e ∈ Ẽ0

}
.

When it is clear that we are considering only i ∈ Σδ, we will adopt the notation

Ai := Ai(ε0δ). For i ∈ Σδ, we call the set Ti open if Ai occurs, and closed otherwise.

Thus the open Ti are those sets which contain a small edge of (Ṽ δ, Ẽδ).

Consider the random variable

Hδ := (Σδ; (l(i|(|i| − 1)))i∈Σδ
) .
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We shall be conditioning on Hδ; the informal motivation for doing so is the following.

In the proof of Lemma 1.9.3 we introduced a branching process where the individual

i is born at time − ln l(i). Hence if we stop the branching process at time − ln δ

(and can not see into the future), then we will be able to ascertain the value of Hδ.

However, we will not be able to observe the exact values of l(i) for i ∈ Σδ. So, in this

sense, we can consider Hδ to be the information about the weighted graph (Ṽ δ, Ẽδ)

available from the branching process at time − ln δ.

We now make precise the nature of the percolation-type behaviour that the inde-

pendence of the w(i)s under the assumption (W3b) induces on the open/closed sets

of (Ti)i∈Σδ
. Note that the result provides an upper bound on the probability of a set

from (Ti)i∈Σδ
being open which is independent of δ. This scale-invariance property

will be of particular importance for the arguments that follow.

Lemma 1.9.8 Assume (W2), (W3b), (R1), (R2), (R3). Let δ ∈ (0, 1). Condition-

ally on Hδ, the sets (Ti)i∈Σδ
are open/closed independently and, for i ∈ Σδ,

P (Ai |Hδ) ≤ q, P-a.s.,

and, for s ≥ 1,

E
(
s1{Ai} |Hδ

) ≤ 1− q + sq, P-a.s. (1.57)

Proof: Suppose that i1, . . . , in are distinct elements of Σδ. Applying the indepen-

dence of the (w(i))i∈Σ∗\{∅}, elementary arguments yield

P (Ai1 , . . . , Ain |Hδ)

=
n∏

m=1

P

(
w(im)Re

im

He

≤ ε0δ

x
for some e ∈ Ẽ0 w(im) ≤ δ

x

)

x=l(im|(|im|−1))

.

This implies the independence claim. Consider the case n = 1, and write i = i1. Since

i ∈ Σδ, we must have l(i|(|i| − 1)) > δ. Hence we can apply the bound of Lemma

1.9.7 to the above expression to obtain that P(Ai | Hδ) ≤ q, P-a.s. The generating

function bound of (1.57) is a simple consequence of this. ¤

We now introduce an algorithm to find the largest cluster of open sets of the form

(Ti)i∈Σδ
. We shall work on the graph (Σδ, Γδ), where the edge set Γδ is defined by

Γδ := {{i, j} : i, j ∈ Σδ, Ti ∩ Tj 6= ∅, Ti, Tj open}.

We shall write C(i) for the component of (Σδ, Γδ) which contains the vertex i. Clearly,

if Ti is closed, then C(i) = {i}. The following argument to find the size of the largest
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cluster is inspired by similar procedures used in [37] to find the size of the largest

cluster of a random digraph, and in [6] to find the size of the largest cluster of a

complete graph with edge percolation.

Let i ∈ Σδ and set L0 := {i}, D0 := ∅. For n ≥ 1, we define Ln, Dn inductively.

Assume we are given Ln, Dn. If Ln 6= ∅, then pick a vertex j ∈ Ln (we can assume

that there is a deterministic rule for doing this), and set

Ln+1 := Ln ∪ {k ∈ Σδ : k 6∈ Ln ∪Dn, {j, k} ∈ Γδ}\{j}
Dn+1 := Dn ∪ {j}.

If Ln = ∅, then set Ln+1 := ∅, Dn+1 := Dn.

It is a little unclear from this description as to exactly what the algorithm is doing

and so we now try to provide a more intuitive description in terms of a branching

process related to Σδ. Call i a live vertex. For the first step, connect to i all those

vertices in Σδ that are joined to i by an edge in Γδ. Call these vertices live and i

dead. At an arbitrary stage, pick a live vertex, j, and connect to it all those vertices

which we have not yet considered and are connected to j by an edge in Γδ. Call the

new vertices in our branching process live and j dead. Continue until we have no

live vertices to pick from. At the point of termination, the collection of dead vertices

contains exactly the vertices of C(i).

In our notation, Ln represents the live vertices and Dn the dead ones. Since we

can pick each vertex in Σδ only once in the algorithm, we must have D|Σδ|+1 = C(i).

However, the algorithm may effectively terminate before this stage, giving that |Dn| =
n ∧ τ , where τ := inf{n : Ln = ∅}. Necessarily L|Σδ|+1 = ∅, and so this infimum is

well-defined and finite. In particular, we must have |C(i)| = τ .

Using this algorithm, we are able to obtain a tail estimate for the distribution of

|C(i)|, conditional on Hδ. Note that this result is scale-invariant; the tail bound on

the size of a cluster does not depend on δ.

Lemma 1.9.9 Assume (W2), (W3b), (R1), (R2) and (R3). Let δ ∈ (0, 1). There

exists a deterministic constant c1.30, not depending on δ, such that, for i ∈ Σδ,

P(|C(i)| > n |Hδ) ≤ e−c1.30n, P-a.s.

Proof: Choose i ∈ Σδ and use the algorithm described prior to this lemma to con-

struct (Ln, Dn)n≥0. Given Ln, Dn, the number of new live vertices in the (n + 1)st
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step of the algorithm is

Zn :=

{
#{k ∈ Σδ : k 6∈ Ln ∪Dn, {j, k} ∈ Γδ}, if Ln 6= ∅,
0, if Ln = ∅,

where j = j(Ln) is the vertex chosen from Ln in the algorithm. On {Ln = ∅}, for

s ≥ 1, E
(
sZn Hδ, Ln, Dn

)
= 1, P-a.s. On {Ln 6= ∅} with j = j(Ln), using the

independence and generating function bound of Lemma 1.9.8, for s ≥ 1, we have

E
(
sZn Hδ, Ln, Dn

) ≤
∏

k∈Σδ: k 6∈Ln∪Dn, Tj∩Tk 6=∅
E

(
s1{Tk open} Hδ

)

≤ (1− q + sq)N |V 0|2 , P-a.s., (1.58)

where for the last line we have used the bound of Lemma 1.9.5 on the maximum

number of sets of the form (Tk)k∈Σδ
that can intersect with Tj. Hence, because this

upper bound is larger than 1, we have that E
(
sZn Hδ, Ln, Dn

) ≤ (1− q + sq)N |V 0|2 ,

P-a.s.

For n ≤ τ we have |Ln| = |Ln−1|+ Zn−1 − 1, and so, for s ≥ 1,

E
(
s|Ln|1{|Ln|>0} Hδ

) ≤ E
(
s|Ln|1{|Ln−1|>0} Hδ

)

= E
(
s|Ln−1|s|Ln|−|Ln−1|1{|Ln−1|>0} Hδ

)

= E
(
s|Ln−1|1{|Ln−1|>0}E

(
sZn−1−1 Hδ, Ln−1, Dn−1

)
Hδ

)

≤ s−1(1− q + sq)N |V 0|2E
(
s|Ln−1|1{|Ln−1|>0} Hδ

)
,

where we use the inequality at (1.58) for the final bound and we have also used the

fact that {|Ln| > 0} = {τ > n}. Applying this repeatedly yields

E
(
s|Ln|1{|Ln|>0} Hδ

) ≤ s−n(1− q + sq)nN |V 0|2 , P-a.s.

Consequently, P-a.s., for s ≥ 1,

P(|C(i)| > n |Hδ) = P(|Ln| > 0 |Hδ)

≤ E
(
s|Ln|1{|Ln|>0} Hδ

)

≤ s−n(1− q + sq)nN |V 0|2 .

This is minimised by s = (1− q)/q(N |V 0|2 − 1), which is greater than 1, because of

the upper bound we have assumed on q. Substituting for this value of s, we obtain

that there is a strictly positive constant c1.28, such that, P-a.s.,

P(|C(i)| > n |Hδ) ≤
(
q2N |V 0|2N |V 0|2

)n

≤ e−c1.30n.

¤
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This lemma is easily extended to give a tail estimate for the distribution of the size

of the largest component, Cδ := supi∈Σδ
C(i). We also prove an almost-sure convergence

result.

Lemma 1.9.10 Assume (W1), (W2), (W3b), (R1), (R2) and (R3). Let δ ∈ (0, 1).

There exist constants c1.31, c1.32 such that

P(Cδ > n) ≤ c1.31e
−c1.32nδ−α, ∀δ ∈ (0, 1].

Furthermore,

lim sup
n→∞

n−1Cδn < ∞, P-a.s.

Proof: Applying the conditional tail distribution of Lemma 1.9.9, we have

P(Cδ > n) = E (P(Cδ > n|Hδ))

≤ E

(∑
i∈Σδ

P(|C(i)| > n|Hδ)

)

≤ E(|Σδ|)e−c1.30n,

and so the first assertion follows from Lemma 1.9.3. A simple Borel-Cantelli argument

yields the second part of the lemma. ¤

We are now able to prove the lower bound for the Hausdorff dimension of T in

the second special case.

Theorem 1.9.11 Assume (W1), (W2), (W3b), (R1), (R2), (R3), then

dimH(T ) ≥ α, P-a.s.

Proof: As at (1.55), the distance between sets of the form (Ti)i∈Σδ
is the weighted

graph distance between the corresponding vertices in (Ṽ δ, Ẽδ). Hence if it happens

that R(Ti ↔ Tj) < δε0, then the shortest path between a vertex of Ṽ 0
i and a vertex

of Ṽ 0
j contains only edges contained in open sets from (Tk)k∈Σδ

. Thus, if Tk ⊆ T̃δ,ε0(x)

for x ∈ T , then there exists i ∈ Σδ, j ∈ C(i) such that Tk ∩Tj 6= ∅ and Ti ∩Tδ(x) 6= ∅.
It follows from the bounds on the number of set intersections proved in Lemma 1.9.5

that

Nδ,ε0(x) ≤ N3|V 0|5Cδ,
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and this bound is uniform in x. Consequently, for δ ∈ [ε0e
−(n+1), ε0e

−n), the bound

at (1.53) implies

µα(BR(x, δ)) ≤ eαN3|V 0|5
ε−α
0 Zα

δαCδn sup
i∈Σδn

Zα
i .

Applying Lemmas 1.9.3 and 1.9.10, we have that P-a.s., there exists a constant c1.33

such that

µα(BR(x, δ)) ≤ c1.33δ
α(ln δ−1)1+θ1.4 ∀x ∈ T, δ ∈ (0, ε0). (1.59)

Thus, for s < α, lim supδ→0 δ−sµα(BR(x, δ)) = 0, ∀x ∈ T , P-a.s. The result is

obtained by applying Lemma 1.9.1. ¤

Remark 1.8 Combining this result and Theorem 1.7.1, under the assumptions of

this theorem, we have dimH(T ) = α, P-a.s.

1.10 Measure bounds

The proofs of the Hausdorff dimension lower bound in the previous section involved

establishing an upper bound on µα(BR(x, r)), the measure of a ball of radius r, where

µα is the stochastically self-similar measure introduced in Section 1.8. Under the

second set of assumptions for which we were able to prove the Hausdorff dimension

lower bound, we prove a corresponding lower bound. We shall see in Chapter 2 how

the measure bounds we obtain here immediately imply transition density bounds for

the diffusion naturally associated with the random Dirichlet form (E ,F) constructed

in Section 1.4.

When |V 0| = 2, and the scaling factors are uniformly bounded away from one,

we can prove a tighter lower measure bound than in the general case. Crucially,

under these conditions we are able to deduce an exponential bound for the tail of the

distribution of the diameter of (T,R). It is important for the proof of the measure

bounds that this implies an almost-sure upper bound for δ−1 supi∈Σδ
diamRTi (along

the subsequence δn) which is polynomial in ln δ−1.

Lemma 1.10.1 Suppose |V 0| = 2 and the assumptions (W1) and (W4) hold.

(a) There exist constants c1.34, c1.35 and θ1.5 such that

P(diamRT ≥ x) ≤ c1.34e
−c1.35x1/θ1.5 , ∀x ≥ 1.
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(b) P-a.s., there exists a constant c1.36 such that

sup
i∈Σδn

diamRTi ≤ c1.36δnn
θ1.5 ,

where θ1.5 is the constant of part (a).

Proof: When |V 0| = 2, Ri is the precisely the limit of a tree-martingale and we can

apply [44] , Theorem 2.1, to obtain that, for i ∈ Σ∗,

P(Ri ≥ x) ≤ c1.37e
−c1.38x1/θ1.5 , ∀x ≥ 0, (1.60)

for some constants c1.37, c1.38 and θ1.5. Observe that the upper bound for diamR′Ṽ
∗

at (1.32) implies that diamRT ≤ 2N |Ẽ0|∑∞
n=0 supi∈Σn

l(i)Ri. Hence, under (W4),

P(diamRT ≥ x) ≤ P

(
2N |Ẽ0|

∞∑
n=0

sup
i∈Σn

ηnRi ≥ x

)
,

where η is a constant strictly less than one. Now choose ε > 0 small enough so that

η + ε < 1 and define c1.39 := (1− η − ε)/2N |Ẽ0|. For x ≥ 1, set xn := c1.39(η + ε)nx.

Clearly, if supi∈Σn
ηnRi < xn for each n, then 2N |Ẽ0|∑∞

n=0 supi∈Σn
ηnRi < x. Thus

P(diamRT ≥ x) ≤
∞∑

n=0

P

(
sup
i∈Σn

ηnRi ≥ xn

)

≤
∞∑

n=0

NnP(Ri ≥ xnη−n)

≤
∞∑

n=0

c1.37e
n ln N−c1.40( η+ε

η )
n/θ1.5x1/θ1.5

≤ c1.41e
−c1.42x1/θ1.5 ,

where the third inequality is an application of the tail bound at (1.60), and the

final inequality requires some elementary analysis. The proof of (b) requires a Borel-

Cantelli argument similar to the proof of Lemma 1.9.4. ¤

Before reaching the main result of this section, Theorem 1.10.3, we present an

almost-sure lower bound for infi∈Σδn
Zα

i , where (Zα
i )i∈Σ∗ are the random variables

introduced in Section 1.8.

Lemma 1.10.2 Assume (W1), (W2) and (W3b) hold. There exists a constant θ1.6

such that, P-a.s., there exists a constant c1.43 that satisfies

inf
i∈Σδn

Zα
i ≥ c1.43n

−θ1.6 , ∀n ≥ 1.

57



Proof: Since Zα
i is the limit of a tree-martingale, we can repeat the argument of

Lemma 1.6.5 to obtain that for some constants c1.44, c1.45, θ1.6, we have P(Zα
i ≤ x) ≤

c1.44e
−c1.45x−1/θ1.6 , for all x ≥ 0. Again, the result follows by a Borel-Cantelli argument

similar to the proof of Lemma 1.9.4. ¤

We are now able to prove the measure bounds for (T, R, µα). In the statement of

the result we use the notation ln1 x := 1∨ ln x, which represents the cut-off logarithm

function.

Theorem 1.10.3 Assume (W1), (W2), (W3b), (R1), (R2) and (R3).

(a) Fix ε > 0. There exists a constant θ1.7 such that, P-a.s., there exist constants

c1.46, c1.47, that satisfy

c1.46r
α+ε ≤ µα(BR(x, r)) ≤ c1.47r

α
(
ln1 r−1

)θ1.7 ,

for every x ∈ T , r ∈ (0, diamRT ].

(b) Suppose further that |V 0| = 2 and (W4) holds. There exist constants θ1.8, θ1.9 such

that, P-a.s., there exist constants c1.48, c1.49, satisfying

c1.48r
α
(
ln1 r−1

)−θ1.8 ≤ µα(BR(x, r)) ≤ c1.49r
α
(
ln1 r−1

)θ1.9 ,

for every x ∈ T , r ∈ (0, diamRT ].

Proof: The common upper bound of (a) and (b) was proved at (1.59) for r ∈ (0, ε0).

This is easily extended to hold for r ∈ (0, diamRT ], because µα is a probability

measure on T .

We now prove the lower bound of (b). Under the assumptions of the lemma, we

have that, P-a.s.,

Cδn ≤ c1.50n, sup
i∈Σδn

diamRTi ≤ c1.34n
θ1.5δn, inf

i∈Σδn

Zα
i ≥ c1.43n

−θ1.6 , ∀n ≥ 1,

by Lemmas 1.9.10, 1.10.1 and 1.10.2 respectively. Recall the definition of T̃δ,λ(x) from

(1.52). From the above inequalities, we have that, for n ≥ 0, x ∈ T ,

diamRT̃δn,λ(x) ≤ 2 sup
i∈Σδn

diamRTi + δnλ ≤ (2c1.34n
θ1.5 + λ)δn,

which implies that T̃δn,λ(x) ⊆ B(x, (2c1.34n
θ1.5 + λ)δn). To complete the proof of the

lower bound of (b), we shall establish a lower bound for the measure of a set of the
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form T̃δn,λ(x). If every set Ti ⊆ T̃δn,λ(x), i ∈ Σδn is open (in the sense of Section 1.9),

we clearly have Nδn,λ(x) ≤ Cδn . Hence

diamRT̃δn,λ(x) ≤ Cδn sup
i∈Σδn

diamRTi ≤ c1.51n
1+θ1.5δn. (1.61)

Choose n0 ≥ 1 such that 4c1.51n
1+θ1.5
0 δn0 < diamRT and define λn := 2c1.51n

1+θ1.5 .

Since BR(x, δnλn) ⊆ T̃δn,λn(x), we must have, for n ≥ n0,

diamRT̃δn,λn(x) ≥ λnδn > c1.51n
1+θ1.5δn,

which contradicts (1.61). Hence there exists an i ∈ Σδn such that Ti ⊆ T̃δn,λn(x) and

Ti is closed. It follows that

µα(T̃δn,λn(x)) ≥ µα(Ti) =
Zα

i l(i)α

Zα
≥ c1.52δ

α
nn−θ1.6

supj∈Σδn
Rj

, (1.62)

because l(i) ≥ ε0δnHe/Ri, by the definition of Ti being closed. From (1.60), we have

an exponential tail bound for the distribution of Ri. Consequently, we can use a

Borel-Cantelli argument to deduce that supi∈Σδn
Ri ≤ c1.53n

θ1.7 , for n ≥ 0, P-a.s.,

for some θ1.7. Combining this fact with (1.62) and the observation that T̃δn,λn(x) ⊆
B(x, (2c1.34n

θ1.5 + λn)δn), we obtain, P-a.s.,

µα(BR(x, (2c1.34n
θ1.5 + λn)δn)) ≥ c1.54δ

α
nn−(θ1.6+θ1.7), ∀n ≥ n0, x ∈ T.

Some elementary manipulation allows it to be deduced from this that, P-a.s., for

some r0 > 0, there exists a constant c1.55 such that, for r ∈ (0, r0),

µα(B(x, r)) ≥ c1.55r
α(ln1 r−1)−(α(1+θ1.5)+θ1.6+θ1.7), ∀x ∈ T.

The bound is easily extended to r ∈ (0, diamRT ]

The proof of the lower bound of (a) is similar and so we omit it here. We do

note, however, that the small order polynomial term, rε, arises because we are no

longer able to deduce exponential tail bounds for the distributions of diamRT and

Re
i . Instead, because we know from Lemma 1.5.1 and by assumption (R2) that both

random variables have finite positive moments of all orders, we can obtain tail bounds

of the form

P(diamRT ≥ x) ≤ c1.56x
−θ, P(Re

i ≥ x) ≤ c1.57x
−θ,

for arbitrarily large θ. Following a Borel-Cantelli argument similar to Lemma 1.9.4,

these translate to almost-sure results of the form, for ε > 0, P-a.s., there exist con-

stants c1.58, c1.59 such that, for n ≥ 0,

sup
i∈Σδn

diamRTi ≤ c1.58δ
1−ε
n , sup

e∈Ẽ0

sup
i∈Σδn

Re
i ≤ c1.59δ

−ε
n .

The rest of the argument is unchanged. ¤
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Figure 1.1: P.c.f.s.s. dendrite with |V 0| = 2.

1.11 Examples

We now present three examples to illustrate the kinds of sets and scaling factors to

which our results apply and demonstrate that we really are generalising from the

deterministic case.

Example 1.1 Two point V 0

Let X = R2, S = {1, 2, 3} and define

F1(x, y) =
1

2
(1− x, y), F2(x, y) =

1

2
(1 + x,−y), F3(x, y) =

(
1

2
+ cy, cx

)
, (1.63)

where c ∈ (0, 1/2) is a constant. The self-similar set T corresponding to these simili-

tudes is shown in Figure 1.1 and has V 0 = {(0, 0), (1, 0)} = Ṽ 0. Since there is only one

edge in the graph, the only resistance form on Ṽ 0 is (up to multiplicative constants):

D(f, f) = (f(x1)− f(x2))
2 ,

where x1 := (0, 0), x2 = (1, 0). All the regular harmonic structures for this set are

obtained by choosing r ∈ (0, 1)3 with r1 + r2 = 1.

Since |V 0| = 2, it follows from the results of Sections 1.4 and 1.6 that, to construct

the random Dirichlet form and resistance metric on T , we simply need the scaling

factors to satisfy (W1) and (W2). In particular, we need

E (w(1) + w(2)) = 1, Ew(3) < 1, (1.64)
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Figure 1.2: Random p.c.f.s.s. dendrite.

and
3∑

i=1

P(w(i) = 1) < 1. (1.65)

These conditions also allow the application of Theorem 1.7.1 to deduce that α is an

upper bound for the Hausdorff dimension of T in the resistance metric, P-a.s.

We now discuss the two sets of conditions for which we have proved that α is

also a lower bound for the Hausdorff dimension. First, because |Ẽ0| = 1, the matrix

M introduced at (1.39) reduces to a real-valued random variable. Specifically, M =

w(1) + w(2). Thus, for the assumption (M) to hold, we require w(1) + w(2) = 1,

P-a.s. Note that this immediately implies the left hand equality of (1.64) and the

inequality at (1.65). Hence, by Theorem 1.9.6, we have that dimH(T ) = α, P-a.s.,

whenever

w(1) + w(2) = 1, P-a.s., Ew(3) < 1,

and the scaling factors are bounded away from zero uniformly. Figure 1.2 shows

(Ṽ 9, Ẽ9) for w(1) ∼ U [ε, 1 − ε], w(2) = 1 − w(1), w(3) = w(1) ∧ w(2), which are

scaling factors that satisfy these conditions. The figure is drawn so that lengths of

edges in the picture are equal to the resistance between end-points. As to be expected

from Proposition 1.3.2, it is already noticeable at this stage of the construction that

there is a significant difference between the shortest and longest edges of the graph.

The second set of conditions are perhaps more interesting because we are able to

remove the uniform lower bound on the scaling factors. The assumptions we made

in Theorem 1.9.11 were (W1), (W2), (W3b), (R1), (R2) and (R3). However, the
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results of Section 1.6 render the conditions on the resistance perturbations surplus

to requirements, and we merely need to choose scaling factors which satisfy (W1),

(W2) and (W3b) to construct the Dirichlet form and resistance metric and show that

dimH(T ) = α, P-a.s. For example, we can simply take (w(i))3
i=1 to be independent

U(0, 1) random variables. In this case the Hausdorff dimension of T is P-a.s. equal

to the solution of

3

∫ 1

0

xαdx = 1,

which we can solve explicitly to obtain α = 2. Observe that the associated deter-

ministic construction of (T, R), using ri = Ew(i) = 1/2, i = 1, 2, 3, has Hausdorff

dimension ln 3/ ln 2. This demonstrates a significant difference between the random

and deterministic metric spaces, despite their topological equivalence.

Possibly the most important example choice of scaling factors for which we may

construct the Dirichlet form and resistance metric is when (w(i))3
i=1 are the square

roots of a triple of Dirichlet (1
2
, 1

2
, 1

2
) random variables. Precisely, this means that

(w(i))3
i=1

d
= (∆

1/2
i )3

i=1, where (∆i)
3
i=1 is a random variable that takes values in the

simplex {(x1, x2, x3) ∈ [0, 1]3 : x1 + x2 + x3 = 1} and has density

1

2π
√

x1x2x3

.

In this case, the random set we construct is a realisation of the continuum random tree

of Aldous, (see Chapter 3 for a definition and, for a proof of this correspondence, see

Appendix A). Furthermore, we note that, although the Hausdorff dimension results

of this chapter do not apply to these scaling factors, we have

E
3∑

i=1

w(i)2 = 1,

and so α = 2, which is known to be the Hausdorff dimension of the continuum

random tree. Finally, note that in Chapter 3 we show that the measures of balls

in the continuum random tree exhibit fluctuations of logarithmic order, suggesting

that it will not be possible to significantly tighten the measure bounds of Theorem

1.10.3(b) in general.

Example 1.2 Vicsek Set

Let X = R2, S = {1, 2, 3, 4, 5} and v1, v2, v3, v4, v5 = (0, 0), (1, 0), (1, 1),

(0, 1), (1/2, 1/2) respectively. Set Fi(x) = (x + 2vi)/3, for i = 1, . . . , 5. The self-

similar set T with respect to {F1, . . . , F5} is called the Vicsek set. The vertex set

V 0 = {v1, v2, v3, v4} is not a fine subset of T and so we do need to add the branch point
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Figure 1.3: Vicsek set, (V 0, E0) and (Ṽ 0, Ẽ0).

v5 to make up Ṽ 0, see Figure 1.3. We will denote the edges in Ẽ0 by ei := {vi, v5},
i = 1, 2, 3, 4. For this set, we obtain harmonic structures by taking He = 1, ∀e ∈ Ẽ0,

and choosing r to be an element of the three-dimensional set

{r : 0 < ri < 1, r1 + r3 = 1− r5 = r2 + r4}. (1.66)

Of course, there are other choices of (He)e∈Ẽ0 which lead to different relationships

between the scaling factors.

To construct the Dirichlet form of Section 1.4, we require a choice of scaling factors

for which the assumptions (R1) and (R2) hold. Consider the branching process intro-

duced at the end of Section 1.6, started from an initial ancestor (∅, e1). The first three

(∅, e1)

(1, e1)

. . (15, e1)

(1, e3)

. . (15, e3)

(5, e1)

. . .

Figure 1.4: Vicsek set family tree.

generations of the process are

shown partially in Figure 1.4.

We note that the positions of

(15, e3) relative to (1, e3) and

the position of (15, e1) rela-

tive to (1, e1) both depend on

w(15). Hence the offspring of

(1, e1) are not independent of

the offspring of (1, e3), and the branching process does not fit the multi-type branch-

ing random walk framework. Consequently, we cannot apply results from that area of

study to deduce when (R1) and (R2) hold. Note that this is consistent with the dis-

cussion of the multi-type branching random walk in Section 1.6, because the condition

(1.46) is not satisfied for the Vicsek set.

It is possible, however, to check that whenever (w(i))5
i=1 takes values in the set

at (1.66), P-a.s., then we may construct the random Dirichlet form and show that

dimH(T ) ≤ α, P-a.s. in the associated resistance metric. In fact, the only extra

condition we need to impose to deduce that dimH(T ) ≥ α, P-a.s., is that the scaling
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Figure 1.5: Hata’s tree-like set and (Ṽ 0, Ẽ0).

factors are bounded away from zero uniformly. For example, we can take w(5) ∼
U [ε, 1− ε] and set w(i) = (1− w(5))/2, i = 1, 2, 3, 4.

Example 1.3 Hata’s tree-like set

Let X = C. Set F1(z) = cz, F2(z) = (1 − |c|2)z + |c|2, where |c|, |1 − c| ∈ (0, 1).

The self-similar set T with respect to {F1, F2} is called Hata’s tree-like set. One may

check that V 0 = {c, 0, 1}, and that the graph (Ṽ 0, Ẽ0) is as shown in Figure 1.5.

Note that this graph differs from (V 0, E0) by having an edge removed. If we define

D by H0c = h and H01 = 1 and also define r = (r, 1 − r2), then (D, r) is a regular

harmonic structure if and only if hr = 1 and r ∈ (0, 1), see [39], Examples 1.3.16 and

3.1.6. Since this is the only regular harmonic structure, the set at (1.40) contains

only one point and the choice of scaling factors for which assumption (M) holds is

the deterministic case, w(1) ≡ r, w(2) ≡ 1− r2, P-a.s.

(∅, e1)

(1, e2)

(11, e1)
...

(2, e1)

(21, e2)
...

(22, e1)
...

Figure 1.6: Hata family tree.

However, this set does satisfy the the

condition at (1.46) and so we can use

multi-type branching random walk argu-

ments to find conditions upon the scaling

factors that allow us to deduce that the

resistance perturbation assumptions (R1),

(R2) and (R3) hold. Figure 1.6 shows the

first three generations of the family tree,

started from (∅, e1), where e1 := {0, 1},
e2 := {0, c}.

The relevant matrix of Laplace transforms may be calculated to be equal to

M(θ) = E

(
w(2)θ h−θw(1)θ

hθw(1)θ 0

)
.
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This has Perron-Frobenius (maximum positive) eigenvalue

ρ(θ) =
1

2

{
Ew(2)θ +

√
(Ew(2)θ)2 + 4 (Ew(1)θ)2

}
.

Under the assumption (W1), M(1) is regular stochastic and furthermore,

ρ′(1) =
2r

1 + r2
Ew(1) ln w(1) +

1

1 + r2
Ew(2) ln w(2) < 0.

These conditions allow us to apply Theorem 1 of [42] to show that Re
i (n), as defined

at (1.28), converges almost-surely and in mean to Re
i , for e ∈ Ẽ0, i ∈ Σ∗. Thus the

limit defining Re
i exists and is finite P-a.s. In fact, we remark that by adapting the

argument of [54], Proposition 2.2, it is possible to show that ρ′(1) < 0 in general

under (W1) and the regularity of M(1), see Appendix B. To demonstrate that Re
i is

non-zero, we can use the irreducibility of M(1) in an argument which is analogous to

the single-type case, see Lemma 1.6.3. Consequently, (W1) implies (R1).

In general, to show that Re
i has finite positive moments, it is possible to apply an

argument similar to the proof of [54], Theorem 2.1(ii). However, for this set, we can

remove the necessity for this by reducing the problem to the single-type situation.

Observe that we can write,

Re1

∅ = w(2)Re1
2 + w(1)w(11)Re1

11,

and so we can use the single-type results to obtain that under (W1), E((Re1

∅ )d) is

finite for d > 0. Since Re2

∅ = w(1)Re1
1 , this means that (W1) also implies (R2).

Assume further that (W3b) holds. It follows from Lemma 1.6.6, the random variables

(w(i))i∈Σ∗ are independent have finite negative moments of some order. Thus the same

is true for w(2) and w(1)w(11), and so we can repeat the proof of Lemma 1.6.5 to

show that the distribution of Re1

∅ has exponential tails at zero. Hence E((Re1

∅ )−d) is

finite for all d > 0. Again, because Re2

∅ = w(1)Re1
1 , and each of these factors has finite

negative moments for some power, then so does Re2

∅ . Hence (R3) holds.

In summary, whenever (w(i))2
i=1 are independent (0, 1] random variables which

satisfy

(Ew(1))2 + Ew(2) = 1,
2∑

i=1

P(w(i) = 1) < 1,

and the tail inequality of (W3b), we can construct the random Dirichlet form and

resistance metric, and deduce that dimH(T ) = α, P-a.s.
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Chapter 2

Heat kernel estimates for a
resistance form with non-uniform
volume growth

In this chapter, we consider the general problem of estimating the heat kernel on

measure-metric spaces equipped with a resistance form. As outlined in the first chap-

ter, such spaces admit a corresponding resistance metric that reflects the conductivity

properties of the set. In this situation, it has been proved that when there is uniform

polynomial volume growth with respect to the resistance metric, the behaviour of the

on-diagonal part of the heat kernel is completely determined by this rate of volume

growth. However, recent results have shown that for certain random fractal sets,

there are global and local (point-wise) fluctuations in the volume of balls of radius r

as r → 0 and so these uniform results do not apply. Motivated by these examples, we

present global and local on-diagonal heat kernel estimates when the volume growth

is not uniform, and demonstrate that when the volume fluctuations are non-trivial,

there will be non-trivial fluctuations of the same order (up to exponents) in the short-

time heat kernel asymptotics. We also provide bounds for the off-diagonal part of

the heat kernel. These results apply to deterministic and random self-similar fractals,

and metric space dendrites.

2.1 Background and notation

We start by introducing the general framework and notation that we will use through-

out the chapter. Let (X, d) be a locally compact, separable, path-connected metric

space, and µ be a non-negative Borel measure on X, finite on compact sets and strictly

positive on non-empty open sets. Assume that (E ,F) is a local, regular Dirichlet form

66



on L2(X, µ) and that its extended Dirichlet space (E ,Fe) is a resistance form on X,

(see Appendix C for a definition of Fe). As discussed in Chapter 1, resistance forms

arise naturally from self-similar fractals and metric space dendrites, and a precise

definition is given in Section 1.1. A further discussion of the connection between

resistance and Dirichlet forms appears in Appendix C.

Generalising the definition at (1.8), define the resistance function R by

R(A,B)−1 := inf{E(f, f) : f ∈ F , f |A = 1, f |B = 0}, (2.1)

for disjoint subsets A,B of X. If we set R(x, y) = R({x}, {y}), for x 6= y, and

R(x, x) = 0, then using the fact that (E ,Fe) is a resistance form, it may be shown

that the function R : X × X → [0,∞) is a metric on X. This metric is called the

resistance metric, and we shall assume that the topology induced by R is compatible

with the topology induced by d. Note that, in the electrical network interpretation

of a quadratic form, the right hand side of (2.1) is precisely the effective conductivity

between the sets A and B. Thus the resistance function represents the effective

resistance between sets. In this chapter, we shall denote by B(x, r) the path-connected

component of the resistance ball of radius r around x containing x.

Given a Dirichlet form, there is a natural way to associate it with a non-negative

self-adjoint operator, −L, which has a domain dense in L2(X,µ) and satisfies

E(f, g) = −
∫

X

fLgdµ, ∀f ∈ F , g ∈ D(L).

Through this association, we may define a related reversible strong Markov process,

((Xt)t≥0,Px, x ∈ X), with semi-group given by Pt := etL, ([27], Theorem 6.2.1). By

repeating the argument of Proposition 1.5.3, it is possible to show that every point

in X has strictly positive capacity (to extend the proof to the non-compact case,

integrate (1.38) over B(x, 1) rather than the whole space). Consequently, it may

be deduced that the process associated with (E ,F) is unique ([27], Theorem 4.3.6),

and because our Dirichlet form is local, our process is a diffusion ([27], Theorem

6.2.2). Note that the well-known inequality for resistance forms that is stated below

at (2.17) and the assumption that the topologies of d and R are compatible imply

that Pt(Cb(X)) ⊆ Cb(X), where Cb(X) is the space of continuous bounded functions

on X. In particular, when (X, d) is compact, it follows from this that the semi-group

(Pt)t≥0 is Feller. Finally, we prove in Section 2.5 that there exists a version of the

transition density pt, for each t > 0, and it is this that will be the object of interest

in this chapter. Apart from in Section 2.5, we shall refer to it as the heat kernel or

transition density interchangeably.
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In the resistance form setting, it has been established that knowledge of the volume

growth with respect to the resistance metric can be extremely useful in determining

the behaviour of the heat kernel. One widely applicable way of describing volume

growth is the idea of volume doubling. To introduce this, suppose that we have a

strictly increasing function V , with V (0) = 0, that satisfies the doubling condition:

V (2r) ≤ CuV (r). (2.2)

We say our measure-metric space, X, has uniform volume doubling if we can find a

function V satisfying the above properties and also c2.1V (r) ≤ V (x, r) ≤ c2.2V (r),

for every x ∈ X and r ∈ [0, RX + 1), where V (x, r) := µ(B(x, r)), and RX is the

diameter of X with respect to the resistance metric, which may be infinite. This

uniform volume growth condition includes any space with uniform polynomial volume

growth, but excludes exponential growth.

In [41], for a measure-metric space satisfying the conditions of this chapter, Kuma-

gai proves that uniform volume doubling implies that there exists a constant TX > 0

depending only on (X, R) such that the following upper bound on the heat kernel

holds: for x, y ∈ X, t ∈ (0, TX ],

pt(x, y) ≤ c2.3h
−1(t)

t
e
− R(x,y)

c2.3V−1(t/R(x,y)) , (2.3)

where h(r) := rV (r) occurs as a time scale function. It is also demonstrated that a

near diagonal lower bound of the form

pt(x, y) ≥ c2.4h
−1(t)

t
, for h(c2.4R(x, y)) ≤ t, (2.4)

holds for t ∈ (0, TX ]. In particular, uniform volume doubling determines that the

on-diagonal part of the heat kernel is given up to constant multiples by h−1(t)/t.

A major motivation for investigating the properties of the heat kernel on measure-

metric spaces equipped with a resistance form is provided by fractal spaces of the type

discussed in Section 1.1. For these sets, the high degree of symmetry allows it to be

deduced that uniform volume doubling holds, and thus the results of [41] immediately

apply. However, this uniformity of volume growth does not necessarily occur in the

random fractal setting. In [33], Hambly and Jones prove that for a class of random

recursive fractals we can do no better than to bound the measures of balls by

c2.5V (r)(ln r−1)−a1 ≤ V (x, r) ≤ c2.6V (r)(ln r−1)a2 ,

where V (r) = rα, and a1, a2 are strictly positive constants. Note that, although in [33]

the volume growth is presented in terms of the original metric, it is straightforward
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to show that the same kinds of fluctuations occur when we consider the resistance

metric balls. This unevenness, caused by the random construction mechanism, means

that the uniform results do not apply. In fact, there is not even local (point-wise)

volume doubling in this example. In [34], Hambly and Kumagai show that the best

possible upper and lower bounds for the on-diagonal part of the heat kernel on a

random Sierpinski gasket are not asymptotically multiples of each other and also

exhibit logarithmic fluctuations.

The main purpose of this chapter is to approach the problem of having non-

uniform volume growth more generally. We make no assumptions on the specific

structure of our measure-metric space and place only weak conditions on the fluc-

tuations we use in the volume growth condition, see Section 2.2. The argument we

use follows closely that of Kumagai, [41], for the case of uniform volume doubling,

although more work is required to deal with the fluctuations. As one would expect,

by considering the problem in such generality, the results we get are not as sharp as

those obtained in specific cases. However, we demonstrate that the loss of accuracy

can only be in the exponents of the correction terms. We shall discuss this further in

Section 2.9 for some particular examples. The advantage of taking this approach is

that we are able to deduce widely applicable bounds, and a particularly nice feature

of the results we obtain is that the correction terms of the heat kernel bounds depend

on the correction terms of the measure bounds in simple, explicit ways. For example,

if we have logarithmic corrections to the measure, our results imply that there are no

worse than logarithmic corrections to the heat kernel.

The estimation of heat kernels has, of course, been of interest in various other set-

tings. Aronson, [7], derived upper and lower bounds on the heat kernel for an elliptic

operator in Rn and since then, the behaviour of the heat kernel for elliptic operators

on Riemannian manifolds has been studied extensively, see [31] for an introduction to

this area. Closely related to this, through discretisation techniques, is the estimation

of heat kernels on graphs, where for these spaces, heat kernels are most easily thought

of as the transition densities of the associated simple random walks. By considering

a graph to be an electrical network, where each edge has resistance one, then we can

define the resistance metric by taking R(x, y) to be the effective resistance between

vertices x and y. In this case, if we have uniform volume doubling in the resistance

metric, then suitable modifications of the results obtained by Kumagai for resistance

forms allow it to be deduced that the on-diagonal part of the (discrete time) heat

kernel behaves like h−1(n)/n, for large n.
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For a graph, it is not always straightforward to calculate the resistance between

points, and the more natural distance to use is the shortest path length metric, d.

Furthermore, the volume growth with respect to d can sometimes be very different

from that with respect to R. For example, on the integer lattice Z2, there is uniform

volume doubling in the metric d, as the volume grows like r2, whereas in the resistance

metric, the volume grows exponentially in r. Since the distance d is easier to calculate,

there has been a great deal of effort put into establishing heat kernel estimates using

knowledge of the volume growth with respect to d. As shown in [12], the information

contained by the volume growth in d is insufficient to characterise the heat kernel

behaviour, and a range of outcomes is possible. However, for fractal-type graphs the

resistance and shortest path metrics are often more closely linked, with some kind of

power law between the two holding. In fact, when the volume growth is polynomial

(in d), in [13] it is shown that double-sided (sub-Gaussian) heat kernel estimates hold

if and only if such a connection holds. The relationship between d and R is most

obvious in the case of graph trees, where the two are, in fact, identical. Consequently,

it is to fractal-type graphs and graph trees that the resistance form results are most

easily adapted.

By analogy with the random recursive fractals of [33] and [34], one might expect

that the kind of uniform volume growth that holds for many fractal-type graphs does

not hold when random variants are considered. In fact, this has already been proved

in the case of the incipient infinite cluster of critical percolation on the binary tree,

where local fluctuations of order ln ln r about a leading order r2 term occur in V (x, r),

see [14]. Note that, since this structure is a graph tree, this is the volume growth

with respect to the resistance metric. In the same article, it was shown that these

measure fluctuations lead to fluctuations of log-logarithmic order in the heat kernel,

which mirrors the results of this chapter. As in the uniform volume doubling case,

it should be a matter of making simple modifications to the techniques used here for

resistance forms to exhibit fluctuation results for graphs more generally.

Of greater relevance to our situation are dendrites. For these sets, it was shown by

Kigami, [38], that any shortest path metric, d, is in fact a resistance metric for some

resistance form. Thus, for these sets, the volume growth in the original metric, d, and

in the resistance metric, R, coincides. Moreover, using the simple structure of these

spaces, under uniform volume doubling, it is also possible to obtain a lower bound

for the heat kernel of the same form as (2.3), see [41]. Although the assumptions

that make a space a dendrite are restrictive, there are many interesting examples,

including the random self-similar dendrites constructed in Chapter 1. For discussion
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of how the results of this chapter apply to these sets, see Section 2.9. An example

of particular importance is the continuum random tree, which is a random dendrite

that arises naturally as the scaling limit of various families of random graph trees. In

Chapter 3, detailed measure asymptotics are proved for this set, allowing us to apply

the results of this chapter to deduce corresponding heat kernel estimates.

2.2 Volume fluctuations

In this section, we make precise the volume growth condition that we shall presuppose

for the remainder of the chapter. First, as in the previous section, let V be a strictly

increasing function, with V (0) = 0, that satisfies the doubling condition of (2.2). We

will define βu := ln Cu/ ln 2 to be the upper volume growth exponent, and continue

to use the notation h(r) := rV (r). Secondly, we assume that there exist volume

fluctuation functions fl, fu : [0, RX + 1) → [0,∞] such that

fl(r)V (r) ≤ V (x, r) ≤ fu(r)V (r), ∀x ∈ X, r ∈ [0, RX + 1), (2.5)

where V (x, r) := µ(B(x, r)), and B(x, r) is the path-connected component of the

resistance ball containing x, as in Section 2.1. Typically, we are considering the case

when the volume growth is primarily determined by V and the functions fl and fu are

lower order fluctuations. This is formalised in the conditions given below on fl and

fu, although it is possibly more enlightening to refer to the examples in Section 2.9.

We will use the notation Vl(r), Vu(r) to represent fl(r)V (r), fu(r)V (r) respectively.

Similarly, we define hl(r) = rVl(r) and hu(r) := rVu(r). The restrictions we make on

fl and fu are the following:

(i) fl(r)
−1, fu(r) = O(r−ε), as r → 0, for some ε > 0.

(ii) fl(r) is increasing, fu(r) is decreasing.

(iii) fl(r)
1/b, fu(r)

−1/b are concave on [0, r0], for some b, r0 > 0.

Here, b and ε are constants upon which we will place upper bounds in Sections 2.3

and 2.4. Without loss of generality, by rescaling if necessary, we can assume further

that fl ≤ 1 and fu ≥ 1. It turns out that the ratio of fl to fu is particularly useful in

stating our main results, and we shall notate it as follows

g(r) :=
fl(r)

fu(r)
.

By the assumptions on fl and fu, we have that g is increasing, ≤ 1 and g(r)−1 =

O(r−2ε) as r → 0.
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2.3 Statement of on-diagonal results

We are now ready to present the first results of this chapter, which explain the

behaviour of the on-diagonal part of the heat kernel when the volume growth of the

previous section is assumed. The upper bound on the constants b and ε, which appear

in the conditions of the volume fluctuation functions fl and fu, that we require is the

following:

b, ε <
1

4(2 + βu)
. (2.6)

We also define θ1 to be a constant that satisfies

θ1 >
(3 + 2b + 2βu)(2 + βu)

1− 2b(3 + 2b + 2βu)
. (2.7)

This is an exponent that arises in the course of establishing the following on-diagonal

heat kernel bounds, which are proved in Section 2.6 as Propositions 2.6.1 and 2.6.8.

Theorem 2.3.1 There exist constants t0 > 0 and c2.6, c2.7, c2.8 such that

c2.6
h−1(t)

t
g(h−1(t))θ1 ≤ pt(x, x) ≤ c2.7

h−1
l (t)

t
≤ c2.8

h−1(t)

t
fl(h

−1(t))−1,

for all x ∈ X, t ∈ (0, t0). If RX = ∞ then we may take t0 = ∞, otherwise t0 is finite.

Remark 2.1 The bound on the right hand side of this theorem is in general strictly

worse than the bound involving h−1
l (t). However, we include it here because it demon-

strates clearly that the type of fluctuations in the heat kernel are no worse than those

in the measure.

The next result shows that, if there actually are asymptotic fluctuations in the

measure of the order of fl and fu, then there will be spatial fluctuations in the heat

kernel asymptotics.

Theorem 2.3.2 If

0 < lim inf
r→0

inf
x∈X

V (x, r)

Vl(r)
≤ lim sup

r→0
inf
x∈X

V (x, r)

Vl(r)
< ∞, (2.8)

and

0 < lim inf
r→0

sup
x∈X

V (x, r)

Vu(r)
≤ lim sup

r→0
sup
x∈X

V (x, r)

Vu(r)
< ∞; (2.9)

then

0 < lim inf
t→0

inf
x∈X

tpt(x, x)

h−1(t)g(h−1(t))θ1
, lim sup

t→0
inf
x∈X

tpt(x, x)

h−1
u (t)

< ∞, (2.10)
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and

0 < lim inf
t→0

sup
x∈X

tpt(x, x)

h−1
l (t)

≤ lim sup
t→0

sup
x∈X

tpt(x, x)

h−1
l (t)

< ∞. (2.11)

Remark 2.2 Note that we have non-trivial fluctuations in the measure if and only

if Vu(r)/Vl(r) → ∞ as r → 0. This is equivalent to h−1
l (t)/h−1

u (t) → ∞ as t → 0,

which implies that there are non-trivial fluctuations in the heat kernel over space.

2.4 Statement of off-diagonal results

To obtain the off-diagonal heat kernel bounds we shall assume again that we have

volume growth bounded as at (2.5). We also need two extra conditions and we intro-

duce those now. We shall be slightly stricter about how the function V (r) behaves

for small r. We shall assume that there exist constants R′
X > 0, Cl > 1 such that

ClV (r) ≤ V (2r), ∀r ≤ R′
X , (2.12)

and define βl := ln Cl/ ln 2, the lower volume growth exponent. Comparing this to

equation (2.2) means that we must have βl ≤ βu. This condition ensures that V

increases suitably quickly near 0, and is sometimes referred to in the literature as the

anti-doubling property. We shall also tighten the conditions on b and ε to

b, ε <
βl

8(2 + βu)2
, (2.13)

and define θ1, θ2 and θ3 to be exponents satisfying

βl

2b
∧ βl

2ε
> θ1 >

(3 + 2b + 2βu)(2 + βu)

1− 2b(3 + 2b + 2βu)
, (2.14)

θ2 >
θ1(1 + βl)

βl − 2bθ1

, (2.15)

θ3 = (3 + 2b + 2βu)(1 + 2β−1
l ).

Note that our assumptions on b and ε at (2.13) mean that it is indeed possible to

choose θ1 satisfying (2.14). Furthermore, we can choose θ1 that is consistent with

(2.7) and (2.14), we have merely added an upper bound.

Under these assumptions, we are able to deduce the following result for the off-

diagonal parts of the heat kernel. It is proved in Section 2.7 as Propositions 2.7.3

and 2.7.6. In the statement of the result we use the chaining condition (CC), which
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is defined as follows: there exists a constant c2.9 such that, for all x, y ∈ X, and all

n ∈ N, there exists {x0, x1, . . . , xn} ⊆ X with x0 = x, xn = y such that

R(xi−1, xi) ≤ c2.9
R(x, y)

n
, ∀1 ≤ i ≤ n.

When this assumption holds, the following bounds show that the exponential decay

away from the diagonal differs from the uniform case by a factor that is of an order

no greater than the measure fluctuations (up to exponents).

Theorem 2.4.1 There exist constants t1 > 0 and c2.10, c2.11 such that

pt(x, y) ≤ c2.10
h−1(t)

t
fl(h

−1(t))−1e
−c2.11

R
V−1(t/R)

g(V −1(t/R))θ3

,

for all x, y ∈ X, t ∈ (0, t1), where R := R(x, y).

Furthermore, if (CC) holds, then there exist constants t2 > 0 and c2.12, c2.13 such

that

pt(x, y) ≥ c2.12
h−1(t)

t
g(h−1(t))θ1e

−c2.13
R

V−1(t/R)
g(V −1(t/R))−θ2

,

for all x, y ∈ X, t ∈ (0, t2), where R := R(x, y).

Note that, if R′
X = ∞, then we may take t1 = t2 = ∞, otherwise t1 and t2 are

finite.

Remark 2.3 We note that the results of Sections 2.3 and 2.4 reduce to those obtained

by Kumagai in [41] when fl is bounded away from 0 and fu is bounded above by a

finite constant. The extension of the near-diagonal lower bound of (2.4) is proved in

Lemma 2.7.4.

Remark 2.4 Choosing θ1 and θ2 closer to the lower bound will give tighter bounds

asymptotically.

Remark 2.5 The chaining condition is not necessary to obtain the off-diagonal upper

bound. However, as is remarked in [41], Section 5, by Kumagai, even for the case of

uniform volume doubling, the bound is not optimal in general when (CC) does not

hold, which is often. We note that the chaining condition holds most obviously when

X is a dendrite.
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2.5 Existence of the transition density

In this section, we prove the existence of a transition density for (Pt)t>0, using a result

appearing in [30], by Grigor′yan. The key step is establishing the ultracontractivity

of the semi-group in our setting. We shall start by defining this property and the

other standard terms that will be used in this section.

A self-adjoint semi-group (Pt)t>0 is said to be ultracontractive if there exists a

positive, decreasing function γ(t) on (0,∞) such that

‖Ptf‖2 ≤ γ(t)‖f‖1, ∀f ∈ L1(X,µ) ∩ L2(X,µ). (2.16)

This property is particularly appealing for a semi-group, and as we explain below,

it immediately guarantees the existence of a transition density for (E ,F). In the

resistance form setting, we show in Proposition 2.5.2 that the only condition needed

to deduce ultracontractivity is a suitable uniform lower bound on the volume of

resistance balls.

A family (pt)t>0 of µ× µ-measurable functions on X ×X is called a (symmetric)

transition density of the semi-group (Pt)t>0 (alternatively, of the form (E ,F)) if there

exists X ′ ⊆ X with µ(X\X ′) = 0 such that, for any bounded measurable function f ,

Ptf(x) =

∫

X

pt(x, y)f(y)µ(dy), ∀x ∈ X ′, t > 0,

pt(x, y) = pt(y, x) ∀x, y ∈ X, t > 0,

and

ps+t(x, y) =

∫

X

ps(x, z)pt(z, y)µ(dz), ∀x, y ∈ X, s, t > 0.

Similarly, a family (p̃t)t>0 of µ × µ-measurable functions on X × X is called a heat

kernel of (Pt)t>0 if p̃t is an integral kernel of Pt for each t > 0. Clearly, this only defines

a heat kernel up to a µ-null set. The extra conditions on the transition density mean

that it is defined everywhere in X and is also a heat kernel. Consequently, for an

arbitrary heat kernel our results only apply µ-almost-everywhere.

Before we prove the existence of a transition density for (E ,F), we state the

crucial lemma that we will apply, the proof of which relies on the Riesz representation

theorem. It should be noted that the argument we use for our main result, Proposition

2.5.2, is standard, and is similar to the proof of the heat kernel upper bound proved

in [41], Proposition 4.1. In the proof, we will utilise the following observation, which

we recall from (1.36). In particular, we have that

|f(x)− f(y)|2 ≤ R(x, y)E(f, f), ∀x, y ∈ X, f ∈ Fe. (2.17)
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This inequality, together with the assumption that the topologies induced by R and

d are compatible, means that Fe ⊆ C(X), where C(X) is the space of continuous

functions on (X, d).

Lemma 2.5.1 ([30], Lemma 8.1) If the semi-group (Pt)t>0 is ultracontractive, then

it admits a transition density.

Proposition 2.5.2 There exists a transition density (pt)t>0 for (Pt)t>0, and more-

over, for each t > 0, pt(x, y) is jointly continuous in x and y.

Proof: By rescaling, to demonstrate that (Pt)t>0 is ultracontractive, it is sufficient

to check that (2.16) holds for every f ∈ L1(X, µ) ∩ L2(X, µ) with ||f ||1 = 1. Con-

sequently, we take f to be a function satisfying these conditions, and we denote

ft := Ptf . By standard semi-group theory, we note that ft ∈ D(L) ⊆ F for every

t > 0, where D(L) is the domain of the generator of (Pt)t>0. Now observe that we

must have, for every x ∈ X, r, t > 0,

∫

B(x,r)

|ft(y)|µ(dy) ≤ ||ft||1 ≤ ||f ||1 = 1.

Hence there must exist a y ∈ B(x, r) such that |ft(y)| ≤ V (x, r)−1 ≤ Vl(r)
−1, where

we apply the volume bound of (2.5) for the second inequality. Combining this result

with the inequality that was stated at (2.17), it is possible to deduce that

1

2
|ft(x)|2 ≤ |ft(y)|2 + |ft(x)− ft(y)|2

≤ Vl(r)
−2 + rE(ft, ft).

We now define ψ(t) := ||ft||22, which is a positive decreasing function. The above

inequality allows us to write

ψ(t/2) =

∫

X

ft/2(x)ft/2(x)µ(dx)

≤
∫

X

|f(x)ft(x)|µ(dx)

≤ 21/2(Vl(r)
−2 + rE(ft, ft))

1/2,

where for the final inequality we use the fact that ||f ||1 = 1. Applying established

results for semi-groups, we have that ψ′(t) = −2E(ft, ft). Thus the above inequality

may be rearranged to give

ψ′(t) ≤ 2Vl(r)
−2 − ψ(t)2

r
,
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where we also apply the fact that ψ(t) ≤ ψ(t/2). By following the proof of [41],

Proposition 4.1, we are able to deduce from this differential inequality the existence

of constants c2.14, t3 > 0 such that

ψ(t) ≤ c2.14
h−1

l (t)

t
, ∀t ∈ (0, t3),

which implies that in (2.16) we may take γ(t) = (c2.14h
−1
l (t)/t)1/2 for t ∈ (0, t3).

Hence (Pt)t>0 is ultracontractive, and so, by Lemma 2.5.1, it admits a transition

density (pt)t>0.

To prove the continuity of pt for each t > 0, we first observe that pt(x, ·) =

Pt/2pt/2(x, ·). This implies that pt(x, ·) ∈ D(L) ⊆ Fe, and in particular we must have

E(pt(x, ·), pt(x, ·)) < ∞. Consequently, we can apply the inequality at (2.17) and the

symmetry of the transition density to deduce the desired continuity result. ¤

2.6 Proof of on-diagonal heat kernel bounds

In this section, we determine bounds for the on-diagonal part of the heat kernel.

We start with the proof of the upper bound. As is often the case, this is relatively

straightforward to obtain. It is the lower bound which requires more work and the

remainder of the section is dedicated to this. A result of interest in its own right is

Proposition 2.6.6, where we present bounds for the expected time to exit a ball.

Proposition 2.6.1 There exist constants t4 > 0 and c2.15 such that

pt(x, x) ≤ c2.15
h−1

l (t)

t
≤ c2.15

h−1(t)

t
fl(h

−1(t))−1, ∀x ∈ X, t ∈ (0, t4).

If RX = ∞, then we may take t4 = ∞, otherwise t4 is finite.

Proof: The proof of the analogous upper bound in [41], Proposition 4.1, uses only

that a multiple of V (r) is a lower bound for V (x, r). In our case, the lower bound

that is appropriate is Vl(r), and we may repeat the argument to obtain

p2hl(r)(x, x) ≤ 2r

hl(r)
, ∀r ∈ [0, RX). (2.18)

Define t0 := hl(RX). Then, for t < t0 we can find r < RX such that t = 2hl(r),

and under this parametrisation we find pt(x, x) ≤ c2.15h
−1
l (t)/t, which is the first

inequality.

We now claim that

h(fl(r)r) ≤ hl(r) ≤ h(r). (2.19)
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Noting that V is increasing and fl(r) ≤ 1 we must have

h(fl(r)r) = fl(r)rV (fl(r)r) ≤ fl(r)rV (r) = hl(r),

which is the left hand inequality. To prove the right hand inequality we simply note

that hl(r) = rfl(r)V (r) ≤ rV (r) = h(r). Thus the claim does indeed hold. If we now

define r by t = hl(r), we have from (2.19) that h(fl(r)r) ≤ t ≤ h(r), and applying

h−1 to this yields

fl(r)h
−1
l (t) = fl(r)r ≤ h−1(t) ≤ r. (2.20)

With this choice of r, the upper bound on the transition density given at (2.18)

implies that

pt(x, x) ≤ c2.15
h−1

l (t)

t
≤ c2.15

h−1(t)

t
fl(r)

−1,

where we have applied the left hand inequality of (2.20). To complete the proof we

use the right hand inequality of (2.20) to deduce that fl(h
−1(t)) ≤ fl(r). ¤

The aim of the subsequent four lemmas is to deduce bounds on the effective

resistance from the centre of a ball to its surface. We start by proving two lemmas

which explain how to move factors in and out of the functions V , fl and fu, and

which will be used repeatedly later in the chapter. Following this, Lemma 2.6.4 is a

version of the result proved in [11], Lemma 2.7. We show how we can bound the size

of a cover of a ball with suitably scaled smaller balls. The result of interest is easily

deduced from this estimate, and appears as Lemma 2.6.5.

Lemma 2.6.2 Let Λ ≥ 1, then V (Λr) ≤ CuΛ
βuV (r).

Proof: Let n = dln Λ/ ln 2e and then, using the doubling property of V , (2.2), we

have V (Λr) ≤ Cn
uV (2−nΛr) ≤ C

1+lnΛ/ ln 2
u V (r) = CuΛ

βuV (r). ¤

Lemma 2.6.3 There exist constants c2.16, c2.17 such that

fl(λr) ≥ c2.16λ
bfl(r), ∀λ ∈ [0, 1], r ∈ [0, RX + 1),

fu(λr) ≤ c2.17λ
−bfu(r), ∀λ ∈ [0, 1], r ∈ [0, RX + 1).

Proof: We shall only prove the result for the fl. The result for fu is proved by

applying the same argument to 1/fu. By assumption, f
1/b
l is concave and positive on

[0, r0] and so, for λ ∈ [0, 1], r ∈ [0, r0],

f
1/b
l (λr) ≥ λf

1/b
l (r) + (1− λ)f

1/b
l (0) ≥ λf

1/b
l (r).
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Thus we have the result for r ∈ [0, r0]. Now, define fl(R̃X) := limr↑R̃X
fl(r), where

R̃X := RX + 1, which exists in (0, 1] by the boundedness and monotonicity of fl. We

also have that fl(r) ≤ fl(R̃X), for every r ∈ [0, R̃X). Hence, using the result already

established for small r, we can deduce, ∀λ ∈ [0, 1], r ∈ [r0, R̃X), that

fl(λr) ≥ fl(λr0) ≥ fl(r0)

fl(R̃X)
λbfl(r),

which completes the proof. ¤

Lemma 2.6.4 Fix ε ∈ (0, 1/2]. For any r > 0, x ∈ X, we can find a cover of B(x, r)

consisting of fewer than M balls of radius εr, where

M := c2.18g(r)−1,

with c2.18 a constant (depending on ε).

Proof: Let x1 ∈ B(x, r) and choose x2, x3, . . . by letting xi+1 be any point in

B(x, r)\ ∪i
j=1 B(xj, εr). We do this until we can no longer proceed. Note that we

must have the B(xi, εr/2) disjoint and also ∪m
i=0B(xi, εr/2) ⊆ B(x, r(1+ε/2)), where

m is the number of balls selected for the cover. It follows that

mVl(εr/2) ≤ µ

(
m⋃

i=0

B(xi, εr/2)

)

≤ µ (B(x, r(1 + ε/2)))

≤ Vu(r(1 + ε/2)).

Now, by applying Lemma 2.6.2 and Lemma 2.6.3, we have Vl(εr/2) ≥ c2.19Vl(r),

and also Vu(r(1 + ε/2)) ≤ c2.20Vu(r). Hence we must have m ≤ c2.18fu(r)fl(r)
−1 =

c2.18g(r)−1, and so the assertion is proved. ¤

Lemma 2.6.5 There is a constant c2.21 such that, for all r ∈ [0, RX/2), x ∈ X,

c2.21rg(r)2 ≤ R(x,B(x, r)c) ≤ r.

Proof: This result may be proved by repeating exactly the same argument as was

used in [41], Lemma 4.1, with the cover size being determined by Lemma 2.6.4. ¤
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We shall now prove bounds on the expected exit time of a resistance ball. For

A ⊆ X, we shall define

TA := inf{t ≥ 0 : Xt 6∈ A}
to be the first exit time from A. Furthermore, in subsequent results, we use the

notation Ex to represent the expectation under the measure Px.

Proposition 2.6.6 There exists a constant c2.22 such that

Ex0TB(x0,r) ≥ c2.22hl(rg(r)2), ∀x0 ∈ X, r ∈ [0, RX/2)

ExTB(x0,r) ≤ hu(r), ∀x, x0 ∈ X, r ∈ [0, RX/2).

Proof: Fix x0 ∈ X, r ∈ [0, RX/2) and let B := B(x0, r). Then, as in [41], Proposition

4.2, it may be deduced that there exists a Green kernel gB(·, ·) for the process killed

on exiting B that satisfies

E(gB(x, ·), gB(x, ·)) = gB(x, x), (2.21)

gB(x, x) = R(x,Bc), (2.22)

gB(x, y) ≤ gB(x, x), (2.23)

ExTB =

∫

B

gB(x, y)µ(dy), (2.24)

for all x, y ∈ X.

By the inequality at (2.17) for the function gB(x0, ·), one has that

|gB(x0, y)− gB(x0, x0)|2 ≤ R(x0, y)E(gB(x0, ·), gB(x0, ·)).

By using properties (2.21) and (2.22) it follows that

(
1− gB(x0, y)

gB(x0, x0)

)2

≤ R(x0, y)

R(x0, Bc)
.

Using (2.23) and the lower bound on R(x,B(x0, r)
c) obtained in Lemma 2.6.5, it

may be deduced from the above inequality that for some constant c2.23, if y ∈
B(x0, c2.23rg(r)2), then gB(x0, y) ≥ 1

2
gB(x0, x0). So, by the representation of Ex0TB

given at (2.24), we have

Ex0TB(x0,r) ≥ 1

2
R(x0, B

c)V (x0, c2.23rg(r)2)

≥ 1

2
c2.23rg(r)2Vl(c2.23rg(r)2)

≥ c2.22hl(rg(r)2),
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which proves the lower bound. For the upper bound, we proceed as in [41], Proposition

4.2, to obtain for x ∈ X, ExTB(x0,r) ≤ rV (x0, r), which immediately implies the result

by the volume bounds at (2.5). ¤

We now present a bound on the tail of the exit time distribution which will be

sufficient for obtaining the on-diagonal lower bound for the heat kernel. The extra

anti-doubling assumption we make on the volume growth for the off-diagonal bounds

will also allow us to write this bound in a way that avoids using the rather awkward

function q. This bound is presented in Proposition 2.7.2.

Lemma 2.6.7 There exist constants c2.24, c2.25, cq such that

Px(TB(x,r) ≤ t) ≤ c2.24e
−c2.25

r
q−1(t/r)

g(q−1(t/r))γ1

, ∀x ∈ X, r ∈ (0, RX/2), t > 0,

where q(r) := cqg(r)2γ1Vu(r) and γ1 := 3 + 2b + 2βu.

Proof: The proof follows a standard pattern and involves the application of [10],

Lemma 1.1, to strengthen a simple linear bound to an exponential one. We start

by deducing the relevant linear bound. By Proposition 2.6.6, we have ExTB(x,r) ≥
c2.22hl(g(r)2r), ∀x ∈ X, r ∈ (0, RX/2), from which we may deduce that

ExTB(x,r) ≥ c2.26rg(r)2(1+b+βu)fl(r)V (r), (2.25)

by using Lemmas 2.6.2 and 2.6.3, and moreover, we can assume that c2.26 ∈ (0, 1
2
).

Furthermore, we may use the Markov property of (Xt)t≥0 to deduce that

ExTB(x,r) ≤ t + Ex1{TB(x,r)>t}EXtTB(x,r). (2.26)

Since Ex0TB(x,r) ≤ hu(r), comparing (2.25) and (2.26) yields

c2.26rg(r)2(1+b+βu)fl(r)V (r) ≤ t + Px(TB(x,r) > t)hu(r),

which we may rearrange to obtain

Px(TB(x,r) ≤ t) ≤ 1− c2.26g(r)3+2b+2βu +
t

hu(r)
,

our linear bound.

To get the exponential bound requires a kind of chaining argument which we

describe now. Let n ≥ 1 and define stopping times σi, i ≥ 0, by

σ0 = 0, σi+1 = inf{s ≥ σi : R(Xs, Xσi
) > r/n}.
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Let τi = σi − σi−1, i ≥ 1. Let Ft be the filtration generated by {Xs : s ≤ t} and

Gm = Fσm . Our linear bound gives

Px(τi+1 ≤ t|Gi) ≤ PXσi
(TB(Xσi , r/n) ≤ t)

≤ 1− c2.26g(r/n)3+2b+2βu +
t

hu(r/n)

= p(r/n) +
t

hu(r/n)
,

where p(r) := 1−c2.26g(r)γ1 ∈ (1
2
, 1) for r > 0. By continuity, we have R(Xσi

, Xσi+1
) =

r/n and so R(X0, Xt) ≤ r, for every t ∈ [0, σn], which means that σn =
∑n

i=1 τi ≤
TB(X0,r). Thus, by [10], Lemma 1.1,

lnPx(TB(x,r) ≤ t) ≤ 2

√
nt

p(r/n)hu(r/n)
− n ln

1

p(r/n)

≤ 4

√
nt

hu(r/n)
− c2.26ng(r/n)γ1 ,

where we have used the inequality ln(1− x) ≤ −x for x ∈ [0, 1).

Let cq =
c22.26

64
so that q is fixed. Now q may be rewritten as

q(r) = cqfl(r)
2γ1fu(r)

1−2γ1V (r).

Since 2γ1 > 0 > 1 − 2γ1, each of the terms in the product is increasing and strictly

positive, with V strictly increasing. Thus q is strictly increasing and q−1 may be

defined sensibly on the appropriate domain.

We consider first the case r ≥ q−1(t/r). Define

n0 := sup{n : 8

√
nt

hu(r/n)
≤ c2.26ng(r/n)γ1}

= sup{n : nq−1(t/r) ≤ r}.

By assumption, we have n0 ≥ 1 and because q−1(t/r) > 0 we must also have n0 < ∞.

Thus

n0 ≤ r

q−1(t/r)
< n0 + 1,

from which it follows that

lnPx(TB(x,r) ≤ t) ≤ −c2.27

(
r

q−1(t/r)
− 1

)
g(q−1(t/r))γ1

≤ −c2.27

(
r

q−1(t/r)

)
g(q−1(t/r))γ1 + c2.27,
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which yields the result in this case. If r < q−1(t/r) then

r

q−1(t/r)
g(q−1(t/r))γ1 ≤ 1,

and so we have the result by choosing c2.24 sufficiently large. ¤

We are now ready to prove the on-diagonal lower bound. In the proof, we will use

the following observation, which is an immediate consequence of Lemma 2.6.3: there

is a constant c2.28 such that

g(λr) ≥ c2.28λ
2bg(r), ∀λ ∈ [0, 1], r ∈ [0, RX). (2.27)

Proposition 2.6.8 There exists a constant c2.29 such that

pt(x, x) ≥ c2.29
h−1(t)

t
g(h−1(t))θ1 , ∀x ∈ X, t > 0,

where θ1 is chosen to satisfy (2.7).

Proof: Using Cauchy-Schwarz,

Px(TB(x,r) > t)2 ≤ Px(Xt ∈ B(x, r))2

=

(∫

B(x,r)

pt(x, z)µ(dz)

)2

≤ V (x, r)p2t(x, x)

≤ Vu(r)p2t(x, x). (2.28)

We prove the result by choosing a suitable r in this inequality. We shall consider the

cases for small and large t separately. Define

γ2 :=
θ1 − 2γ1

βu + 4bγ1

.

We then have γ1 − γ2(1 − 2bγ1) < 0. Noting that, if g(r) 6→ 0, fl(r) is bounded

below by a strictly positive constant and fu(r) is bounded above by a finite constant.

This means that we have uniform volume doubling and the result is given in [41],

Proposition 4.3. Thus we may assume g(r) → 0 as r → 0, and so we can choose

r′ < RX/2 such that

c2.24e
−c2.30g(r)γ1−γ2(1−2bγ1) ≤ 1

2
, ∀r ≤ r′,

where c2.30 := c2.25c2.28. Now, define t′ := r′q(r′g(r′)γ2). For t ≤ t′ we can find r ≤ r′

such that t = rq(rg(r)γ2), and use Lemma 2.6.7 to deduce that

Px(TB(x,r) ≤ t) ≤ c2.24e
−c2.25g(r)−γ2g(rg(r)γ2 )γ1 ≤ c2.24e

−c2.30g(r)γ1−γ2(1−2bγ1) ≤ 1

2
,
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where we have applied the inequality at (2.27) for the second inequality. Thus (2.28)

gives that p2t(x, x) ≥ 1/4Vu(r). After substituting the definition of q and manipulat-

ing we find that

t = cqrVu(rg(r)γ2)g(rg(r)γ2)2γ1

≥ c2.31rg(r)θ1Vu(r),

and hence p2t(x, x) ≥ c2.31rg(r)θ1/4t. We also have

t ≤ cqrVu(r)g(r)2γ1 ≤ cqrV (r)g(r)2γ1−1 ≤ cqh(r) ≤ h(c2.32r),

noting that 2γ1 > 1 and taking c2.32 = max{1, cq}. Consequently, h−1(t) ≤ c2.32r and

so

pt(x, x) ≥ p2t(x, x) ≥ c2.33
h−1(t)

t
g(h−1(t))θ1 ,

using that pt(x, x) is decreasing in t. Hence we have the bound for t ≤ t′.

Before proceeding we note that rg(r)−γ1 = O(r1−2εγ1) → 0, as r → 0, because, by

the bound on ε and b at (2.6), 2εγ1 < 1. Therefore, we can choose r̃ less than 1 such

that

c2.24e
−c2.25

1
r̃
g(r̃)γ1 ≤ 1

2
.

Choose t′′ := q(r̃). Now let t ≥ t′′ and define r by t = rq(rr̃). The right hand side of

this equation is increasing and so, because t is bounded below (by t′′), we can assume

that r is bounded below by 1. Hence applying Lemma 2.6.7 gives

Px(TB(x,r) ≤ t) ≤ c2.24e
−c2.25

r
q−1(t/r)

g(q−1(t/r))γ1

≤ c2.24e
−c2.25

r
q−1(t/r)

g(q−1(t/r)/r)γ1

= c2.24e
−c2.25

1
r̃
g(r̃)γ1

≤ 1

2
.

Hence we also have p2t(x, x) ≥ 1/4Vu(r) in this case, by (2.28). By bounding t in a

similar way to the case t ≤ t′ it may be deduced from this that

pt(x, x) ≥ c2.34
h−1(t)

t
g(h−1(t))2γ1 ,

and so we have the bound in this case, because 2γ1 ≤ θ1. Finally, for t ∈ (t′, t′′) we

may obtain the result by choosing c2.29 small enough. ¤
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We conclude this section by proving the fluctuation results of Theorem 2.3.2.

Proof of Theorem 2.3.2: The left hand inequality of (2.10) and the right hand

inequality of (2.11) are immediate corollaries of Propositions 2.6.1 and 2.6.8. We now

prove the right hand inequality of (2.10). As at (2.18), we repeat the argument of

[41] to obtain

p2rV (x,r)(x, x) ≤ 2

V (x, r)
, ∀x ∈ X, r ∈ [0, RX). (2.29)

Hence, because pt(x, x) is decreasing in t, this means that

inf
x∈X

p2hu(r)(x, x) ≤ inf
x∈X

p2rV (x,r)(x, x) ≤ 2

supx∈X V (x, r)
≤ c2.35

Vu(r)
,

for all r ∈ [0, RX), where we use the assumption at (2.9) for the final inequality.

Setting r = h−1
u (t/2), we obtain infx∈X pt(x, x) ≤ c2.36h

−1
u (t)/t, which gives the result.

It remains to prove the left hand inequality of (2.11). The majority of the proof of

this consists of repeating arguments that are almost identical to those we have seen

already, and so we omit many of the details here. By the assumption at (2.8), we can

find a sequence (xn, rn)n∈N such that xn ∈ X, rn → 0 and V (xn, rn) ≤ c2.37Vl(rn). By

proceeding similarly to the proofs of Lemmas 2.6.4 and 2.6.5, it may be deduced that

c2.38rn ≤ R(xn, B(xn, rn)c) ≤ rn, ∀n ∈ N.

Using this result, by following the argument of Proposition 2.6.6, we find that

ExnTB(xn,rn) ≥ c2.39hl(rn) ∀n ∈ N,

and

ExTB(xn,rn) ≤ c2.37hl(rn), ∀x ∈ X,n ∈ N.

Thus, by utilising the Markov property of (Xt)t≥0 as at (2.26), it follows that

Pxn(TB(xn,rn) ≤ t) ≤ 1− c2.39

c2.37

+
t

c2.37hl(rn)
,

and, in particular,

Pxn

(
TB(xn,rn) ≤ c2.39

2
hl(rn)

)
≤ 1− c2.39

2c2.37

< 1, ∀n ∈ N.

The Cauchy-Schwarz equation at (2.28) applied to xn, rn and tn = c2.39hl(rn)/2 will

then imply that

sup
x∈X

ptn(x, x) ≥ ptn(xn, xn) ≥ c2.40

V (xn, rn)
≥ c2.40

c2.37Vl(rn)
≥ c2.41h

−1
l (tn)

tn
.

Noting that tn → 0, this completes the proof. ¤
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2.7 Proof of off-diagonal heat kernel bounds

Throughout this section, we shall be assuming the extra anti-doubling condition on

the volume growth, (2.12), and the tighter upper bound on b and ε, (2.13), that was

stated in Section 2.4. These restrictions allow us to obtain the off-diagonal estimates

stated there. We start by presenting a counterpart to Lemma 2.6.2 for small λ, which

the extra volume growth condition implies.

Lemma 2.7.1 Let λ ≤ 1, then V (λr) ≤ Clλ
βlV (r), for every r ≤ R′

X .

Proof: This follows a similar argument to the proof of Lemma 2.6.2. ¤

As is usually the case in situations similar to this, the off-diagonal upper bound is

relatively straightforward to obtain from the upper bounds for the on-diagonal part of

the heat kernel and the tail of the exit time distribution of resistance balls. However,

before proceeding with the proof of the off-diagonal upper bound, it will be useful to

write the result of Lemma 2.6.7 in a slightly clearer form.

Proposition 2.7.2 If R′
X = ∞, let t5 = ∞, otherwise fix t5 ∈ (0,∞). Then there

exist constants c2.42, c2.43 such that

Px(TB(x,r) ≤ t) ≤ c2.42e
−c2.43

r
V−1(t/r)

g(V −1(t/r))θ3

, ∀x ∈ X, r ∈ (0, RX), t ∈ (0, t5).

Proof: In Lemma 2.6.7 we obtained a bound for the relevant probability in terms of

the function q−1 when r ∈ (0, RX/2). This result is easily extended to r ∈ (0, RX)

by adjusting the constants as necessary, and we shall take this as our starting point.

To establish the proposition, we use Lemma 2.7.1 to compare q−1 to functions of

V −1 and g only. Recall q(r) = cqg(r)2γ1Vu(r), and so for r ≤ R′
X , we have q(r) ≥

V (c2.44rg(r)2γ1/βl), for some constant c2.44. Thus

V −1(t/r) ≥ c2.44q
−1(t/r)g(q−1(t/r))2γ1/βl , (2.30)

for t/r ≤ q(R′
X). We also have the following upper bound on q

q(r) ≤ cqV (r)g(r)2γ1−1 ≤ cqV (r) ≤ V (c2.45r),

where c2.45 = max{(cqCl)
1/βl , 1}, which holds whenever c2.45r ≤ R′

X . Thus

V −1(t/r) ≤ c2.45q
−1(t/r), (2.31)
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for t/r ≤ q(c−1
2.45R

′
X). Combining the bounds at (2.30) and (2.31) we find that

r

q−1(t/r)
g(q−1(t/r))γ1 ≥ c2.46

r

V −1(t/r)
g(V −1(t/r))γ1(1+2β−1

l )

for all t/r ≤ q(c2.47R
′
X), where c2.47 := min{c−1

2.45, 1}. Thus we have the result when

R′
X = ∞. Assume now R′

X < ∞ and fix t5 < ∞. The previous equation gives us the

result when t/r ≤ q(c2.47R
′
X) and so we can assume that this does not hold. Hence

r

V −1(t/r)
g(V −1(t/r))θ3 ≤ t5

q(c2.47R′
X)V −1(q(c2.47R′

X))
, ∀t < t5,

and so the result will hold on choosing c2.42 suitably large. ¤

Proposition 2.7.3 We can find a t6 > 0 such that the following holds: there exist

constants c2.48, c2.49 such that, if x, y ∈ X, t ∈ (0, t6),

pt(x, y) ≤ c2.48
h−1(t)

t
fl(h

−1(t))−1e
−c2.49

R
V−1(t/R)

g(V −1(t/R))θ3

,

where R = R(x, y). If R′
X = ∞, then we can take t6 = ∞, otherwise t6 ∈ (0,∞).

Proof: Once we have the on-diagonal bound, Lemma 2.6.1, and the exponential

bound for the exit time distribution, Lemma 2.7.2, the proof is standard, see [9],

Theorem 3.11. ¤

We now start to work towards the full lower bound. The first step is deducing a

near diagonal result using a modulus of continuity argument. This is the extension

of the result obtained by Kumagai in the uniform volume doubling case, as stated at

(2.4).

Lemma 2.7.4 There exist constants c2.50, c2.51 such that, whenever x, y ∈ X satisfy

R(x, y) ≤ c2.50h
−1(t)g(h−1(t))θ1 ,

we have

pt(x, y) ≥ c2.51
h−1(t)

t
g(h−1(t))θ1 , ∀t > 0.

Proof: The proof is again standard. For any x ∈ X, t > 0, it is known that

the transition density satisfies E(pt(x, ·), pt(x, ·)) ≤ pt(x, x)/t. For a proof, see [9],

Proposition 4.16. In conjunction with the inequality at (2.17), we obtain from this

that

|pt(x, x)− pt(x, y)|2 ≤ R(x, y)E(pt(x, ·), pt(x, ·)) ≤ R(x, y)
pt(x, x)

t
.
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Thus

pt(x, y) ≥ pt(x, x)− |pt(x, x)− pt(x, y)|

≥ pt(x, x)

(
1−

√
R(x, y)

tpt(x, x)

)

≥ 1

2
pt(x, x),

whenever 4R(x, y) ≤ tpt(x, x). Consequently, the result may be obtained by applying

the on-diagonal lower bound obtained in Proposition 2.6.8. ¤

To prove the full lower bound we shall assume the chaining condition as defined in

Section 2.4. We shall use the standard chaining argument to extend the near diagonal

lower bound to the full bound. The main complication caused by the perturbations is

in choosing a suitable number of pieces into which to break the path. The aim of the

following lemma is to check that the number that we do choose is sensibly defined.

Lemma 2.7.5 Fix c2.52. Let x, y ∈ X and t > 0. If we define N = N(x, y, t) by

N := inf{n ∈ N :
R(x, y)

n
≤ c2.52h

−1(t/n)g(h−1(t/n))θ1},

then N is well-defined and finite for each pair x, y ∈ X.

Proof: Note first that h−1(t)/t = 1/V (h−1(t)), so we can rewrite N as

N = inf{n ∈ N :
R(x, y)

t
≤ c2.52

V (h−1(t/n))
g(h−1(t/n))θ1}.

It is clear that h−1(t/n) → 0 as n → ∞ and so, to prove the lemma, it suffices to

show that V (r)g(r)−θ1 → 0 as r → 0. By Lemma 2.7.1 we have

V (r)g(r)−θ1 ≤ ClV (rg(r)−θ1/βl),

for rg(r)−θ1/βl ≤ R′
X . We note that, using the assumptions of Sections 2.2 and 2.4,

we have rg(r)−θ1/βl = O(r1−2εθ1/βl) → 0 as r → 0, and so the result does indeed hold.

¤

We are now ready to state and prove the full lower bound. We now assume that

the chaining condition, (CC), holds.

Proposition 2.7.6 There exist constants t7 > 0 and c2.53, c2.54 such that, if x, y ∈ X,

t ∈ (0, t7),

pt(x, y) ≥ c2.53
h−1(t)

t
g(h−1(t))θ1e

−c2.54
R

V−1(t/R)
g(V −1(t/R))−θ2

,
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where R = R(x, y). If R′
X = ∞ then we may take t7 = ∞, otherwise t7 will be finite.

Proof: Let x, y ∈ X and R = R(x, y). If R ≤ c2.50h
−1(t)g(h−1(t))θ1 then we

have the result by Lemma 2.7.4 immediately. Thus we need only consider the case

R > c2.50h
−1(t)g(h−1(t))θ1 . We shall apply a standard chaining argument, using the

previous lemma to select the length of the path. Define

N = inf{n ∈ N :
R

n
≤ c2.50

3c2.9

h−1(t/n)g(h−1(t/n))θ1}.

Lemma 2.7.5 and the assumption on R imply that N ∈ (1,∞). By the chaining

condition we can find a path x = x0, x1, . . . , xN = y such that

R(xi−1, xi) ≤ c2.9R

N
, i = 1, . . . , N.

If we set δ = c2.50h
−1(t/N)g(h−1(t/N))θ1 , then by the definition of N , this inequality

implies that R(xi−1, xi) ≤ δ/3, for i = 1, . . . , N . Thus, if zi ∈ B(xi, δ/3), we have

R(zi−1, zi) ≤ δ, i = 1, . . . , N,

and so we may apply the near diagonal estimate to obtain

pt/N(zi−1, zi) ≥ c2.51
Nh−1(t/N)

t
g(h−1(t/N))θ1 . (2.32)

This is the first ingredient that we shall require to apply the chaining argument.

The other is a lower bound on the measures of the balls B(xi, δ/3). Using the as-

sumption (2.5),

V (xi, δ/3) ≥ Vl(δ/3)

= Vl(c2.50h
−1(t/N)g(h−1(t/N))θ1/3)

≥ c2.55V (h−1(t/N))g(h−1(t/N))1+θ1(b+βu), (2.33)

where we have applied Lemmas 2.6.2 and 2.6.3 to obtain the second inequality.

By using the Chapman-Kolmogorov equation for the transition densities of the

process X we obtain the following chaining inequality

pt(x, y) ≥
∫

B(x1, δ/3)

µ(dz1) . . .

∫

B(xN−1, δ/3)

µ(dzN−1)
N∏

i=1

pt/N(zi−1, zi).

If we then combine this with the bounds at (2.32) and (2.33) we obtain

pt(x, y) ≥ c2.51
Nh−1(t/N)

t
g(h−1(t/N))θ1

× (
c2.51c2.55g(h−1(t/N))1+θ1(b+βu+1)

)N−1
,
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where we have used the identity h−1(t)/t = 1/V (h−1(t)). The definition of N and the

assumption that R > c2.50h
−1(t)g(h−1(t))θ1 may be combined to give

Nh−1(t/N)

t
g(h−1(t/N))θ1 ≥ 3c2.9

h−1(t)

t
g(h−1(t))θ1 ,

yielding

pt(x, y) ≥ c2.56
h−1(t)

t
g(h−1(t))θ1e−c2.57N(1−c2.58 ln g(h−1(t/N))). (2.34)

To complete the argument we look for bounds on the terms involving N . Since

we know that N > 1 we can deduce, because h−1(t) is increasing,

R

N
=

R

N − 1

N − 1

N
≥ c2.50

6c2.9

h−1(t/N)g(h−1(t/N))θ1 ,

which we can rewrite as

t

R
≤ c2.59V (h−1(t/N))g(h−1(t/N))−θ1 . (2.35)

Since g(r)−1 = O(r−2ε) and 2εθ1/βl < 1, we can find a t7 > 0 such that

c2.60h
−1(t)g(h−1(t))−θ1/βl ≤ R′

X , ∀t < t7, (2.36)

where c2.60 := max{C1/βl

l , (Clc2.59)
1/βl}. Note that if R′

X = ∞ we may take t7 = ∞.

Clearly this also implies that c2.60h
−1(t/N)g(h−1(t/N))−θ1/βl ≤ R′

X , for t < t7. Thus

applying Lemma 2.7.1 to (2.35) gives

t

R
≤ V (c2.60h

−1(t/N)g(h−1(t/N))−θ1/βl), (2.37)

and so

g(Ṽ ) ≤ c2.61g(h−1(t/N))1−2bθ1/βl , (2.38)

where Ṽ := V −1(t/R). By using this in (2.35) we find

V (h−1(t/N)) ≥ c2.62
t

R
g(Ṽ )θ1βl/(βl−2bθ1),

and moreover, equations (2.36) and (2.37) imply that Ṽ ≤ R′
X . These facts allow us

to deduce, after some manipulation and the use of Lemma 2.7.1, that

h−1(t/N) ≥ V −1(c2.62
t

R
g(Ṽ )θ1βl/(βl−2bθ1)) ≥ c2.63Ṽ g(Ṽ )θ1/(βl−2bθ1).

Consequently,
t

N
≥ c2.62c2.63

t

R
Ṽ g(Ṽ )θ1(βl+1)/(βl−2bθ1),
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which is equivalent to

N ≤ c2.64
R

Ṽ
g(Ṽ )−θ1(βl+1)/(βl−2bθ1). (2.39)

Substituting the bounds of (2.38) and (2.39) into the lower bound we established at

(2.34) yields

pt(x, y) ≥ c2.56
h−1(t)

t
g(h−1(t))θ1e−c2.65

R
Ṽ

g(Ṽ )−θ1(βl+1)/(βl−2bθ1)(1−c2.66 ln g(Ṽ )),

≥ c2.56
h−1(t)

t
g(h−1(t))θ1e−c2.67

R
Ṽ

g(Ṽ )−θ2
, ∀t < t7,

which is the desired result. ¤

2.8 Local fluctuations

In [34], Hambly and Kumagai demonstrated that for certain random recursive Sier-

pinski gaskets, as well as spatial fluctuations, the heat kernel will undergo fluctuations

in time µ-almost-everywhere in X. In this section, we look to generalise this result by

showing that these local fluctuations in the heat kernel result from local fluctuations

in the measure.

Again, we shall be working with the measure-metric space (X, d, µ) and the volume

function V . We shall denote the local fluctuations by f̃l and f̃u and assume that these

satisfy the same properties as did fl and fu respectively. In fact, the results proved

here may be obtained using slightly weaker assumptions, but we omit these for brevity.

We shall use Ṽl(r), Ṽu(r), h̃l(r) and h̃u(r) to denote f̃l(r)V (r), f̃u(r)V (r), rṼl(r) and

rṼu(r) respectively.

For the following theorem, we impose conditions on the point-wise behaviour of

the volume growth. Since these assumptions do not imply uniform volume bounds,

we cannot establish a lower bound on R(x,B(x, r)c) in the way we did in Lemma

2.6.5. As we need some kind of global control on this, we simply suppose that it is

bounded below by a multiple of r. Note that this is a stricter condition than the one

established at Lemma 2.6.5 when we had global bounds on the measure.

Theorem 2.8.1 If

0 < lim inf
r→0

V (x, r)

Ṽl(r)
< ∞, 0 < lim sup

r→0

V (x, r)

Ṽu(r)
,

91



and

0 < lim inf
r→0

R(x,B(x, r)c)

r
(2.40)

for µ-almost-every x ∈ X; then

lim inf
t→0

tpt(x, x)

h̃−1
u (t)

< ∞, (2.41)

and

0 < lim sup
t→0

tpt(x, x)

h̃−1
l (t)

< ∞, (2.42)

for µ-almost-every x ∈ X.

Proof: The bound at (2.41) is proved by applying the inequality at (2.29) in exactly

the same way as in the proof of the corresponding global bound. A similar argument

is also used to prove the upper bound of (2.42).

The assumption on R at (2.40) allows us to deduce that for µ-almost-every x ∈ X,

there exists a sequence rn → 0 such that

ExTB(x,rn) ≥ c2.68h̃l(rn), ∀n ∈ N,

and

EyTB(x,rn) ≤ c2.69h̃l(rn), ∀y ∈ X, n ∈ N,

by following the argument of Proposition 2.6.6. The result at (2.42) follows from this

by applying the Markov property of our process and the Cauchy-Schwarz inequality

as we did for the analogous global bound. ¤

Remark 2.6 Using the techniques of this chapter, it is not enough to assume that

lim supr→0(V (x, r)/Ṽu(r)) < ∞ to establish a lower bound on pt(x, x) that holds for all

small t. The problem arises because we are unable to emulate the chaining argument

that was used in Proposition 2.6.7 to establish an exponential tail for the distribution

of the exit time from a ball.

Remark 2.7 Similar to the remark made after Theorem 2.3.2, we note there are

non-trivial local fluctuations in the measure if and only if Ṽu(r)/Ṽl(r) →∞ as r → 0.

This is equivalent to h̃−1
l (t)/h̃−1

u (t) → ∞ as t → 0, which implies that there are

non-trivial local fluctuations in the heat kernel.
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2.9 Examples

In this section, to illustrate the results, we look at two specific examples of correction

terms and present the conclusions for two different types of random sets. In Examples

2.1 and 2.2 we shall take V (r) = rα for some α > 0, so that βl = βu = α. For

simplicity, we assume that RX = ∞ and the chaining condition holds. In this case,

we have V −1(t) = t1/α and h−1(t) = t1/(1+α). Furthermore, in the case of uniform

volume growth with volume doubling, we can use the results of Kumagai to show that

c2.70t
− α

α+1 e
−c2.71

(
Rα+1

t

)1/α

≤ pt(x, y) ≤ c2.72t
− α

α+1 e
−c2.73

(
Rα+1

t

)1/α

for this choice of volume growth function.

Example 2.1 Polynomial corrections

We first discuss the case of arbitrary polynomial corrections. We shall assume

that given δ > 0, there exist constants c2.74, c2.75 such that

c2.74r
α(rδ ∧ 1) ≤ V (x, r) ≤ c2.75r

α(r−δ ∨ 1), ∀x ∈ X, r ≥ 0,

so that fl(r) = c2.74(r
δ ∧ 1) and fu(r) = c2.75(r

−δ ∨ 1). If we set ε = b = δ, then fl

and fu satisfy the conditions for the full bounds when δ < α/8(3 + α)2. We can then

also choose

θ1 = 4(2 + α)2, θ2 =
4(2 + α)3

α− 8δ(2 + α)2
, θ3 = (3 + 2δ + 2α)(1 + 2α−1),

and apply Theorem 2.4.1 to obtain that

c2.76t
−α−2δθ1

α+1 e
−c2.77

(
R1+α−2δθ2

t1−2δθ2

)1/α

≤ pt(x, y) ≤ c2.78t
−α+δ

α+1 e
−c2.79

(
R1+α+2δθ3

t1+2δθ3

)1/α

,

for appropriate t, x, y. We note that δ, 2δθ1, 2δθ2, 2δθ3 → 0 as δ → 0, and so, by

taking δ small enough, we can write down bounds with arbitrarily small polynomial

correction terms.

Example 2.2 Logarithmic fluctuations

Assume now that

0 < lim inf
r→0

inf
x∈X

V (x, r)

V (r)(ln r−1)−a1
≤ lim sup

r→0
inf
x∈X

V (x, r)

V (r)(ln r−1)−a1
< ∞, (2.43)

and

0 < lim inf
r→0

sup
x∈X

V (x, r)

V (r)(ln r−1)a2
≤ lim sup

r→0
sup
x∈X

V (x, r)

V (r)(ln r−1)a2
< ∞; (2.44)
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for some a1, a2 ∈ (0,∞). As we noted in Section 2.1, this is an example that arises

naturally in the random recursive fractal setting. We have fl(r) = c2.80(ln r−1)−a1 and

fu(r) = c2.81(ln r−1)a2 , which satisfy the conditions for any ε, b > 0. Thus, by applying

Theorem 2.4.1, we can deduce full heat kernel bounds with θ1, θ2, θ3 arbitrarily close

to the lower bounds of

θ1 > (3 + 2α)(2 + α), θ2 >
(3 + 2α)(2 + α)(1 + α)

α
, θ3 > (3 + 2α)(1 + 2α−1),

as long as θ1, θ2 satisfy (2.15). Thus our results show that the correction terms in

the heat kernel will be of logarithmic order. In fact, because we know the functions

explicitly, by repeating the same arguments as in previous sections more carefully, we

can improve these exponents. Theorem 2.3.2 allows us to deduce that the on-diagonal

part of the heat kernel satisfies

0 < lim inf
t→0

inf
x∈X

pt(x, x)

t−
α

α+1 (ln t−1)−
α(2α+3)(α+2)a0+a2

α+1

, (2.45)

lim sup
t→0

inf
x∈X

pt(x, x)

t−
α

α+1 (ln t−1)−
a2

α+1

< ∞

and

0 < lim inf
t→0

sup
x∈X

pt(x, x)

t−
α

α+1 (ln t−1)−
a1

α+1

≤ lim sup
t→0

sup
x∈X

pt(x, x)

t−
α

α+1 (ln t−1)−
a1

α+1

< ∞,

where a0 := a1 + a2, and we have sharpened the exponent θ1.

Example 2.3 Random recursive Sierpinski gaskets

We now compare the above results for logarithmic corrections to those that are

known to hold for the random recursive Sierpinski gasket described in [33]. The

gasket does not satisfy the chaining condition, but since we do not need this for the

on-diagonal results, our results still apply. As noted in Section 2.1, for this gasket,

the results of [33] may be adapted to show there are fluctuations in the measure of

resistance balls of the type described at (2.43) and (2.44) for some a1, a2 > 0.

Our results for the asymptotics of supx∈X pt(x, x) are tight and agree with those

found in [34] by Hambly and Kumagai for these random sets. We also have that the

upper bound on infx∈X pt(x, x) agrees with the result proved there. We observe that

the heat kernel bounds obtained for this gasket in [32] imply that

0 < lim inf
t→0

inf
x∈X

pt(x, x)

t−
α

α+1 (ln t−1)−
αa0+a2

α+1

,
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and so the lower bound at (2.45) has a strictly worse exponent than is optimal. The

main reason for this is that, because we have not taken into account the structure of

the space, our lower bound on R(x,B(x, r)c) is not tight. Using results of [32], we

deduce that c2.82r ≤ R(x,B(x, r)c) for this gasket, whereas Lemma 2.6.5 only allows

us to obtain c2.83r(ln r−1)−2a0 ≤ R(x, B(x, r)c).

We note that, because c2.82r ≤ R(x,B(x, r)c), the local measure results proved in

[33] may also be adapted to enable us to apply Theorem 2.8.1 to demonstrate there are

fluctuations in time for the heat kernel on this gasket with f̃l(r) = c2.84(ln ln r−1)−a1

and f̃u(r) = c2.85(ln ln r−1)a2 . That fluctuations of this kind exist was first proved in

[34], and it may be readily observed that the bounds of Theorem 2.8.1 agree with the

corresponding results of that paper. Finally, as was noted in the remark following

Theorem 2.8.1, we are unable to establish a local lower bound for pt(x, x) for small t

in the general case, whereas, by taking into account the specific structure of the sets

involved, Hambly and Kumagai are able to do so in this particular example.

Example 2.4 Random self-similar dendrites

Supporting a resistance form, the dendrites of Chapter 1 fit neatly into the frame-

work of this chapter, and the fact that the metric R that we constructed on these

random sets is a shortest path metric means that the chaining condition is imme-

diately satisfied. Note that, by [38], Lemma 5.7, because (T, R) is compact, it is

separable, P-a.s., and so all of the conditions on the metric space that we have as-

sumed in this chapter are indeed satisfied. Moreover, if we assume that the measure of

interest is the self-similar one, µα, as introduced in Section 1.8, then this also satisfies

the conditions necessary to apply the results proved here, P-a.s. In particular, un-

der the assumptions of Theorem 1.10.3(a), we are able to obtain the full off-diagonal

bounds for the heat kernel on the dendrite with arbitrarily small polynomial correc-

tions, as in Example 2.1. Similarly, for the assumptions of Theorem 1.10.3(b), we are

able to obtain the full off-diagonal bounds with only logarithmic corrections to the

on-diagonal part and the exponential rate of decay of the heat kernel. In Chapter

3, we show that for the continuum random tree, which is a particular self-similar

dendrite (see Appendix A), global logarithmic fluctuations in the heat kernel actually

do occur, and also deduce local results similar to those of Section 2.8.
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Chapter 3

Volume growth and heat kernel
estimates for the continuum
random tree

In this chapter, we prove global and local (point-wise) volume and heat kernel bounds

for the continuum random tree. We demonstrate that there are almost-surely log-

arithmic global fluctuations and log-logarithmic local fluctuations in the volume of

balls of radius r about the leading order polynomial term as r → 0. We also show

that the on-diagonal part of the heat kernel exhibits corresponding global logarithmic

fluctuations as t → 0 almost-surely, and provide a description of the local behaviour.

Furthermore, we demonstrate that this quenched (almost-sure) behaviour contrasts

with the local annealed (averaged over all realisations of the tree) volume and heat

kernel behaviour, which is smooth. Finally, we explain how already established re-

sults about dendrites and measure-metric spaces may be applied to the continuum

random tree to construct a process, which is the Brownian motion on the continuum

random tree.

3.1 Background and statement of main results

The continuum random tree has, since its introduction by Aldous in [1], become an

important object in modern probability theory. As well as being the scaling limit of a

variety of discrete tree-like objects, see [1], [3], by a suitable random embedding into

Rd, it is possible to describe the support of the integrated super-Brownian excursion

(ISE) using the continuum random tree ([4]). With growing evidence ([35]) to sup-

port the fact that the incipient infinite cluster of percolation in high dimensions at

criticality scales to the ISE, we hope that the results proved here will eventually con-
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tribute to the understanding of the asymptotic behaviour of random walks on these

lattice objects.

We shall denote by T the continuum random tree, which is a random set defined

on an underlying probability space with probability measure P (we shall write E for

the expectation under P). It has a natural metric, dT , and a natural volume measure,

µ. The existence of Brownian motion on T , as defined in Section 5.2 of [2], has already

been proved by Krebs, who constructed a process via a Dirichlet form on T , which

was defined as the limit of differential operators, and then Brownian motion was a

time change of this process, see [40]. We provide an alternative construction, using

the resistance form techniques developed by Kigami in [38] to define a local, regular

Dirichlet form on the measure-metric space (T , dT , µ). Given this Dirichlet form,

standard results allow the construction of an associated Markov process, X = (Xt)t≥0

with invariant measure µ, which we show is actually Brownian motion on T . The

construction used here seems more natural, allowing us to define the Dirichlet form for

Brownian motion directly. Furthermore, the arguments we use to deduce our process

satisfies the properties of Brownian motion are more concise, using more recently

developed techniques for resistance forms, rather than limiting arguments.

Once a Markov process is established on T , it is natural to ask whether it has

a transition density, and if it does, what form does the transition density take? As

discussed in Chapter 2, the current literature on measure-metric spaces equipped with

a resistance form indicates that an important part of the answer to this question is

the volume growth of the space with respect to the resistance metric. Consequently,

an understanding of this volume growth for the continuum random tree is required

for us to proceed.

It was also noted in the previous chapter that, for certain random subsets, the

kind of uniform volume growth that is often assumed does not apply. In particular,

for a class random recursive fractals, the volume of balls of radius r have fluctuations

of order of powers of ln r−1 about a leading order polynomial term, rα, [33]. With the

random self-similarity of the continuum random tree ([5], and also Appendix A), it is

reasonable to expect similar behaviour for the continuum random tree, and we shall

prove this is the case in the course of this chapter. In fact, it has already been shown

that the continuum random tree and a class of recursive fractals do exhibit the same

form of Hausdorff measure function, rα(ln ln r−1)θ, with α = 2, θ = 1 in the case of

the continuum random tree (see [20], Corollary 1.2 and [29], Theorem 5.2). Note that

this tells us that the Hausdorff dimension of the continuum random tree is 2 and we

will expect to see a leading order term of r2 in the volume estimates.
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Henceforth, define the open ball of radius r around the point σ ∈ T to be

B(σ, r) := {σ′ : dT (σ, σ′) < r}.

In the annealed case (Theorem 3.1.1), we calculate the volume of a ball of radius r

around the root exactly. The expression we obtain is easily seen to be asymptotically

equal to 2r2 as r → 0. In the quenched case (Theorem 3.1.2), the behaviour is not

as smooth and we see fluctuations in the volume growth of logarithmic order, which

confirm the expectations of the previous paragraph. Although it is tight enough

to demonstrate the order of the fluctuations, we remark that the upper bound for

infσ∈T µ(B(σ, r)) is almost certainly not optimal (as a consequence, neither are the

corresponding lower heat kernel bounds). We conjecture that, up to constants, the

lower bound for this quantity is sharp.

Theorem 3.1.1 Let ρ be the root of T , then

E(µ(B(ρ, r))) = 1− e−2r2

, ∀r ≥ 0.

Theorem 3.1.2 P-a.s., there exist constants c3.1, c3.2, c3.3, c3.4 such that

c3.1r
2 ln1 r−1 ≤ sup

σ∈T
µ(B(σ, r)) ≤ c3.2r

2 ln1 r−1,

and

c3.3r
2
(
ln1 r−1

)−1 ≤ inf
σ∈T

µ(B(σ, r)) ≤ c3.4r
2 ln1 ln1 r−1,

for r ∈ (0, diamT ), where diamT is the diameter of (T , dT ) and ln1 x := ln x ∨ 1.

Locally, we prove the following volume bounds, which show that the volume

growth of a ball around a particular point demonstrates fluctuations about r2 of

the order of ln ln r−1 asymptotically. This exactly mirrors the ln ln r−1 local fluctua-

tions exhibited by the random recursive fractals of [33]. We remark that the lim sup

result has also been proved in the course of deriving the Hausdorff measure function

of T in [20]. However, we include an alternative proof which applies properties of

a Brownian excursion directly. Similarly to the global case, we conjecture that the

best local lower bound for µ(B(σ, r)) is actually a multiple of r2(ln ln r1)−1 and the

asymptotic result appearing on the left hand side of (3.1) is optimal.
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Theorem 3.1.3 P-a.s., we have

0 < lim sup
r→0

µ(B(σ, r))

r2 ln ln r−1
< ∞,

and also

0 < lim inf
r→0

µ(B(σ, r))

r2 (ln ln r−1)−1 , lim inf
r→0

µ(B(σ, r))

r2
< ∞, (3.1)

for µ-a.e. σ ∈ T .

The global volume bounds of Theorem 3.1.2 mean that the continuum random

tree satisfies the non-uniform volume doubling of Chapter 2, P-a.s. These results

immediately allow us to deduce the existence of a transition density for the Brownian

motion on T and the following bounds upon it.

Theorem 3.1.4 P-a.s., the Brownian motion X = (Xt)t≥0 on T exists, and further-

more, it has a transition density (pt(σ, σ′))σ,σ′∈T ,t>0, that satisfies, for some constants

c3.5, c3.6, c3.7, c3.8, t0 > 0 and deterministic θ1, θ2, θ3 ∈ (0,∞),

pt(σ, σ′) ≥ c3.5t
− 2

3 (ln1 t−1)−θ1 exp

{
−c3.6

(
d3

t

)1/2

ln1

(
d

t

)θ2
}

, (3.2)

and

pt(σ, σ′) ≤ c3.7t
− 2

3 (ln1 t−1)1/3 exp

{
−c3.8

(
d3

t

)1/2

ln1

(
d

t

)−θ3
}

, (3.3)

for all σ, σ′ ∈ T , t ∈ (0, t0), where d := dT (σ, σ′) and ln1 x := ln x ∨ 1.

This result demonstrates that the heat kernel decays exponentially away from the

diagonal and there can be spatial fluctuations of no more than logarithmic order. The

following theorem that we prove for the on-diagonal part of the heat kernel shows that

global fluctuations of this order do actually occur.

Theorem 3.1.5 P-a.s., there exist constants c3.9, c3.10, c3.11, c3.12, t1 > 0 and deter-

ministic θ4 ∈ (0,∞) such that for all t ∈ (0, t1),

c3.9t
−2/3(ln ln t−1)−14 ≤ sup

σ∈T
pt(σ, σ) ≤ c3.10t

−2/3(ln t−1)1/3, (3.4)

c3.11t
−2/3(ln t−1)−θ4 ≤ inf

σ∈T
pt(σ, σ) ≤ c3.12t

−2/3(ln t−1)−1/3. (3.5)
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Locally, the results we obtain are not precise enough to demonstrate the P-a.s.

existence of fluctuations. However, they do show that there can only be fluctuations

of log-logarithmic order, and combined with the annealed result of Proposition 3.1.7,

they prove that log-logarithmic fluctuations occur with positive probability.

Theorem 3.1.6 P-a.s., for µ-a.e. σ ∈ T , there exist constants c3.13, c3.14, t2 > 0

such that for all t ∈ (0, t2),

c3.13t
−2/3(ln ln t−1)−14 ≤ pt(σ, σ) ≤ c3.14t

−2/3(ln ln t−1)1/3,

and also

lim inf
t→0

pt(σ, σ)

t−2/3(ln ln t−1)−1/3
< ∞.

The final estimates we prove are annealed heat kernel bounds at the root of T ,

which show that the expected value of pt(ρ, ρ) is controlled by t−2/3 with at most

O(1) fluctuations as t → 0.

Proposition 3.1.7 Let ρ be the root of T , then there exist constants c3.15, c3.16 such

that

c3.15t
−2/3 ≤ E (pt(ρ, ρ)) ≤ c3.16t

−2/3, ∀t ∈ (0, 1).

At this point, a comparison with the results obtained by Barlow and Kumagai

for the random walk on the incipient cluster for critical percolation on a regular tree,

[14], is pertinent. First, observe that the incipient infinite cluster can be constructed

as a particular branching process conditioned to never become extinct and the self-

similar continuum random tree (see [2]) can be constructed as the scaling limit of a

similar branching process. Note also that the objects studied here and by Barlow and

Kumagai are both measure-metric space trees and so similar probabilistic and analytic

techniques for estimating the heat kernel may be applied to them. Consequently,

it is not surprising that the quenched local heat kernel bounds of [14] exhibit log-

logarithmic differences similar to those obtained in this chapter and furthermore, the

annealed heat kernel behaviour at the root is also shown to be the same in both

settings. It should be noted, though, that the volume bounds which are crucial

for obtaining these heat kernel bounds are proved in very different ways. Here we

use Brownian excursion properties, whereas in [14], branching process arguments are

applied. Unlike in [14], we do not prove annealed off-diagonal heat kernel bounds.

This is primarily because there is no canonical way of labelling vertices (apart from

the root) in the continuum random tree.
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3.2 Preliminaries

3.2.1 Normalised Brownian excursion

An important part of the definition of the continuum random tree is the Brownian

excursion, normalised to have length 1. In this section, we provide two characterisa-

tions of the law of the normalised Brownian excursion, which may be deduced from

a standard Brownian motion on R. We shall denote by B = (Bt)t≥0 a standard,

1-dimensional Brownian motion starting from 0 under P.

We begin by defining the space of excursions, U . First, let U ′ be the space of

functions f : R+ → R+ for which there exists a τ(f) ∈ (0,∞) such that

f(t) > 0 ⇔ t ∈ (0, τ(f)).

We shall take U := U ′ ∩ C(R+,R+), the restriction to the continuous functions con-

tained in U ′. The space of excursions of length 1 is then defined to be the set

U (1) := {f ∈ U : τ(f) = 1}.
Our first description of the law of W involves conditioning the Itô excursion law,

which arises from the Poisson process of excursions of B. Since this law has been

widely studied, we shall omit most of the technicalities here. For more details of

excursion laws for Markov processes, the reader is referred to [52], Chapter VI.

Let Lt be the local time of B at 0, and L−1
t := inf{s > 0 : Ls > t} be its right

continuous inverse. Wherever L−1
t− 6= L−1

t , we define et ∈ U to be the (positive)

excursion at local time t. In particular,

et(s) :=

{ |BL−1
t−+s|, 0 ≤ s ≤ L−1

t − L−1
t− ,

0, s > L−1
t − L−1

t− .

The set of excursions of B is denoted by Π := {(t, et) : L−1
t− 6= L−1

t }. The key idea is

that Π is a Poisson process on (0,∞) × U . More specifically, there exists a σ-finite

measure, n, on U such that, under P,

# (Π ∩ ·) d
=N(·),

where N is a Poisson random measure on (0,∞)×U with intensity dtn(df). Bearing

this result in mind, even though it has infinite mass, the measure n can be considered

to be the “law” of the (unconditional) Brownian excursion.

We now describe the procedure for conditioning this measure. For c > 0, the

re-normalisation operator Λc : U → U is defined by

Λc(f)(t) =
1√
c
f(ct), ∀t ≥ 0, f ∈ U.
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Clearly, if f ∈ U , then Λτ(f)(f) ∈ U (1). For a measurable A ⊆ U (1), define the

probability measure n(1) by

n(1)(A) :=
n

(
Λτ(f)(f) ∈ A, τ(f) ≥ 1

)

n (τ(f) ≥ 1)
≡ n

(
Λτ(f)(f) ∈ A τ(f) ≥ 1

)
.

A U (1) valued process which has law n(1) is said to be a normalised Brownian excur-

sion.

Our second description of the law of the normalised Brownian excursion is as the

law of the normalised excursion straddling a fixed time. In fact, this description also

allows an explicit construction of the normalised Brownian excursion, which we shall

denote W = (Wt)0≤t≤1. First, fix T > 0 and set GT := sup{t < T : Bt = 0},
DT := inf{t > T : Bt = 0}, which are not equal, P-a.s. The excursion straddling T

is then

Zt :=

{ |BGT +t|, 0 ≤ t ≤ DT −GT ,
0, t > DT −GT ,

which takes values in U , P-a.s. We can normalise Z to have length 1 by setting

W = ΛDT−GT
(Z), which takes values in U (1), P-a.s. By comparing the density

formula for (GT , DT , (Zt)t≥0) of [18], Theorem 6, with the finite dimensional density

of n(1) (see [51], Chapter XII), it is elementary to show that the process W has the

law n(1), and so the two descriptions of the law of the normalised Brownian excursion

are equivalent.

3.2.2 Continuum random tree

The connection between trees and excursions is an area that has been of much recent

interest. In this section, we look to provide a brief introduction to this link and also

a definition of the continuum random tree, which is the object of interest of this

chapter.

Given a function f ∈ U , we define a distance on [0, τ(f)] by setting

df (s, t) := f(s) + f(t)− 2mf (s, t), (3.6)

where mf (s, t) := inf{f(r) : r ∈ [s ∧ t, s ∨ t]}. Then, we use the equivalence

s ∼ t ⇔ df (s, t) = 0, (3.7)

to define Tf := [0, τ(f)]/ ∼. We can write this as Tf = {σs : s ∈ [0, τ(f)]}, where

σs := [s], the equivalence class containing s. It is then straightforward to check that

dTf
(σs, σt) := df (s, t),
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defines a metric on Tf , and also that Tf is a dendrite, as defined in the introduction

of this thesis. Furthermore, the metric dTf
is a shortest path metric on Tf , which

means that it is additive along the paths of Tf . The root of the tree Tf is defined to

be the equivalence class σ0 and is denoted by ρf .

A natural volume measure to put on Tf is the projection of Lebesgue measure on

[0, τ(f)]. For open A ⊆ Tf , let

µf (A) := λ ({t ∈ [0, τ(f)] : σt ∈ A}) ,

where, throughout this chapter, λ is the usual 1-dimensional Lebesgue measure. This

defines a Borel measure on (Tf , dTf
), with total mass equal to τ(f).

The continuum random tree is then simply the random dendrite that we get when

the function f is chosen according to the law of the normalised Brownian excursion.

This differs from the Aldous continuum random tree, which is based on the random

function 2W . Since this extra factor only has the effect of increasing distances by a

factor of 2, our results will still apply to Aldous’ tree. In keeping with the notation

used so far in this section, the measure-metric space should be written (TW , dTW
, µW ),

the distance on [0, τ(W )], defined at (3.6), dW , and the root, ρW . However, we shall

omit the subscripts W with the understanding that we are discussing the continuum

random tree in this case. We note that τ(W ) = 1, P-a.s., and so [0, τ(W )] = [0, 1]

and µ is a probability measure on T , P-a.s. Finally, it follows from the continuity of

W that the diameter of T , diamT , is finite P-a.s.

3.2.3 Other notation

The δ-level oscillations of a function y on the interval [s, t] will be written as

osc(y, [s, t], δ) := sup
r,r′∈[s,t]:
|r′−r|≤δ

|y(r)− y(r′)|.

We shall also continue to use the notation introduced in Theorems 3.1.2 and 3.1.4,

ln1 x := ln x ∨ 1.

3.3 Annealed volume result at the root

The annealed volume result that we prove in this section follows easily from the

expected occupation time of [0, r) for normalised Brownian excursion.
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Proof of Theorem 3.1.1: By definition, we have that

µ(B(ρ, r)) = λ ({s : dT (σs, σ0) < r})
= λ ({s : Ws < r})
=

∫ 1

0

1{Ws<r}ds. (3.8)

An expression for the expectation of this random variable is obtained in [22], Section

3, giving

E (µ(B(ρ, r))) =

∫ r

0

4ae−2a2

da.

This integral is easily evaluated to give the desired result. ¤

Remark 3.1 The characterisation of µ(B(ρ, r)) at (3.8) has as a consequence that

the asymptotic results of Theorem 3.1.3 also apply to the time spent in [0, r) by the

normalised Brownian excursion as r → 0.

3.4 Brownian excursion properties

In this section, we use sample path properties of a standard Brownian motion to

deduce various sample path properties for the normalised Brownian excursion. The

definitions of the random variables B, L−1
t , Π, Z and W should be recalled from

Section 3.2.1.

Lemma 3.4.1 P-a.s.,

lim sup
δ→0

osc(W, [0, 1], δ)√
δ ln δ−1

< ∞.

Proof: From Levy’s 1937 result ([43], Theorem 52.2) on the modulus of continuity

of a standard Brownian motion, B, we may easily obtain

lim sup
δ→0

osc(B, [s, t], δ)√
δ ln δ−1

< ∞, ∀0 ≤ s < t < ∞, P-a.s. (3.9)

For (t, et) ∈ Π, we have that osc(et,R+, δ) = osc(B, [L−1
t− , L−1

t ], δ). Consequently,

(3.9) implies that et ∈ A, for all (t, et) ∈ Π, P-a.s., where

A :=

{
f ∈ U : lim sup

δ→0

osc(f,R+, δ)√
δ ln δ−1

< ∞
}

,

Hence P(N((0,∞) × Ac) > 0) = 0, where N is the Poisson process with intensity

dt n(df), as described in Section 3.2.1. This means that 0 =
∫∞

0
n(Ac)dt, whence

n(Ac) = 0. Since A is invariant under the re-normalisation of excursions, it follows

that n(1)(Ac) = 0. Since n(1) is the law of W , this completes the proof. ¤
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Lemma 3.4.2 P-a.s.,

lim sup
δ→0

inft∈[0,1−δ] osc(W, [t, t + δ], δ)√
δ(ln δ−1)−1

< ∞. (3.10)

Proof: We start by proving the corresponding result for a standard Brownian motion.

Fix a constant c3.17 and then, for n ≥ 0,

P

(
inf

j=0,...,2n−1
osc(B, [j2−n, (j + 1)2−n], 2−n) ≥ c3.172

−n
2 n−

1
2

)

= P
(
osc(B, [j2−n, (j + 1)2−n], 2−n) ≥ c3.172

−n
2 n−

1
2 , j = 0, . . . , 2n − 1

)

= P
(
osc(B, [0, 2−n], 2−n) ≥ c3.172

−n
2 n−

1
2

)2n

,

using the independent increments of a Brownian motion for the second equality. The

probability in this expression is bounded above by

P

(
sup

t∈[0,2−n]

|Bt| ≥ c3.17

21+n
2 n

1
2

)
= P

(
TBE(0,1) ≤ 4n

c2
3.17

)
≤ 1− c3.18e

− c3.19n

c23.17 ,

for some constants c3.18, c3.19, where TBE(0,1) represents the exit time of a standard

Brownian motion from a Euclidean ball of radius 1 about the origin. The distribution

of this random variable is known explicitly, see [19], and the above tail estimate is

readily deduced from the expression given there. Using the fact that 1− x ≤ e−x for

x ≥ 0 and summing over n, we have

∞∑
n=0

P

(
inf

j=0,...,2n−1
osc(B, [j2−n, (j + 1)2−n], 2−n) ≥ c3.172

−n
2 n−

1
2

)

≤
∞∑

n=0

e−2nc3.18e
− c3.19n

c23.17 ,

which is finite for c3.17 chosen suitably large. Hence Borel-Cantelli implies that, P-a.s.,

there exists a constant c3.20 such that

inf
j=0,...,2n−1

osc(B, [j2−n, (j + 1)2−n], 2−n) ≤ c3.202
−n

2 n−
1
2 , ∀n ≥ 0.

Let δ ∈ (0, 1], then δ ∈ [2−(n+1), 2−n] for some n ≥ 0. Hence

inf
t∈[0,1−δ]

osc(B, [t, t + δ], δ) ≤ inf
t∈[0,1−2−n]

osc(B, [t, t + 2−n], 2−n)

≤ inf
j=0,...,2n−1

osc(B, [j2−n, (j + 1)2−n], 2−n)

≤ c3.202
−n

2 n−
1
2

≤ c3.21

√
δ(ln δ−1)−1,
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which proves (3.10) holds when W is replaced by B. By rescaling, an analogous result

holds for any interval with rational endpoints. By countability and a monotonicity

argument, this is easily extended to P-a.s.,

lim sup
δ→0

inft∈[r,s−δ] osc(B, [t, t + δ], δ)√
δ(ln δ−1)−1

< ∞, ∀0 ≤ r < s < ∞.

Applying a similar to argument to that used in the proof of Lemma 3.4.1, the result

for excursions may be deduced from this by using the Poisson process of excursions

and rescaling. ¤

Lemma 3.4.3 P-a.s.,

λ

{
t ∈ [0, 1] : lim sup

δ→0

|Wt+δ −Wt|√
δ ln ln δ−1

< ∞
}

= 1.

Proof: An application of Fubini’s theorem allows it to be deduced from the law of

the iterated logarithm for the standard Brownian motion, B, that

λ

{
t ≥ 0 : lim sup

δ→0

|Bt+δ −Bt|√
δ ln ln δ−1

> 1

}
= 0, P-a.s.

For Z, the excursion straddling T , this implies

λ

{
t ∈ [0, DT −GT ] : lim sup

δ→0

|Zt+δ − Zt|√
δ ln ln δ−1

> 1

}

= λ

{
t ∈ [GT , DT ] : lim sup

δ→0

|Bt+δ −Bt|√
δ ln ln δ−1

> 1

}
= 0, P-a.s.

The result follows easily from this using the normalisation W = ΛDT−GT
(Z), which

we have by construction. ¤

Lemma 3.4.4 P-a.s.,

lim sup
δ→0

∫ 1

0
1{Wt<δ}dt

δ2 ln ln δ−1
< ∞.

Proof: Letting Z be the excursion straddling T and using the notation L := DT −
GT , we can rewrite the moments of the time spent below level δ by the normalised

Brownian excursion as follows. For k ≥ 0,

E

((∫ 1

0

1{Wt<δ}dt

)k
)

= E

(
L−kE

((∫ L

0

1{Zt<δ
√

L}dt

)k

L

))
.
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The conditional expectation in this expression was shown in [18], Theorem 9, to be

bounded above by (k+1)!Lkδ2k. Hence we have an upper bound of (k+1)!δ2k for the

non-conditional expectation. Thus, summing over k, this yields, for θ ∈ [0, 1), δ > 0,

E
(
eθδ−2

∫ 1
0 1{Wt<δ}dt

)
≤

∞∑

k=0

(k + 1)!θk

k!
=

1

(1− θ)2
. (3.11)

Hence, for θ ∈ (0, 1), δk := e−k,

∞∑

k=0

P

(∫ 1

0
1{Wt<δk}dt

δ2
k ln ln δ−1

k

≥ 2

θ

)
≤

∞∑

k=0

E
(
eθδ−2

k

∫ 1
0 1{Wt<δk}dt−2 ln ln δ−1

k

)

≤ 1

(1− θ)2

∞∑

k=0

k−2.

Since this is finite, the Borel-Cantelli lemma implies that

lim sup
k→∞

∫ 1

0
1{Wt<δk}dt

δ2
k ln ln δ−1

k

< ∞, P-a.s.

The lemma follows from this by a monotonicity argument. ¤

Lemma 3.4.5 P-a.s.,

λ

{
t ∈ [0, 1] : lim inf

δ→0

sups∈[0,δ] |Wt+s −Wt|√
δ(ln ln δ−1)−1

< ∞
}

= 1.

Proof: In, [50], Section 6, Orey and Taylor prove that

lim inf
δ→0

sups∈[0,δ] |Bs|√
δ(ln ln δ−1)−1

=
π

2
√

2
, P-a.s..

By applying Fubini’s theorem and rescaling, as in the proof of Lemma 3.4.3, the

lemma follows. ¤

3.5 Global upper volume bound

In this section, we prove a global upper volume bound for T . The three main in-

gredients in the proof are the modulus of continuity result proved in Lemma 3.4.1, a

bound on the tail of the distribution of the volume of a ball about the root, and the

invariance under random re-rooting of the continuum random tree. We shall apply
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this final property repeatedly in later sections. For example, in the local upper vol-

ume bounds of Propositions 3.7.1 and 3.7.2, we proceed by investigating the volume

of a ball around the root, ρ. Random re-rooting then allows the asymptotics we ob-

tain at the root to be extended to µ-a.e. σ in T . Before proving the main result of

this section, we define precisely what we mean by re-rooting and state the invariance

result that we will use.

Given W and s ∈ [0, 1], we define the shifted process W (s) = (W
(s)
t )0≤t≤1 by

W
(s)
t :=

{
Ws + Ws+t − 2m(s, s + t), 0 ≤ t ≤ 1− s
Ws + Ws+t−1 − 2m(s + t− 1, s), 1− s ≤ t ≤ 1.

The following lemma tells us that, if we select s according to the uniform distribution

on [0, 1], independently of W , then the shifted process has the same distribution as

the original, see [2], Section 2.7 for further discussion of the result.

Lemma 3.5.1 If W = (Wt)0≤t≤1 is a normalised Brownian excursion and U is an

independent U [0, 1] random variable, then W (U) has the same distribution as W .

Written down in terms of excursions, it is not immediately clear what this result is

telling us about the continuum random tree. Heuristically, it says that the distribution

of the continuum random tree is invariant under random re-rooting, when the root is

chosen from T so that it has law µ. Note that, similarly to (3.8), from the definition

of the shifted process W (s) it may be deduced that, for s ∈ [0, 1],

µ(B(σs, r)) =

∫ 1

0

1{W (s)
t <r}dt.

From this expression, it is easy to deduce from the previous lemma that, if U is a

U [0, 1] random variable independent of W , then (µ(B(σU , r)))r≥0 is equal in distri-

bution to (µ(B(ρ, r)))r≥0.

Before proceeding with the main result of this section, we prove an exponential

tail bound for the distribution of the volume of a ball of radius r about the root.

Lemma 3.5.2 There exist constants c3.22, c3.23 such that, for all r > 0, λ ≥ 1,

P
(
µ(B(ρ, r)) ≥ r2λ

) ≤ c3.22e
−c3.23λ.

Proof: This estimate is a straightforward application of the inequality at (3.11), for

it follows that, for all θ ∈ (0, 1),

P
(
µ(B(ρ, r)) ≥ r2λ

) ≤ E
(
eθr−2µ(B(ρ,r))−θλ

)
≤ e−λθ

(1− θ)2
.

¤
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Proposition 3.5.3 P-a.s., there exists a constant c3.24 such that

sup
σ∈T

µ(B(σ, r)) ≤ c3.24r
2 ln1 r−1, ∀r ∈ (0, diamT ).

Proof: In the proof, we shall denote rn := e−n, δn := r2
n(ln1 r−1

n )−1, and also write

g(r) := r2 ln1 r−1. Furthermore, we introduce the notation, for λ ∈ (0, 1], n0 ∈ N,

Aλ(n0) := {osc(W, [0, 1], λδn) ≤ rn, ∀n ≥ n0} ,

which represents a collection of sample paths of W which are suitably regular for

our purposes. We will start by showing that the claim holds on each set of the

form Aλ(n0). Until otherwise stated, we shall assume that λ and n0 are fixed. Now,

consider the sets

Bn :=

{
sup
σ∈T

µ(B(σ, rn)) > c3.25g(rn)

}
∩ Aλ(n0),

where n ≥ n0, and c3.25 is a constant we will specify below. Clearly, on the event Bn,

the random subset of [0, 1] defined by

In := {t ∈ [0, 1] : |t− s| < λδn for some s ∈ [0, 1] with µ(B(σs, rn)) ≥ c3.25g(rn)}

has Lebesgue measure no less than λδn. Thus, if U is a U [0, 1] random variable,

independent of W , then

P(U ∈ In, Bn) = E(P(U ∈ In|W )1Bn) ≥ λδnP(Bn).

Moreover, on the event {U ∈ In} ∩ Bn, there exists an s ∈ [0, 1] for which both

|U − s| < λδn and µ(B(σs, rn)) ≥ c3.25g(rn) are satisfied. Applying the modulus of

continuity property that holds on Aλ(n0), for this s we have that dT (σs, σU) ≤ 3rn,

and so µ(B(σU , 4rn)) ≥ c3.25g(rn). Hence the above inequality implies that

λδnP(Bn) ≤ P (µ(B(σU , 4rn)) ≥ c3.25g(rn))

= P (µ(B(ρ, 4rn)) ≥ c3.25g(rn))

≤ c3.22e
−c3.23c3.25n/16,

where we have applied the random re-rooting of Lemma 3.5.1 to deduce the equality,

and the distributional tail bound of Lemma 3.5.2 to obtain the final line. As a

consequence, we have that

∑
n≥n0

P(Bn) ≤ c3.22λ
−1

∑
n≥n0

ne2ne−c3.23c3.25n/16,
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which is finite for c3.25 chosen suitably large. Appealing to Borel-Cantelli and applying

a simple monotonicity argument, this implies that P-a.s. on Aλ(n0)

lim sup
r→0

supσ∈T µ(B(σ, r))

r2 ln1 r−1
< ∞.

By countability, the same must be true on the set Aλ := ∪n≥1Aλ(n). Thus, to deduce

the proposition, it remains to be shown that we can choose this set to be arbitrarily

large. However, this is a simple consequence of the sample path property of the

Brownian excursion that we proved in Lemma 3.4.1. In particular,

P(Ac
λ) = P(osc(W, [0, 1], λδn) > rn i.o.)

≤ P

(
lim sup

δ→0

osc(W, [0, 1], δ)√
δ ln δ−1

≥ c3.26√
λ

)
,

for some constant c3.26 that does not depend on λ. Letting λ → 0, this probability

converges to

P

(
lim sup

δ→0

osc(W, [0, 1], δ)√
δ ln δ−1

= ∞
)

,

which is equal to 0 by Lemma 3.4.1. This completes the proof. ¤

3.6 Global lower volume bounds

In this section, we prove global lower bounds for the volume of balls of the contin-

uum random tree. The estimates are simple corollaries of the excursion modulus of

continuity results proved in Lemmas 3.4.1 and 3.4.2.

Proposition 3.6.1 P-a.s., there exists a constant c3.27 such that

inf
σ∈T

µ(B(σ, r)) ≥ c3.27r
2
(
ln1 r−1

)−1
, ∀r ∈ (0, diamT ).

Proof: For s ∈ [0, 1], r > 0, define

αu(s, r) := inf{t ≥ 0 : |Ws+t −Ws| > r},

αl(s, r) := inf{t ≥ 0 : |Ws −Ws−t| > r},
where these expressions are defined to be 1−s, s if the infimum is taken over an empty

set, respectively. From the definition of d at (3.6), it is readily deduced that d(s, t) ≤ r
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for all t ∈ (s−αl(s, r/3), s + αu(s, r/3)), from which it follows that dT (σs, σt) ≤ r for

all t in this range. Hence

µ(B(σs, r)) ≥ αl(s, r/3) + αu(s, r/3). (3.12)

We now show how the right hand side of this inequality can be bounded below,

uniformly in s, using the uniform modulus of continuity of the Brownian excursion.

By Lemma 3.4.1, P-a.s. there exist constants c3.28, η ∈ (0, 1) such that

osc(W, [0, 1], δ) ≤ c3.28

√
δ ln δ−1, ∀δ ∈ (0, η). (3.13)

Set r1 = 3c3.28

√
η ln η−1 and then, for r ∈ (0, r1), it is possible to choose δ = δ(r) to

satisfy r = 3c3.28

√
δ ln δ−1. It follows from the inequality at (3.13) that if r ∈ (0, r1)

and |Ws −Wt| > r/3, then |s − t| > δ ≥ c3.29r
2 (ln r−1)

−1
, where c3.29 is a constant

depending only on c3.28 and η. By definition, this implies that

αl(s, r/3) ≥ c3.29r
2
(
ln r−1

)−1 ∧ s, αu(s, r/3) ≥ c3.29r
2
(
ln r−1

)−1 ∧ (1− s),

for all s ∈ [0, 1], r ∈ (0, r1). Adding these two expressions and taking a suitably small

constant, we obtain that P-a.s., there exists a constant c3.30 such that

inf
s∈[0,1]

(αl(s, r/3) + αu(s, r/3)) ≥ c3.30r
2
(
ln1 r−1

)−1
, ∀r ∈ (0, diamT ),

where we use the fact that diamT is P-a.s. finite. Taking infima in (3.12) and

comparing with the above inequality completes the proof. ¤

Proposition 3.6.2 P-a.s., there exists a constant c3.31 such that

sup
σ∈T

µ(B(σ, r)) ≥ c3.31r
2 ln1 r−1, ∀r ∈ (0, diamT ).

Proof: By following an argument similar to that used in the proof of the previous

proposition to transfer the excursion result to a result about the volume of balls in

the CRT, the proposition may be deduced from Lemma 3.4.2. ¤
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3.7 Local volume bounds

In this section, we prove the local volume growth asymptotics of Theorem 3.1.3 using

the properties of the normalised Brownian excursion that were derived in Section 3.4.

We also complete the proof of the global volume bounds of Theorem 3.1.2.

Proposition 3.7.1 P-a.s., we have

0 < lim sup
r→0

µ(B(σ, r))

r2 ln ln r−1
< ∞, (3.14)

for µ-a.e. σ ∈ T .

Proof: We shall start by proving the lower bound. Since the argument is close to

that of Proposition 3.6.1, we omit some of the details. Now, if t ∈ [0, 1) is a point

which satisfies

lim inf
δ→0

sups∈[0,δ] |Wt+s −Wt|√
δ(ln ln δ−1)−1

< ∞,

then it may be deduced, using a similar argument to Proposition 3.6.1, that

lim sup
r→0

µ(B(σt, r))

r2 ln ln r−1
> 0.

Thus

µ

{
σ ∈ T : lim sup

r→0

µ(B(σ, r))

r2 ln ln r−1
> 0

}

= λ

{
t ∈ [0, 1] : lim sup

r→0

µ(B(σt, r))

r2 ln ln r−1
> 0

}

≥ λ

{
t ∈ [0, 1) : lim inf

δ→0

sups∈[0,δ] |Wt+s −Wt|√
δ(ln ln δ−1)−1

< ∞
}

.

Since, by Lemma 3.4.5, the last line is equal to 1, P-a.s., the proof of the lower

estimate is complete.

We now prove the upper bound. Recall from (3.8) that µ(B(ρ, r)) =
∫ 1

0
1{Wt<r}dt.

Hence, P-a.s.,

lim sup
r→0

µ(B(σ0, r))

r2 ln ln r−1
= lim sup

r→0

∫ 1

0
1{Wt<r}dt

r2 ln ln r−1
< ∞, (3.15)

by Lemma 3.4.4. This gives us the desired result at the root.
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Setting g(r) = r2 ln ln r−1, and letting U be a U [0, 1] random variable, independent

of W ,

E

(
µ

{
σ ∈ T : lim sup

r→0

µ(B(σ, r))

g(r)
< ∞

})

= E

(
λ

{
s ∈ [0, 1] : lim sup

r→0
g(r)−1

∫ 1

0

1{W (s)
t <r}dt < ∞

})

= E

(∫ 1

0

1{lim supr→0 g(r)−1
∫ 1
0 1

{W
(s)
t <r}

dt<∞}ds

)

=

∫ 1

0

P

(
lim sup

r→0
g(r)−1

∫ 1

0

1{W (U)
t <r}dt < ∞ U = s

)
ds

= P

(
lim sup

r→0
g(r)−1

∫ 1

0

1{W (U)
t <r}dt < ∞

)

= P

(
lim sup

r→0
g(r)−1

∫ 1

0

1{Wt<r}dt < ∞
)

= 1,

where we use the random re-rooting of Lemma 3.5.1 for the penultimate equality and

the result at the root, (3.15), for the final one. The upper bound follows. ¤

Proposition 3.7.2 P-a.s., we have

0 < lim inf
r→0

µ(B(σ, r))

r2 (ln ln r−1)−1 , lim inf
r→0

µ(B(σ, r))

r2
< ∞ (3.16)

for µ-a.e. σ ∈ T .

Proof: The proof of the left hand inequality is essentially the same as the proof of

the lower bound of the previous proposition, with only a few minor changes needed.

The key observation is that, if s ∈ [0, 1] satisfies

lim sup
δ→0

|Ws+δ −Ws|√
δ ln ln δ−1

< ∞, (3.17)

then, again using an argument similar to that of Proposition 3.6.1, it may be deduced

that

lim inf
r→0

µ(B(σs, r))

r2 (ln ln r−1)−1 > 0.

To complete the proof it is then enough to note that, by the local modulus of conti-

nuity result of Lemma 3.4.3, (3.17) holds for a subset of [0,1] with Lebesgue measure

1, P-a.s.
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We now prove the right hand inequality. By Fatou’s lemma and the expression

for the expected volume of a ball around the root of T , Theorem 3.1.1, we have

E

(
lim inf

r→0

µ(B(ρ, r))

r2

)
≤ lim inf

r→0

E(µ(B(ρ, r)))

r2
= 2.

Hence

lim inf
r→0

µ(B(ρ, r))

r2
< ∞, P-a.s.,

which is the result at the root. The proof may be completed by applying random

re-rooting, as in the proof of the upper bound of Proposition 3.7.1. ¤

Proof of Theorem 3.1.2: Propositions 3.5.3 and 3.6.2 contain the upper and lower

bounds for sup µ(B(σ, r)) respectively. The lower bound for inf µ(B(σ, r)) was proved

in Proposition 3.6.1; the upper bound follows easily from the local upper bound at

(3.14). ¤

3.8 Brownian excursion upcrossings

To complete the proofs of the heat kernel bounds in Sections 3.9 and 3.10, as well

as the volume estimates we have already obtained, we need some extra information

about the local structure of the CRT. This will follow from the the results about the

upcrossings of a normalised Brownian excursion that we prove in this section.

Henceforth, we define, for f ∈ U ,

N b
a(f) := #{upcrossings of [a, b] by f}

and N b
a := N b

a(W ) to be the upcrossings of [a, b] by the normalised Brownian excur-

sion. Also, for f ∈ U , define h(f) := sup{f(t) : t ≥ 0}, the height of the excursion

function. It is well known, (see [51], Chapter XII) that the tail of the “distribution”

of h(f) under n is simply given by

n(h(f) ≥ x) =
1

x
, ∀x > 0. (3.18)

We now calculate the generating function of N2δ
δ (f) under the probability measure

n(·| h(f) ≥ δ). Notice that the expression we obtain does not depend on δ.
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Lemma 3.8.1 For z < 2, δ > 0,

n(zN2δ
δ (f)| h(f) ≥ δ) =

1

2− z
.

Proof: Suppose X = (Xt)t≥0 is a process with law n(·| h(f) ≥ δ), then by Neveu

and Pitman’s result ([49], Theorem 1.1), about the branching process in a Brownian

excursion, the process (Na+δ
a (X))a≥0 is a continuous time birth and death process,

starting from 1, with stationary transition intensities from i to i ± 1 of i/δ. Stan-

dard branching process arguments (see [8], Section 3) allow us to deduce from this

observation that

E(zNx+δ
x (X)) =

δz − x(z − 1)

δ − x(z − 1)
, ∀z <

x + δ

δ
.

The result follows on setting x = δ. ¤

In the proof of the following result about the tail of the distribution of N2δ
δ (f),

we shall use a result of Le Gall and Duquesne that states that the set of excursions

above a fixed level form a certain Poisson process. We outline briefly the result here,

full details may be found in [21], Section 3.

Fix a > 0 and denote by (αj, βj), j ∈ J , the connected components of the open

set {s ≥ 0 : f(s) > a}. For any j ∈ J , denote by f j the corresponding excursion of

f defined by:

f j(s) := f((αj + s) ∧ βj)− a, s ≥ 0,

and let f̃a represent the evolution of f below the level a. Applying the Poisson

mapping theorem to [21], Corollary 3.2, we find that under the probability measure

n(·| h(f) > a) and conditionally on f̃a, the point measure

∑
j∈J

δfj(df ′)

is distributed as a Poisson random measure on U with intensity given by a multiple

of n(df ′). The relevant scaling factor is given by the local time of f , which we shall

denote by la. Note that this is a measurable function of f̃a.

Lemma 3.8.2 For z ∈ [1, 2), ε > 0, δ ∈ (0, ε/2),

n(N2δ
δ (f) ≥ λ, h(f) ≥ ε) ≤ 2z1−λ

(2− z)2ε
, ∀λ ≥ 0.
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Proof: For brevity, during this lemma we shall write h = h(f) and hj = h(f j), where

f j, j ∈ J are the excursions above the level δ. Note that it is elementary to show

that the quantity N2δ
δ (f) also counts the number of excursions of f above the level δ

which hit the level 2δ. Thus

N2δ
δ (f) = #{j ∈ J : hj ≥ δ}

= #{j ∈ J : hj ∈ [δ, ε− δ)}+ #{j ∈ J : hj ≥ ε− δ}.

We shall denote these two summands N1 and N2, respectively. From the observation

preceding this lemma that the excursions above the level δ form a Poisson process

on U and the fact that the sets {h ∈ [δ, ε − δ)} and {h ≥ ε − δ} are disjoint, we

can conclude that the N1 and N2 are independent under the measure n(·| h ≥ δ) and

conditional on f̃ δ. Furthermore, we note that h ≥ ε if and only if N2 ≥ 1. Hence, for

z ∈ (0, 1],

n(zN2δ
δ (f)1{h≥ε} | h ≥ δ)

= n(n(zN1+N21{N2≥1} | f̃ δ, h ≥ δ) | h ≥ δ)

= n(n(zN1 | f̃ δ, h ≥ δ)n(zN21{N2≥1} | f̃ δ, h ≥ δ) | h ≥ δ). (3.19)

Since on the set {h ≥ δ}, and conditional on f̃ δ, N1 and N2 are Poisson random

variables with means lδn(h ∈ [δ, ε−δ)) and lδn(h ≥ ε−δ) respectively, it is elementary

to conclude that

n(zN1 | f̃ δ, h ≥ δ) = e−lδn(h∈[δ,ε−δ))(1−z),

and also

n(zN21{N2≥1} | f̃ δ, h ≥ δ) = e−lδn(h≥ε−δ)(1−z)(1− e−lδn(h≥ε−δ)z).

Substituting these expressions back into (3.19) and applying the formula for the

excursion height distribution that was stated at (3.18), it follows that

n(zN2δ
δ (f)1{h≥ε} | h ≥ δ) = n(e−lδ(1−z)δ−1 | h ≥ δ)

−n(e−lδ[(1−z)δ−1+z(ε−δ)−1] | h ≥ δ). (3.20)

Now, by [21], equation (13), lδ satisfies n(1− e−λlδ) = λ(1 + λδ)−1, for λ ≥ 0. Thus

n(e−λlδ | h ≥ δ) =
1

1 + λδ
,
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which confirms the well-known fact that under n(· |h ≥ δ), lδ behaves as an exponen-

tial, mean δ, random variable. Returning to (3.20), this fact implies that

n(zN2δ
δ (f)1{h≥ε} | h ≥ δ) =

1

2− z
− 1

2− z + δz(ε− δ)−1
.

By a simple analytic continuation argument, we may extend the range of z for which

this holds to [0,2). Finally, for z ∈ [1, 2), we have that, because δ < ε/2,

n(N2δ
δ (f) ≥ λ, h(f) ≥ ε) ≤ n(zN2δ

δ (f)1{h≥ε})z
−λ

= n(zN2δ
δ (f)1{h≥ε} | h ≥ δ)n(h ≥ δ)z−λ

=
1

δzλ

(
1

2− z
− 1

2− z + δz(ε− δ)−1

)

≤ 2z1−λ

(2− z)2ε
,

which completes the proof. ¤

We now reach the main results of this section, which give us an upper bound on

the upcrossings of [δ, 4δ] by the normalised Brownian excursion for small δ and also

a distribution tail estimate.

Proposition 3.8.3 P-a.s.,

lim sup
δ→0

N4δ
δ

ln ln δ−1
< ∞.

Proof: Fix z ∈ (1, 2), ε ∈ (0, 1) and let λ be a constant. Then, taking m0 suitably

large, we have by the previous lemma that
∞∑

m=m0

n(N21−m

2−m (f) ≥ λ ln m, h(f) ≥ ε) ≤
∞∑

m=m0

2m(1−λ) ln z

(2− z)2ε
< ∞,

for λ chosen suitably large. Hence an application of Borel-Cantelli implies that, on

{h(f) > ε},
lim sup

m→∞

N21−m

2−m (f)

ln m
< ∞, n-a.s.

Now for δ ∈ [2−(m+1), 2−m], we have [2−m, 21−m] ⊆ [δ, 4δ], and so N4δ
δ (f) ≤ N21−m

2−m (f).

Thus, on {h(f) > ε},

lim sup
δ→0

N4δ
δ (f)

ln ln δ−1
≤ lim sup

m→∞

N21−m

2−m (f)

ln m
< ∞, n-a.s.

By σ-additivity, this is easily extended to hold on U , n-a.s. A simple rescaling argu-

ment allows us to obtain the same result n(1)-a.s. on U (1). Since n(1) is the law of W ,

we are done. ¤
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Proposition 3.8.4 There exist constants c3.32, c3.33 such that

P
(
N4δ

δ ≥ λ
) ≤ c3.32e

−c3.33λ, ∀δ > 0, λ ≥ 1.

Proof: Using the scaling property, n(A) = 1√
c
n(Λc(A)), of the Ito measure, it is

possible to deduce the following alternative characterisation of n(1). For measurable

A ⊆ U (1), n(1)(A) = n(Λτ (f) ∈ A| τ ∈ [1, 2]). Hence

P(N4δ
δ ≥ λ) = n(1)(N4δ

δ (f) ≥ λ) = c3.34n(N4δ
√

τ

δ
√

τ
(f) ≥ λ, τ ∈ [1, 2]).

However, for τ ∈ [1, 2] we have that [
√

2δ, 2
√

2δ] ⊆ [δ
√

τ , 4δ
√

τ ], and so N
4δ
√

τ

δ
√

τ
(f) ≤

N2
√

2δ√
2δ

(f). Hence

P(N4δ
δ ≥ λ) ≤ c3.34n(N2

√
2δ√

2δ
(f) ≥ λ, τ ∈ [1, 2]). (3.21)

We now consider the cases λ ≤ δ−1 and λ ≥ δ−1 separately. First, suppose λ ≥ δ−1.

Since λ ≥ 1, if N2
√

2δ√
2δ

(f) ≥ λ, then h(f) ≥ √
2δ. Thus

P(N4δ
δ ≥ λ) ≤ c3.34n(N2

√
2δ√

2δ
(f) ≥ λ, h ≥

√
2δ)

=
c3.34√

2δ
n

(
N2

√
2δ√

2δ
(f) ≥ λ h ≥

√
2δ

)

≤ c3.34z
−λ

√
2δ

n

(
z

N2
√

2δ√
2δ

(f)
h ≥

√
2δ

)

≤ c3.35λz−λ

2− z
,

for z ∈ (1, 2), by Lemma 3.8.1. By fixing z ∈ (1, 2), this is clearly bounded above by

c3.36e
−c3.37λ for suitable choice of c3.36, c3.37.

The case λ ≤ δ−1 requires a little more work. We first break the upper bound of

(3.21) in two parts. For ε > 0,

P(N4δ
δ ≥ λ) ≤ c3.34n(N2

√
2δ√

2δ
(f) ≥ λ, h ≥ ε) + c3.34n(τ ∈ [1, 2], h < ε). (3.22)

An upper bound for the first term of the form c3.38e
−c3.39λε−1 is given by Lemma 3.8.2

when δ ≤ ε/2
√

2. For the second term, we have the following decomposition, see [51],

Chapter XII,

n(τ ∈ [1, 2], h < ε) =

∫ 2

1

n(s)(h < ε)
ds√
2πs3

,

where n(s) is a probability measure that satisfies n(s)(A) = n(1)(Λs(A)). However,

this scaling property implies that n(s)(h < ε) is decreasing in s. Consequently, we
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have that n(τ ∈ [1, 2], h < ε) ≤ (2π)−1/2n(1)(h < ε). The right hand side of this

expression represents the distribution of the maximum of a normalised Brownian

excursion, which is known exactly, see [18], Theorem 7. In particular, we have that

n(1)(h < ε) = c3.40ε
−3

∞∑
m=1

m2e−
m2π2

2ε2 ,

and some elementary analysis shows this is bounded above by c3.41ε
−3e−

c3.42
ε . By

taking ε = 2
√

2λ−1, we can use these bounds on the first and second terms of (3.22)

to obtain the desired result. ¤

3.9 Quenched heat kernel bounds

The heat kernel estimates deduced in this section are a straightforward application

of two main ideas. Firstly, we apply results of [38], by Kigami, to construct a natural

Dirichlet form on (T , dT , µ). Associated with such a form is a Laplacian, ∆T , on T .

Secondly, we use the results of Chapter 2, which show that the volume bounds we

have already obtained are sufficient to deduce the existence of a heat kernel for ∆T
and bounds upon it.

The first key result is proved by Kigami, and is stated in Chapter 1 as Theorem

1.4.11. It explains how to build a Dirichlet form on an arbitrary dendrite equipped

with a shortest path metric. We shall not explain here how to construct the finite

resistance form associated with a shortest path metric on a dendrite, but we will note

that it may be done using a finite vertex approximation procedure, similar to the

ideas of Chapter 1. Full details are given in Section 3 of [38].

Now, consider f ∈ U (1). As remarked in Section 3.2.2, Tf is a dendrite and dTf
a

shortest path metric on Tf . Using the fact that f is a continuous function on a closed

bounded interval, and hence uniformly continuous, elementary analysis allows it to

be deduced that (Tf , dTf
) is compact and hence it is complete and locally compact.

(We note that compactness of T has already been proved in [1], Theorem 3). Finally,

using simple path properties of the Brownian excursion, it is easy to check that µf

satisfies the measure conditions of the Theorem 1.4.11 for f ∈ Ũ , where Ũ ⊆ U (1) is

a set which satisfies P(W ∈ Ũ) = 1. Hence we can use this result to define a finite

resistance form (ET ,FT ) associated with (T , dT ) such that (ET ,FT ∩ L2(T , µ)) is a

local, regular Dirichlet form on T , P-a.s.
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In fact, it is also proved in [38] that the correspondence between shortest path

metrics on dendrites and resistance forms is one-to-one in a certain sense. Specifically,

if W ∈ Ũ and so (ET ,FT ) exists, define the resistance function, as in Chapter 2, by

R(A,B)−1 := inf {ET (u, u) : u ∈ FT , u|A = 1, u|B = 0} , (3.23)

for disjoint subsets A,B of T . We can recover dT by taking, for σ, σ′ ∈ T , σ 6= σ′,

dT (σ, σ′) = R({σ}, {σ′}) and dT (σ, σ) = 0. This means that the the metric dT is

the effective resistance metric associated with (ET ,FT ), see Corollary 3.4 of [38] for

a proof of this. As in the proof of Theorem 1.4.12, a consequence of this is that

FT ⊆ L2(T , µ), which implies the Dirichlet form of interest in this section is simply

(ET ,FT ).

We now recall, using the notation of this chapter, the construction of a diffusion

from a Dirichlet form that was introduced in Chapter 2. Given the Dirichlet form

(ET ,FT ), we can use the standard association to define a non-negative self-adjoint

operator, −∆T , which has domain dense in L2(T , µ) and satisfies

ET (u, v) = −
∫

T
u∆T vdµ, ∀u ∈ FT , v ∈ D(∆T ).

We can use this to define a reversible strong Markov process,

X = ((Xt)t≥0,P
T
σ , σ ∈ T ),

with semi-group given by Pt := et∆T . In fact, the locality of our Dirichlet form ensures

that the process X is a diffusion on T .

As we observed in the previous chapter, a key factor in the description of the

transition density of X, if it exists, is the volume growth of the space with respect

to the resistance metric, which in this case is simply dT . The volume bounds we

have already obtained for T mean that we can directly apply the bounds obtained

there. The only condition which has not already been checked is the separability of

(T , dT ), but for a metric space this follows easily from compactness, and so (T , dT )

is separable, P-a.s. We are now able to state the main result of this section, which is

an application of the volume bounds of earlier sections of this chapter and Theorem

2.4.1.

Theorem 3.9.1 P-a.s., there is a reversible strong Markov diffusion X on T with in-

variant measure µ and transition density (pt(σ, σ′))σ,σ′∈T ,t>0, that satisfies the bounds

at (3.2) and (3.3).
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Since, if it exists, the transition density of the process X is a heat kernel of ∆T ,

we can state the previous result in the following alternative form. For full definitions

of these two objects, see Section 2.5, and note that for an arbitrary heat kernel of

∆T , the bounds we have proved will hold only µ-a.e.

Corollary 3.9.2 P-a.s., there exists a local, regular Dirichlet form associated with

(T , dT , µ). The related non-positive self-adjoint operator, ∆T , admits a heat kernel

(pt(σ, σ′))σ,σ′∈T ,t>0, that satisfies the bounds at (3.2) and (3.3).

The proof of the remaining quenched heat kernel bounds also employ the tech-

niques used in Chapter 2. However, as well as the volume bounds, we need to apply

the following extra fact about the asymptotics of the resistance from the centre of a

ball to its surface, as r → 0.

Lemma 3.9.3 P-a.s., for µ-a.e. σ ∈ T , there exist constants c3.43, r2 > 0 such that

c3.43r
(
ln ln r−1

)−1 ≤ R({σ}, B(σ, r)c) ≤ r, ∀r ∈ (0, r2).

Proof: Choosing r2 to be small enough so that σ is connected to B(σ, r)c by a path

of length r immediately implies the upper bound. For the lower bound, following the

argument of [14], Lemma 4.4 we obtain

R({σ}, B(σ, r)c)−1 ≤ 8M(σ, r)

r
,

where M(σ, r) is defined to be the smallest number such that there exists a set

A = {σ1, . . . , σM(σ,r)} with dT (σ, σi) = r/4 for each i, such that any path from σ to

B(σ, r)c must pass through the set A. For the continuum random tree it is elementary

to deduce that M(ρ, r) ≤ N r
r/4, where N r

r/4 is the number of upcrossings of [r/4, r] by

W , as defined in Section 3.8. Thus, applying Proposition 3.8.3, the result holds at

the root. This may be extended to hold µ-a.e. using the random re-rooting of Lemma

3.5.1. ¤

Proof of Theorem 3.1.6: As we noted in Chapter 2, on measure-metric spaces

equipped with a resistance form, an upper bound for the on-diagonal part of the heat

kernel of the form

p2rµ(B(σ,r))(σ, σ) ≤ 2

µ(B(σ, r))
(3.24)
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follows from a relatively simple analytic argument from the lower bound on the volume

growth. Applying this, the two upper bounds of this result follow easily from the lower

local volume bounds of Theorem 3.1.3 and so we omit their proof here.

It remains to prove the lower local heat kernel bound. Again, the proof of this

result is standard and so we shall only outline it briefly here. First, the resistance

result of Lemma 3.9.3 and the local volume results of Theorem 3.1.3 allow us to

deduce that P-a.s. for µ-a.e. σ ∈ T , there exist constants c3.44, c3.45, r3 > 0 such that,

for r ∈ (0, r3),

ET
σ′TB(σ,r) ≤ c3.44r

3 ln ln r−1, ∀σ′ ∈ B(σ, r),

ET
σ TB(σ,r) ≥ c3.45r

3
(
ln ln r−1

)−4
,

by applying an argument similar to the proof of Proposition 2.6.6. Here, TB(σ,r) is

the exit time of the process X from the ball B(σ, r). Applying the Markov property

for X as at (2.26) and substituting the above bounds for the expected exit times of

balls yields

PT
σ

(
TB(σ,r) > t

) ≥ c3.45

c3.44

(
ln ln r−1

)−5 − t

c3.44r3 ln ln r−1
. (3.25)

Also, recall from (2.28) that the Cauchy-Schwarz inequality implies

µ(B(σ, r))p2t(σ, σ) ≥ PT
σ

(
TB(σ,r) > t

)2
.

Furthermore, by the volume asymptotics of Theorem 3.1.3, if we choose r3 small

enough, there exists a constant c3.46 such that µ(B(σ, r)) ≤ c3.46r
2 ln ln r−1, for r ∈

(0, r3). Set t3 = c3.45

2
r3
3(ln ln r−1

3 )−4. For t ∈ (0, t3), we can choose r ∈ (0, r3) to satisfy

the equality t = c3.45

2
r3(ln ln r−1)−4. Hence the lower bound for the tail of the exit

time distribution at (3.25) implies that

p2t(σ, σ) ≥ c3.47r
−2

(
ln ln r−1

)−11 ≥ c3.48t
−2/3

(
ln ln t−1

)−14
.

¤

Proof of Theorem 3.1.5: The upper bound of (3.4) and the lower bound of (3.5)

are contained in Theorem 3.9.1. The lower bound of (3.4) is a simple consequence of

the local lower bound on the heat kernel of Theorem 3.1.6. The remaining inequality

is proved using the analytic bound of (3.24); the volume bound we need to utilise in

this case being the lower bound for supσ µ(B(σ, r)) appearing in Theorem 3.1.2. ¤
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3.10 Annealed heat kernel bounds

Rather than P-a.s. results about µ(B(ρ, r)) and R({ρ}, B(ρ, r)c), we need to apply

estimates on the tails of their distributions to obtain annealed heat kernel bounds.

We have already proved one of the necessary bounds in Lemma 3.5.2; the remaining

two bounds are proved in the following lemma. To complete the proof of Theorem

3.1.7, we employ a similar argument to the proof of [14], Theorem 1.4.

Lemma 3.10.1 There exist constants c3.49, . . . , c3.52 such that, for all r > 0, λ ≥ 1,

P
(
R({ρ}, B(ρ, r)c) ≤ rλ−1

) ≤ c3.49e
−c3.50λ,

and when r2λ−1 ≤ 1
4
,

P
(
µ(B(ρ, r)) < r2λ−1

) ≤ c3.51e
−c3.52λ.

Proof: Let r > 0, λ ≥ 1. In the proof of Lemma 3.9.3 it was noted that 8r−1N r
r/4 is

an upper bound for R({ρ}, B(ρ, r)c)−1. Thus, by Proposition 3.8.4,

P
(
R({ρ}, B(ρ, r)c) ≤ rλ−1

) ≤ P
(
8N r

r/4 ≥ λ
)

≤ c3.32e
− c3.33λ

8 ,

which proves the first inequality.

For the second inequality, suppose r2λ−1 ≤ 1
4
. Observe that if µ(B(ρ, r)) is strictly

less than r2λ−1, then the normalised Brownian excursion must hit the level r before

time r2λ−1. Thus

P
(
µ(B(ρ, r)) < r2λ−1

) ≤ P

(
sup

0≤t≤r2λ−1

Wt ≥ r

)
.

The explicit distribution of the maximum of the Brownian excursion up to a fixed

time is known and we can use the formula given in [22], Section 3, to show that the

right hand side of this inequality is equal to

1−
√

2λ3

πr6(1− r2λ−1)3

∞∑
m=−∞

e−2m2r2

∫ r

0

y(2mr + y)e
− (y+2mr(1−r2λ−1))2

2r2λ−1(1−r2λ−1) dy.

We can neglect the terms with m > 0 as removing them only increases this expression.

By changing variables in the integral, it is possible to show that the m = 0 term is

equal to √
2

π

∫ √
λ

1−r2λ−1

0

u2e−
u2

2 du.
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Integrating by parts and applying standard bounds for the error function, it is ele-

mentary to obtain that this is bounded below by 1− c3.53

√
λe−

λ
2 . For the remaining

terms we have

−
√

2λ3

πr6(1− r2λ−1)3

−1∑
m=−∞

e−2m2r2

∫ r

0

y(2mr + y)e
− (y+2mr(1−r2λ−1))2

2r2λ−1(1−r2λ−1) dy

≤
√

2λ3

πr6(1− r2λ−1)3

∞∑
m=1

∫ r

0

2mr2e
− (y−2mr(1−r2λ−1))2

2r2λ−1(1−r2λ−1) dy

≤ c3.54λ
3/2

∞∑
m=1

me−
λ(3m−2)2

8 .

The sum in this expression may be bounded above by c3.55e
−λ

8 . Thus

P
(
µ(B(ρ, r)) < r2λ−1

) ≤ c3.53

√
λe−

λ
2 + c3.54c3.55λ

3/2e−
λ
8 ≤ c3.56e

−c3.57λ,

for suitable choice of c3.56, c3.57. ¤

Proof of Theorem 3.1.7: Let t ∈ (0, 1). For λ ≥ 2, define r by t = 2λr3 and

Aλ,t := {r2λ−1 ≤ µ(B(ρ, r)) ≤ r2λ}. On Aλ,t, we can use the inequality at (3.24) to

show that

pt(ρ, ρ) ≤ 25/3λ5/3

t2/3
.

Define Λt := inf{λ ≥ 2 : Aλ,t occurs}, then Ept(ρ, ρ) ≤ 25/3t−2/3EΛ
5/3
t . However, for

λ ≥ 2,

P(Λt ≥ λ) ≤ P(Ac
λ,t)

≤ P(µ(B(ρ, r)) > r2λ) + P(µ(B(ρ, r)) < r2λ−1).

Since r2λ−1 = t2/32−2/3λ−5/3 ≤ 1
4
, we can apply the tail bounds of Lemma 3.10.1 to

obtain that P(Λt ≥ λ) ≤ c3.58e
−c3.59λ, uniformly in t ∈ (0, 1). Thus EΛ

5/3
t ≤ c3.60 <

∞, uniformly in t ∈ (0, 1), which proves the upper bound.

For the lower bound we need a slightly different scaling. Let t ∈ (0, 1), λ ≥ 64

and define r by t = r3/64λ4, and

Bλ,t :=

{
µ(B(ρ, r)) ≤ r2λ, R({ρ}, B(ρ, r)c) ≥ rλ−1, µ(B(ρ,

r

4λ
)) ≥ r2

16λ3

}
.

On Bλ,t, by following a similar argument to that used for the proof of Theorem 3.1.6,

we find that pt(ρ, ρ) ≥ c3.61t
−2/3λ−14. Now,

P(Bc
λ,t) ≤ P(µ(B(ρ, r)) > r2λ) + P(R({ρ}, B(ρ, r)c) < rλ−1)

+P(µ(B(ρ,
r

4λ
)) <

r2

16λ3
).
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Since r2/16λ3 = t2/3λ−1/3 ≤ 1
4
, again we can apply the bounds of Lemma 3.10.1

to find that P(Bc
λ,t) ≤ c3.62e

−c3.63λ, uniformly in t ∈ (0, 1). Hence we can find a

λ0 ∈ [64,∞) such that P(Bc
λ0,t) ≤ 1

2
for all t ∈ (0, 1). Thus

Ept(ρ, ρ) ≥ P(Bλ0,t)
c3.61

λ14
0 t2/3

≥ c3.64t
−2/3, ∀t ∈ (0, 1),

for some c3.64 > 0. ¤

3.11 Brownian motion on the CRT

To complete the proof of Theorem 3.1.4, it remains to show that the Markov process

with infinitesimal generator ∆T is Brownian motion on T . Brownian motion on Tf

is defined to be a Tf -valued process, Xf = ((Xf
t )t≥0,P

Tf
σ , σ ∈ Tf ), with the following

properties.

i) Continuous sample paths.

ii) Strong Markov.

iii) Reversible with respect to its invariant measure µf .

iv) For σ1, σ2 ∈ Tf , σ1 6= σ2, we have

P
Tf
σ (Tσ1 < Tσ2) =

dTf
(b(σ, σ1, σ2), σ2)

dTf
(σ1, σ2)

, σ ∈ Tf ,

where Tσ := inf{t ≥ 0 : Xf
t = σ} and b(σ, σ1, σ2) is the branch point of

σ, σ1, σ2 in T , as defined in Section 1.2.

v) For σ1, σ2 ∈ Tf , the mean occupation measure for the process started at

σ1 and killed on hitting σ2 has density

dTf
(b(σ, σ1, σ2), σ2)µ(dσ), σ ∈ Tf .

As remarked in [2], Section 5.2, these properties are enough for uniqueness of Brow-

nian motion on Tf . Note that the definition given by Aldous has an extra factor of 2

in property v). This is a result of Aldous’ description of the continuum random tree

being based on the random function 2W . By Theorem 3.9.1, we already have that

properties i), ii) and iii) hold for the process X on T , P-a.s. Before proceeding with

demonstrating that X satisfies the remaining properties, we first need to prove the
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following technical result on the capacity of sets of T , where we use the notation Ũ

to represent the set of excursions on which a finite resistance form is defined on Tf ,

as in Section 3.9.

Lemma 3.11.1 For f ∈ Ũ , all non-empty subsets of Tf have strictly positive capac-

ity.

Proof: This result may be deduced by applying the same argument as in the proof

of Proposition 1.5.3(b). ¤

The above result allows us to define local times for X, and in the following lemma

we use these to define a time-changed process on a finite subset of T . By considering

the hitting probabilities for the time-changed process, we are able to deduce that X

satisfies property iv) of the Brownian motion definition. An important tool for the

proof of this and property v) will be the trace operator for Dirichlet forms, as defined

at (1.5). In particular, we will use the fact that the quadratic form corresponding to

our time-changed process is simply the trace of E on the same finite subset.

Lemma 3.11.2 P-a.s., the process X of Theorem 3.9.1 satisfies property iv) of the

definition of Brownian motion on T .

Proof: Suppose W ∈ Ũ , so that the resistance form, ET , and process, X, are defined

for T . Fix σ, σ1, σ2 ∈ T , σ1 6= σ2, and set b = b(σ, σ1, σ2). Write V1 = {σ, σ1, σ2, b}
and E1 = Tr(ET |V1). Using simple properties of resistance forms, the following explicit

expression for E1 can be calculated:

E1(u, u) =
∑

σ′∈{σ,σ1,σ2}

(u(b)− u(σ′))2

dT (b, σ′)
, u ∈ C(V1), (3.26)

where, if b = σ′, the relevant term is defined to be 0.

By the previous lemma, {σ′} has strictly positive capacity for each σ′ ∈ T . As

outlined in Section 4 of [9], a result of this is that X has jointly measurable local

times (Lσ′
t , σ′ ∈ T , t ≥ 0) such that

∫ t

0

u(Xs)ds =

∫

T
u(σ′)Lσ′

t µ(dσ′), u ∈ L2(T , µ).

Now, denote ν := 1
|V1|

∑
σ′∈V1

δσ′ , the uniform distribution on V1 and define

At :=

∫

T
Lσ′

t ν(dσ′), τt := inf{s : As > t}.
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Consider the process X̃ = (X̃,PT
σ′ , σ

′ ∈ V1), defined by X̃t := Xτt . As described

in [9], X̃ is a ν-symmetric Hunt process and has associated regular Dirichlet form

(E1, C(V1)). Using elementary theory for continuous time Markov chains on a finite

state space, we obtain the following result for X̃

PT
σ

(
T̃σ1 < T̃σ2

)
=

dT (b, σ2)

dT (σ1, σ2)
,

where T̃σ′ := inf{t ≥ 0 : X̃t = σ′}. Since the hitting distribution is unaffected by the

time change from X to X̃, this implies

PT
σ (Tσ1 < Tσ2) =

dT (b, σ2)

dT (σ1, σ2)
,

and so, if W ∈ Ũ , the process X satisfies property iv) of the Brownian motion

definition. Since W ∈ Ũ , P-a.s., this completes the proof. ¤

A result that will be useful in proving that X satisfies property v) is the following

uniqueness result, which is proved in [38], Lemma 3.5.

Lemma 3.11.3 Let (E ,F) be a resistance form on a set K and V be a finite subset

of K. Then for any v ∈ C(V ), there exists a unique u ∈ F such that

E(u, u) = Tr(E|V )(v, v), u|V = v.

Lemma 3.11.4 P-a.s., the process X of Theorem 3.9.1 satisfies property v) of the

definition of Brownian motion on T .

Proof: First, assume W ∈ Ũ , so that the resistance form, ET , and process, X, are

defined for T . Fix σ1, σ2 ∈ T , σ1 6= σ2, and define D = D(σ1, σ2) to be the path-

connected component of T \{σ2} containing σ1. Using the same argument as in [41],

Proposition 4.2, we can deduce the existence of a Green kernel gD(·, ·) for the process

killed on exiting D which satisfies

ET (gD(σ, ·), f) = f(σ), ∀σ ∈ T , f ∈ FD, (3.27)

where FD := {f ∈ FT : f |Dc = 0}. By standard arguments, this implies that

gD(σ1, σ1) > 0;

ET (g̃, g̃) = inf{ET (u, u) : u(σ1) = 1, u(σ2) = 0}, (3.28)
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where g̃(·) := gD(σ1, ·)/gD(σ1, σ1); and for µ-measurable f ,

Eσ1

∫ Tσ2

0

f(Xs)ds =

∫

T
gD(σ1, σ)f(σ)µ(dσ).

This means that gD(σ1, σ)µ(dσ) is the mean occupation density of the process started

at σ1 and killed on hitting σ2. Furthermore, note that combining (3.27), (3.28) and

the characterisation of dT at (3.23), we can deduce that gD(σ1, σ1) = dT (σ1, σ2).

Now, fix σ ∈ T , and define b := b(σ, σ1, σ2),

V1 := {σ, σ1, σ2, b}, E1 := Tr(ET |V1),

V0 := {σ1, σ2}, E0 := Tr(E1|V0).

Let f0 ∈ C(V0) be defined by f0(σ
1) = 1, f0(σ

2) = 0; f1 be the unique (by Lemma

3.11.3) function in C(V1) that satisfies E1(f1, f1) = E0(f0, f0) and f1|V0 = f0; and f2 be

the unique function in F such that ET (f2, f2) = E1(f1, f1) and f2|V1 = f1. Applying

the tower property for the trace operator, E0 = Tr(Tr(ET |V1)|V0) = Tr(ET |V0), we

have that f2 is the unique function that satisfies

ET (f2, f2) = Tr(ET |V0)(f0, f0), f2|V0 = f0.

However, we have from (3.28) that g̃ also has these properties and so it follows from

the uniqueness of Lemma 3.11.3 that g̃ = f2. Thus g̃|V1 = f1. Recall the explicit

expression for E1 given at (3.26). A simple minimisation of this quadratic polynomial

allows us to determine the function f1. In particular, we have g̃(σ) = f1(σ) =

dT (b, σ2)dT (σ1, σ2)−1. Hence the mean occupation density of the process started at

σ1 and killed on hitting σ2 is

gD(σ1, σ)µ(dσ) = gD(σ1, σ1)g̃(σ)µ(dσ) = dT (b, σ2)µ(dσ).

Thus, if W ∈ Ũ , the process X satisfies property v) of the Brownian motion definition.

Since W ∈ Ũ , P-a.s., this completes the proof. ¤

Combining the results of Theorem 3.9.1 and Lemmas 3.11.2 and 3.11.4 we imme-

diately have the following.

Corollary 3.11.5 P-a.s., the process X of Theorem 3.9.1 is Brownian motion on

T .
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Appendix A

Exact self-similarity of the
continuum random tree

In this appendix, we demonstrate that the continuum random tree is precisely a

random p.c.f.s.s. dendrite of the type constructed in Chapter 1. This characterisation

links the continuum random tree, and all of its representations, with yet another

area, namely analysis on self-similar fractals. The description we provide here is of

particular interest as it allows the continuum random tree to be be built upon a

highly structured, deterministic subset of R2, which is a striking contrast to some

of its abstract tree formulations. The main idea that we will apply is the recursive

self-similarity for the continuum random tree, which was proved by Aldous in [5], and

is stated here as Lemma A.1.1.

A.1 Decomposition of the continuum random tree

To make precise the decomposition of the continuum random tree that we shall apply,

we use the excursion description of the set, as introduced in Section 3.2.2. This

allows us to prove rigorously the independence properties that are important to our

argument. However, as with the random re-rooting of Lemma 3.5.1, it may not

be immediately obvious exactly what the excursion picture is telling us about the

continuum random tree, and so, after Lemma A.1.1, we present a more heuristic

discussion of the procedure we use in terms of the related dendrites.

The initial object of consideration is an independent triple (W,U, V ), where W is a

normalised Brownian excursion, and U and V are U [0, 1] random variables. From this

triple, it is possible to define three independent Brownian excursions. The following

decomposition is rather awkward to write down, but is made clearer by Figure A.1.
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First, suppose U < V . On this set, it is P-a.s. possible to define H ∈ [0, 1] by

{H} := {t ∈ [U, V ] : Wt = inf
s∈[U,V ]

Ws}. (A.1)

We also define

H− := sup{t < U : Wt = WH}, H+ := inf{t > V : Wt = WH}, (A.2)

∆1 := 1 + H− −H+, ∆2 := H −H−, ∆3 := H+ −H,

Ũ1 :=
H−
∆1

, U2 :=
U −H−

∆2

, U3 :=
V −H

∆3

,

and for t ∈ [0, 1],

W̃ 1
t := ∆

−1/2
1 (Wt∆11{t≤Ũ1} + WH++(t−Ũ1)∆1

1{t>Ũ1}),

W 2
t := ∆

−1/2
2 (WH−+t∆2 −WH),

W 3
t := ∆

−1/2
3 (WH+t∆3 −WH).

Finally, define W 1 to be W̃ 1 shifted by Ũ1, via the formula given in Section 3.7, and

set U1 := 1 − Ũ1. If U > V , the definition of these quantities is similar, with W 1

again being the rescaled, re-rooted excursion containing t = 0, W 2 being the rescaled

excursion containing t = U , and W 3 being the rescaled excursion containing t = V . A

minor adaptation of [5], Corollary 3, using the invariance under random re-rooting of

the continuum random tree (Lemma 3.5.1), then gives us the following result, which

we state without proof.

Lemma A.1.1 The quantities W 1,W 2,W 3, U1, U2, U3 and (∆1, ∆2, ∆3) are indepen-

dent. Each W i is a normalised Brownian excursion, each Ui is U [0, 1], and the triple

(∆1, ∆2, ∆3) has the Dirichlet (1
2
, 1

2
, 1

2
) distribution.

Describing the result in terms of the corresponding trees gives a much clearer

picture of what the above decomposition does. Using the notation of Chapter 3, let

(T , dT , µ) be the continuum random tree associated with W , and ρ = [0] its root.

Here, we use [t], for t ∈ [0, 1], to represent the equivalence classes of [0, 1] under the

equivalence relation defined at (3.7). If we define Z1 := [U ] and Z2 := [V ], then Z1

and Z2 are two independent µ-random vertices of T . We now split the tree T at the

branch point b(ρ, Z1, Z2), which may be checked to be equal to [H], and denote by

T 1, T 2 and T 3 the components of T containing ρ, Z1 and Z2 respectively. Choose

the root of each subtree to be equal to b(ρ, Z1, Z2) and, for i = 1, 2, 3, let µi be the
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Figure A.1: Brownian excursion decomposition.

probability measure on T i defined by µi(A) = µ(A)/∆i, for measurable A ⊆ T i, where

∆i := µ(T i). The previous result tells us precisely that (T i, ∆
−1/2
i dT , µi), i = 1, 2, 3,

are three independent copies of (T , dT , µ). Furthermore, if Zi := ρ, Z1, Z2 for i =

1, 2, 3, respectively, then Zi is a µi-random variable in T i. Finally, all these quantities

are independent of the masses (µ(T 1), µ(T 2), µ(T 3)), which form a Dirichlet (1
2
, 1

2
, 1

2
)

triple. Although it is possible to deal with the subtrees directly using conditional

definitions of the random variables to decompose the continuum random tree in this

way, the excursion description allows us to keep track of exactly what is independent

more easily, and it is to this setting that we return. However, we shall not completely

neglect the tree description of the algorithm we now introduce, and a summary in

this vein appears below Figure A.2.

We start by applying inductively the decomposition map from U (1) × [0, 1]2 to

U (1)3× [0, 1]3×∆ (where ∆ is the standard 2-simplex) that takes the triple (W,U, V )

to the collection (W 1,W 2,W 3, U1, U2, U3, (∆1, ∆2, ∆3)) of excursions and uniform and
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Dirichlet random variables. We shall denote the decomposition map by Υ and in-

dex the random variables by Σ∗, the address space introduced in Chapter 1, where

in this case S = {1, 2, 3}. First, suppose we are given an independent collection

(W,U, (Vi)i∈Σ∗), where W is a normalised Brownian excursion, U is U [0, 1], and

(Vi)i∈Σ∗ is a family of independent U [0, 1] random variables. Set (W ∅, U∅) := (W,U).

Given (W i, Ui), define

(W i1,W i2,W i3, Ui1, Ui2, Ui3, (∆i1, ∆i2, ∆i3)) := Υ(W i, Ui, Vi),

and denote the filtration associated with (∆i)i∈Σ∗\{∅} by (Fn)n≥0. In particular, Fn :=

σ(∆i : |i| ≤ n). The subsequent result is easily deduced by applying the previous

lemma repeatedly.

Theorem A.1.2 For each n, ((W i, Ui, Vi))i∈Σn is an independent collection of inde-

pendent triples consisting of a normalised Brownian excursion and two U [0, 1] random

variables, and moreover, the entire family of random variables is independent of Fn.

From this result, it is clear that (∆i)i∈Σ∗\{∅} forms a multiplicative cascade in the

sense of Section 1.3, with related filtration (Fn)n≥0. Furthermore, Lemma A.1.1 im-

plies that each triple of the form (∆i1, ∆i2, ∆i3) has the Dirichlet (1
2
, 1

2
, 1

2
) distribution.

We shall also be interested in the collection (w(i))i∈Σ∗\{∅}, where for each i, we define

w(i) := ∆
1/2
i .

Note that this is also a multiplicative cascade, with the same associated filtration,

(Fn)n≥0. We shall write l(i) to represent the product w(i|1)w(i|2) . . . w(i||i|), as in

Chapter 1. The reason for considering such families is that, in our decomposition of

the continuum random tree, (∆i)i∈Σ∗\{∅} and (w(i))i∈Σ∗\{∅} represent the mass and

length scaling factors respectively.

By viewing the inductive procedure for decomposing excursions as the repeated

splitting of trees in the way described after Lemma A.1.1, it is possible to use the above

algorithm to break the continuum random tree into smaller components, with the

subtrees in the nth level of construction being described by the excursions (W i)i∈Σn .

The maps we now introduce will make this idea precise. For the remainder of this

section, the arguments that we give hold P-a.s. First, denote by H i, H i
− and H i

+ the

random variables in [0, 1] associated with (W i, Ui, Vi) by the formulae at (A.1) and

(A.2). Let i ∈ Σ∗. Define, for t ∈ [0, 1],

φi1(t) := (H i
+ + t∆i1)1{t<Ui1} + (t− Ui1)∆i11{t≥Ui1},
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and if Ui < Vi, define φi2 and φi3 to be the linear contractions from [0, 1] to [H i
−, H i]

and [H i, H i
+] respectively. If Ui > Vi, the images of φi2 and φi3 are reversed. Note

that, for each i, the map φi satisfies, for any measurable A ⊆ [0, 1],

λ(φi(A)) = ∆iλ(A), (A.3)

where λ is the usual Lebesgue measure on [0, 1]. Importantly, these maps also satisfy

a certain distance scaling property. In particular, it is elementary to check from the

definitions of the excursions that, for any i ∈ Σ∗, j ∈ S,

dW i(φij(s), φij(t)) = w(ij)dW ij(s, t), ∀s, t ∈ [0, 1], (A.4)

where dW i is the distance on [0, 1] associated with W i by the definition at (3.6). This

equality allows us to define a map on the trees related to the excursions. Let (T̃i, dT̃i
)

be the metric space dendrite determined from W i by the equivalence relation given

at (3.7). Denote the corresponding equivalence classes [t]i for t ∈ [0, 1]. Now define,

for i ∈ Σ∗, j ∈ S,

φ̃ij : T̃ij → T̃i

[t]ij 7→ [φij(t)]i.

The following result demonstrates that this is a well-defined map satisfying a distance

scaling property related to (A.4).

Lemma A.1.3 P-a.s., for every i ∈ Σ∗, j ∈ S, φ̃ij is well-defined and moreover,

dT̃i
(φ̃ij(x), φ̃ij(y)) = w(ij)dT̃ij

(x, y), ∀x, y ∈ T̃ij.

Proof: First, choose s, t ∈ [0, 1]. Applying the distance scaling property of (A.4), we

find that

dT̃i
([φij(s)]i, [φij(t)]i) = dW i(φij(s), φij(t)) = w(ij)dW ij(s, t) = w(ij)dT̃ ij([s]ij, [t]ij).

Thus, if [s]ij = [t]ij, the right hand side of this equation is 0, and it follows that

[φij(s)]i = [φij(t)]i. Hence φ̃ij is indeed a well-defined map. The desired distance

scaling property is also an immediate consequence of the above equation. ¤
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By iterating the functions (φ̃i)i∈Σ∗\{∅}, we can map any T̃i to the original continuum

random tree, T ≡ T̃∅, which is the object of interest. We will denote the map from

T̃i to T by φ̃∗i := φ̃i|1 ◦ φ̃i|2 ◦ · · · ◦ φ̃i, and its image by

Ti := φ̃∗i(T̃i).

It is these sets that form the basis of our decomposition of T . We will also have cause

to refer to the following points in Ti:

ρi := φ̃∗i([0]i), Z1
i := φ̃∗i([Ui]i), Z2

i := φ̃∗i([Vi]i).

Although it has been quite hard work arriving at the definition of (Ti)i∈Σ∗ , the prop-

erties of this family of sets that we will need are derived without too many difficulties

from the construction. The proposition we now prove includes the following results:

the sets (Ti)i∈Σn cover T ; Ti is simply a rescaled copy of T̃i with µ-measure l(i)2;

the overlaps of sets in the collection (Ti)i∈Σn are small; and also describes various

relationships between points of the form ρi, Z1
i and Z2

i .

Proposition A.1.4 P-a.s., for every i ∈ Σ∗,

(a) Ti = ∪j∈ΣnTij, for all n ≥ 0.

(b) (Ti, dT ) and (T̃i, l(i)dT̃i
) are isometric.

(c) ρi1 = ρi2 = ρi3 = b(ρi, Z
1
i , Z

2
i ).

(d) Z1
ij = ρi, Z

1
i , Z

2
i , for j = 1, 2, 3 respectively.

(e) ρi 6∈ Ti2 ∪ Ti3, Z1
i 6∈ Ti1 ∪ Ti3 and Z2

i 6∈ Ti1 ∪ Ti2.

(f) if |j| = |i|, but j 6= i, then Ti ∩ Tj ⊆ {ρi, Z
1
i }.

(g) µ(Ti) = l(i)2.

Proof: By induction, it suffices to show that (a) holds for n = 1. By definition, we

have ∪j∈Sφij([0, 1]) = [0, 1), and so

T̃i = {[t]i : t ∈ [0, 1)}
= ∪j∈S{[t]i : t ∈ φij([0, 1])}
= ∪j∈S{[φij(t)]i : t ∈ [0, 1]}
= ∪j∈Sφ̃ij(T̃ij),

where we apply the definition of φ̃ij for the final equality. Hence

Ti = φ̃∗i(T̃i) = ∪j∈Sφ̃∗ij(T̃ij) = ∪j∈STij,
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which completes the proof of (a). Part (b) is an immediate consequence of the def-

inition of Ti and the distance scaling property of φ̃∗i, which follows from Lemma

A.1.3.

Analogous to the remark made after Lemma A.1.1, the point [H i]i represents the

branch point of [0]i, [Ui]i and [Vi]i in T̃i. Thus, since φ̃∗i is simply a rescaling map,

we have that

b(ρi, Z
1
i , Z

2
i ) = b(φ̃∗i([0]i), φ̃∗i([Ui]i), φ̃∗i([Vi]i)) = φ̃∗i([H i]i).

Now, note that for any j ∈ S, we have by definition that φij(0) ∈ {H i, H i
−, H i

+}, and

so [φij(0)]i = [H i]i. Consequently,

φ̃∗i([H i]i) = φ̃∗i([φij(0)]i) = φ̃∗ij([0]ij) = ρij, (A.5)

which proves (c). Part (d) and (e) are proved using similar ideas. First, observe

that φij(Uij) = 0, Ui, Vi, for j = 1, 2, 3 respectively, then take equivalence classes and

apply φ̃∗i to obtain (d). Secondly, it is easy to check from the construction that

[0]i 6∈ φ̃ij(T̃ij) for j = 2, 3; [Ui]i 6∈ φ̃ij(T̃ij) for j = 1, 3; and [Vi]i 6∈ φ̃ij(T̃ij) for j = 1, 2.

Applying φ̃∗i to these results yields (e).

Now note that, for k ∈ Σ∗, the decomposition of the excursions, and the fact that

the local minima of a Brownian excursion are distinct, implies that for j1, j2 ∈ S,

j1 6= j2, we have φ̃kj1(T̃kj1) ∩ φ̃kj2(T̃kj2) = {[Hk]k}. Applying the injection φ̃∗k to this

equation yields

Tkj1 ∩ Tkj2 = {φ̃∗k([Hk]k)} = {ρk1}, (A.6)

with the second equality following from (A.5). This fact will allow us to prove (f) by

induction on the length of i. Obviously, there is nothing to prove for |i| = 0. Suppose

now that |i| ≥ 1 and the desired result holds for any index of length strictly less than

|i|. Suppose |j| = |i|, but j 6= i, and define k := i|(|i| − 1). If j|(|j| − 1) 6= k, then the

inductive hypothesis implies that

Ti ∩ Tj ⊆ Tk ∩ Tj|(|j|−1) ⊆ {ρk, Z
1
k},

where we apply part (a) to obtain the first inclusion. Using parts (d) and (e) of

the proposition it is straightforward to deduce from this that Ti ∩ Tj ⊆ {Z1
i } in this

case. If j|(|j| − 1) = k, then we can apply the equality at (A.6) to obtain that

Ti ∩ Tj = {ρk1} = {ρi}, which completes the proof of part (f).
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Finally, µ is non-atomic and so µ(Ti) = µ(Ti\{ρi, Z
1
i }). Hence, by the disjointness

of the sets and the fact that µ is a probability measure, we have that

1 ≥
∑
i∈Σn

µ(Ti\{ρi, Z
1
i }) =

∑
i∈Σn

µ(Ti).

Now, by definition, for each i,

Ti = {φ̃∗i([t]i) : t ∈ [0, 1]}
= {[t] : t ∈ φi|1 ◦ φi|2 ◦ · · · ◦ φi([0, 1])}.

Thus, since µ is the projection of Lebesgue measure, this implies that µ(Ti) is no

smaller than λ(φi|1 ◦φi|2 ◦ · · · ◦φi([0, 1])). By repeated application of (A.3), this lower

bound is equal to ∆i|1∆i|2 . . . ∆i = l(i)2. Now observe that, because (∆i1, ∆i2, ∆i3)

are Dirichlet (1
2
, 1

2
, 1

2
) random variables, we have ∆i1 +∆i2 +∆i3 = 1 for every i ∈ Σ∗,

and from this it is simple to show that
∑

i∈Σn
l(i)2 = 1. Hence

∑
i∈Σn

µ(Ti) ≥
∑
i∈Σn

l(i)2 = 1.

Thus
∑

i∈Σn
µ(Ti) is actually equal to 1, and moreover, (g) must hold. ¤

This result is summarised in Figure A.2. Note that the fact that sets from (Tij)j∈S

only intersect at ρi1 was shown at (A.6), and so the the diagram is representative of

the set structure of the decomposition. Furthermore, it is clear that the sets Ti are all

compact dendrites, because they are simply rescaled versions of the compact dendrites

T̃i.

Figure A.2: Continuum random tree decomposition.

The tree description of the inductive algorithm runs as follows. Suppose that the

triples ((Ti, l(i)
−1dT , µi))i∈Σn are independent copies of (T , dT , µ), independent of Fn,

where µi(A) := µ(A)/µ(Ti) for measurable A ⊆ Ti. Furthermore, suppose Ti has root

ρi, and Z1
i and Z2

i are two µi-random variables in Ti. For j = 1, 2, 3, define Tij to

be the component of Ti (when split at b(ρi, Z
1
i , Z

2
i )) containing ρi, Z

1
i , Z

2
i respectively.
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Define ∆ij := µi(Tij), and equip the sets with the metrics ∆
−1/2
ij l(i)−1dT = l(ij)−1dT

and measures µij, defined by

µij(A) :=
µi(A)

∆ij

=
µ(A)

µ(Tij)
.

Then the triples ((Ti, l(i)
−1dT , µi))i∈Σn+1 are independent copies of the continuum

random tree, independent of Fn+1. Moreover, for i ∈ Σn+1, the algorithm gives us

the root ρi of Ti and also a µi-random vertex, Z1
i . To continue the algorithm, we pick

independently for each i ∈ Σn+1 a second µi-random vertex, Z2
i . Note that picking

this extra µi-random vertex is the equivalent of picking the U [0, 1] random variable

Vi in the excursion picture.

To complete this section, we introduce one further family of variables associated

with the decomposition of the continuum random tree. From Proposition A.1.4(f),

observe that the sets in (Ti)i∈Σn only intersect at points of the form ρi or Z1
i , and so,

because of this, it is possible to consider the two point set {ρi, Z
1
i } to be the boundary

of Ti. Denote the renormalised distance between boundary points by, for i ∈ Σ∗,

Di := l(i)−1dT (ρi, Z
1
i ). (A.7)

By construction, we have that

dT (ρi, Z
1
i ) = dT (φ̃∗i([0]i), φ̃∗i([Ui]i))

= dW (φi|1 ◦ φi|2 ◦ · · · ◦ φi(0), φi|1 ◦ φi|2 ◦ · · · ◦ φi(Ui))

= l(i)dW i(0, Ui).

Hence we can also write Di = dW i(0, Ui), and so, for each n, (Di)i∈Σn is a collection of

independent random variables, independent of Fn. Moreover, the random variables

(Di)i∈Σ∗ are identically distributed as D∅, which represents the height of a µ-random

vertex in T . Finally, we have the following recursive relationship

Di = l(i)−1dT (ρi, Z
1
i )

= l(i)−1
(
dT (ρi, b(ρi, Z

1
i , Z

2
i )) + dT (b(ρi, Z

1
i , Z

2
i ), Z1

i )
)

= l(i)−1
(
dT (ρi1, Z

1
i1) + dT (ρi2, Z

1
i2)

)

= w(i1)Di1 + w(i2)Di2, (A.8)

where we use parts (c) and (d) of Proposition A.1.4 to deduce the third equality.
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A.2 Self-similar dendrite in R2

The scaling factors (w(i))i∈Σ∗\{∅} defined from the continuum random tree allow us

to build a random self-similar dendrite, and we now detail the set on which this

is based. Using the terminology and notation of Chapter 1, the underlying metric

space we consider is R2, equipped with the usual Euclidean metric. The contractions

of interest, (Fi)
3
i=1, will be those defined at (1.63), and the resulting set, T , is that

shown in Figure 1.1. It is readily checked that the scaling factors satisfy the conditions

(W1) and (W2) and hence, by applying the results of Chapter 1, we are able to

construct the associated resistance metric, R, P-a.s. Furthermore, the resistance

perturbations (Ri)i∈Σ∗ are well-defined (0,∞) random variables, P-a.s., satisfying

Ri = limn→∞ Ri(n), where

Ri(n) :=
∑

j∈{1,2}n

l(ij)

l(i)
. (A.9)

Note that, since there is only one edge in the set Ẽ0, we have dropped the superscript

e from the resistance perturbations. Finally, to achieve the correct scaling, we take

He :=

√
8

π
.

To complete this section, we provide an alternative characterisation of the resis-

tance perturbations using the random variables (Di)i∈Σ∗ defined at (A.7). First, by

iterating the identity of (A.8), we have

Di =
∑

j∈{1,2}n

l(ij)

l(i)
Dij. (A.10)

As remarked in the previous section, the distribution of D∅ is the same as the dis-

tribution the height of a µ-random vertex in T . The explicit distribution of this is

known (see [2]), and has mean
√

π/8 and finite variance. Using these facts and a

comparison of the formulae at (A.9) and (A.10), it is possible to deduce that the

collection of random variables (Ri)i∈Σ∗ is simply a rescaled version of the collection

(Di)i∈Σ∗ . This result will be extremely important for establishing the P-a.s. existence

of an isometry between (T , dT ) and (T, R) in the next section.

Lemma A.2.1 P-a.s., we have that

(Ri)i∈Σ∗ = (D̃i)i∈Σ∗ ,

where D̃i :=
√

8/πDi for i ∈ Σ∗.

Proof: By the countability of Σ∗, it suffices to show that Ri(n) → D̃i, P-a.s., for

138



each i ∈ Σ∗. Assume now that i ∈ Σ∗ is fixed. Conditioning on F|i|+n, we obtain, for

λ > 0,

P
(
|D̃i −Ri(n)| > λ

)
= E

(
P

(
|D̃i −Ri(n)| > λ F|i|+n

))

≤ λ−2E
(
E

(
|D̃i −Ri(n)|2 F|i|+n

))
. (A.11)

Now, since

E
(
D̃i −Ri(n) F|i|+n

)
=

∑

j∈{1,2}n

l(ij)

l(i)
E(D̃ij − 1) = 0,

we are able to deduce that

E
(
|D̃i −Ri(n)|2 F|i|+n

)
= Var


 ∑

j∈{1,2}n

l(ij)

l(i)
(D̃ij − 1) F|i|+n




=
∑

j∈{1,2}n

l(ij)2

l(i)2
Var(D̃∅),

where we have used the independence properties of the (Di)i∈Σ∗ to obtain the second

equality. Recalling the definition of the w(i) as the square roots of the Dirichlet

random variables, ∆i, we can use this conditional expectation and the inequality of

(A.11) to deduce that

P
(
|D̃i −Ri(n)| > λ

)
≤ λ−2E(∆1 + ∆2)

nVar(D̃∅).

As we noted prior to this lemma, the random variable D∅ has finite variance. Fur-

thermore, a simple symmetry argument yields that the expectation in the right hand

side of the above bound is precisely 2/3. Hence the sum of probabilities over n is

finite, and applying a simple Borel-Cantelli argument yields the result. ¤

A.3 Isometry between (T , dT ) and (T, R)

In this section, we demonstrate how the decomposition of the continuum random tree

presented in Section A.1 allows us to define an isometry from the continuum random

tree to the random self-similar dendrite, (T,R), described in the previous section. An

important consequence of the decomposition is that it allows us to label points in

T using the shift space of infinite sequences, Σ := {1, 2, 3}N. The following lemma

defines the projection πT : Σ → T that we will use. This is analogous to the result

that was stated as Theorem 1.1.1 for self-similar dendrites, and we shall denote by

πT the corresponding projection from Σ onto T .
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Lemma A.3.1 P-a.s., there exists a map πT : Σ → T such that

πT ◦ σi(Σ) = Ti, ∀i ∈ Σ∗,

where σi : Σ → Σ is defined by σi(j) = ij for j ∈ Σ. Furthermore, this map is

continuous, surjective and unique.

Proof: P-a.s., for each i ∈ Σ, the sets in the collection (Ti|n)n≥0 are compact, non-

empty subsets of (T , dT ), and by Proposition A.1.4(a), the sequence is decreasing.

Hence, to show that ∩n≥0Ti|n contains exactly one point for each i ∈ Σ, P-a.s., it will

suffice to demonstrate that, P-a.s.,

sup
i∈Σn

diamdT Ti → 0, as n →∞. (A.12)

From Proposition A.1.4(b), we have that diamdT Ti = l(i)diamdT̃i
T̃i, and by definition,

diamdT̃i
T̃i = sups,t∈[0,1] dW i(s, t), which is a measurable function of W i. Hence, by

Theorem A.1.2, the collection (diamdT̃i
T̃i)i∈Σn is a family of independent, identically

distributed random variables, and is independent of Fn. Furthermore, it is also clear

that diamdT̃i
T̃i ≤ 2 supt∈[0,1] W

i
t . The upper bound here is simply twice the maximum

of a normalised Brownian excursion, a random variable whose explicit distribution is

known (see [2], for example) and has positive moments of all orders. Thus, for all

θ > 0,

E
(
(diamdT̃i

T̃i)
θ
)

< ∞.

Consequently, we can apply Lemma 1.3.1(ii) to deduce that the limit result at (A.12)

does indeed hold.

Using the result of the previous paragraph, it is P-a.s. possible to define a map

πT : Σ → T such that, for i ∈ Σ,

{πT (i)} =
⋂
n≥0

Ti|n.

That πT satisfies the claims of the lemma, and is the unique map to do so, may be

proved in exactly the same way as in the self-similar fractal case (see [9], Lemma 5.10,

or [39], Theorem 1.2.3). ¤

Heuristically, the isometry that we will define between the two dendrites under

consideration can be thought of as simply “ϕ = πT ◦ π−1
T ”. However, to introduce

the map rigorously, so that it is well-defined, we first need to prove some simple, but

fundamental, results about the geometry of the sets and the maps πT and πT .
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Lemma A.3.2 P-a.s.,

(a) Tki ∩ Tkj = {ρk1}, for all k ∈ Σ∗, and i, j ∈ S, i 6= j.

(b) π−1
T (ρk1) = {k112̇, k212̇, k312̇}, for all k ∈ Σ∗.

(c) For every i, j ∈ Σ,

πT (i) = πT (j) ⇔ πT (i) = πT (j).

Proof: The proof we give holds on the P-a.s. set for which the decomposition of T
and the definition of πT is possible. Part (a) was proved in the course of the proof

of Proposition A.1.4 at (A.6). Recall that ρk1 = b(ρk, Z
1
k , Z

2
k). For this branch point

to equal ρk or Z1
k , we would require at least two of its arguments to be equal, which

happens with zero probability. Thus ρk1 ∈ Tk\{ρk, Z
1
k}, and so Proposition A.1.4(f)

implies that if πT (i) = ρk1 for some i ∈ Σ, then i||k| = k. Given this fact, it is

elementary to apply the defining property of πT and the results about ρi and Z1
i that

were deduced in Proposition A.1.4 to deduce that part (b) of this lemma also holds.

It now remains to prove part (c).

Fix i, j ∈ Σ, i 6= j, and let m be the unique integer satisfying i|m = j|m and

im+1 6= jm+1. Furthermore, define k = i1 . . . im ∈ Σ∗. Now by standard arguments

for p.c.f.s.s. fractals (see [39], Proposition 1.2.5 and the subsequent remark) we have

that πT (i) = πT (j) implies that σm(i), σm(j) ∈ C, where C is the critical set for the

self-similar structure, T , as defined in Section 1.1. Here, we use the notation σ to

represent the shift map, also introduced in Section 1.1. Note that it is elementary to

calculate that C = {112̇, 212̇, 312̇} for this structure. Thus i, j ∈ {k112̇, k212̇, k312̇},
and so, by part (b), πT (i) = ρk1 = πT (j), which completes one implication of the

desired result.

Now suppose πT (i) = πT (j). From the definition of πT , we have that πT (i) ∈
Tkim+1 and also πT (j) ∈ Tkjm+1 . Hence

πT (i), πT (j) ∈ Tkim+1 ∩ Tkjm+1 = {ρk1},

where we use part (a) to deduce the above equality. In particular, this allows us to

apply part (b) to deduce that i, j ∈ {k112̇, k212̇, k312̇}. Applying the shift map to

this m times yields σm(i), σm(j) ∈ C. It is easy to check that πT (C) contains only the

single point (1
2
, 0). Thus πT (i) = Fk ◦ πT (σm(i)) = Fk ◦ πT (σm(j)) = πT (j), which

completes the proof. ¤
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We are now able to define the map ϕ precisely on a P-a.s. set by

ϕ : T → T

x 7→ πT (i), for any i ∈ Σ with πT (i) = x.

By part (c) of the previous lemma, this is a well-defined injection. Furthermore, since

πT is surjective, so is ϕ. Hence we have constructed a bijection from T to T and it

remains to show that it is also an isometry. We start by checking that ϕ is continuous,

which will enable us to deduce that it maps geodesic paths in T to geodesic paths in

T . However, before we proceed with the lemma, we introduce the following notation

for x ∈ T , n ≥ 0,

Tn(x) :=
⋃
{Ti : i ∈ Σn, x ∈ Ti}.

Note that this is analogous to the definition of (Tn(x))x∈T,n≥0 that was first used at

(1.33). Also, from the properties πT (iΣ) = Ti, πT (iΣ) = Ti, and the definition of ϕ,

it is straightforward to deduce that

ϕ(Ti) = Ti, ∀i ∈ Σ∗, (A.13)

on the P-a.s. set that we can define all the relevant objects.

Lemma A.3.3 P-a.s., ϕ is a continuous map from (T , dT ) to (T,R).

Proof: Recall from Lemma 1.4.7 that for each x ∈ T , the collection (Tn(x))n≥0 is

a base of neighbourhoods of x with respect to the Euclidean metric on R2. Since,

by Proposition 1.4.8, R is topologically equivalent to this metric, P-a.s., then the

same is true when we consider the collections of neighbourhoods with respect to the

metric R, P-a.s. Similarly, we may use the fact that supi∈Σn
diamTi → 0, P-a.s., from

(A.12) to imitate the proofs of these results to deduce that P-a.s., for each x ∈ T ,

the collection (Tn(x))n≥0 is a base of neighbourhoods of x with respect to dT .

The remaining argument applies P-a.s. Let U be an open subset of (T, R) and

x ∈ ϕ−1(U). Define y = ϕ(x) ∈ U . Now, since U is open, there exists an n such that

Tn(y) ⊆ U . Also, by (A.13), for each i ∈ Σn, we have that x ∈ Ti implies that y ∈ Ti.

Hence

ϕ(Tn(x)) = ϕ (∪i∈Σn, x∈Ti
Ti) ⊆ ∪i∈Σn, y∈Ti

Ti = Tn(y) ⊆ U.

Consequently, Tn(x) ⊆ ϕ−1(U). Since Tn(x) is a dT -neighbourhood of x it follows

that ϕ−1(U) is open in (T , dT ). The lemma follows. ¤
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We are now ready to proceed with the main result of this section. In the proof,

we will use the notation γTxy : [0, 1] → T to denote a geodesic path from x to y, where

x and y are points in the dendrite T . Clearly, because ϕ is a continuous injection,

ϕ ◦ γTxy describes a geodesic path from ϕ(x) to ϕ(y) in T .

Theorem A.3.4 P-a.s., the map ϕ is an isometry, and the metric spaces (T , dT )

and (T, R) are isometric.

Proof: Obviously, the second statement of the theorem is an immediate consequence

of the first. The following argument, in which we demonstrate that ϕ is indeed an

isometry, holds P-a.s. Given ε > 0, by Lemma 1.5.1(c) and (A.12), we can choose an

n ≥ 1 such that

sup
i∈Σn

diamdT Ti, sup
i∈Σn

diamRTi <
ε

4
.

Now, fix x, y ∈ T , define t0 := 0 and set

tm+1 := inf{t > tm : γTxy(t) 6∈ Tn(γTxy(tm))},

where inf ∅ := 1. We will also denote xm := γTxy(tm). Since, for each x′ ∈ T ,

the collection (Tn(x′))n≥0 forms a base of neighbourhoods of x′, we must have that

tm−1 < tm whenever tm−1 < 1. We now claim that for any m with tm−1 < 1 there

exists a unique i(m) ∈ Σn such that

γTxy(t) ∈ Ti(m), tm−1 ≤ t ≤ tm. (A.14)

Let m be such that tm−1 < 1. By the continuity of γTxy, we have that xm ∈ Tn(xm−1),

and hence there exists an i(m) ∈ Σn such that xm−1, xm ∈ Ti(m). Clearly, the image

of γTxy restricted to t ∈ [tm−1, tm] is the same as the image of γTxm−1xm
, which describes

the unique path in T from xm−1 to xm. Note also that Ti(m) is a path-connected

subset of T , and so the path from xm−1 to xm lies in Ti(m). Consequently, the set

γxy([tm−1, tm]) is contained in Ti(m). Thus to prove the claim at (A.14), it remains

to show that i(m) is unique. Suppose that there exists j ∈ Σn, j 6= i(m) for which

the inclusion at (A.14) holds. Then the uncountable set γTxy([tm−1, tm]) is contained

in Ti(m) ∩ Tj, which, by Proposition A.1.4(f), contains at most two points. Hence no

such j can exist.

Now assume that m1 < m2 and that tm2−1 < 1. Suppose that i(m1) = i(m2), then

xm1−1, xm2 ∈ Ti(m1) By a similar argument to the previous paragraph, it follows that

γTxy([tm1−1, tm2 ]) ⊆ Ti(m1). By definition, this implies that tm1 ≥ tm2 , which cannot
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be true. Consequently, we must have that i(m1) 6= i(m2). Since Σn is a finite set, it

follows from this observation that

N := inf{m : tm = 1}

is finite, and moreover, the elements of (i(m))N
m=1 are distinct.

The conclusion of the previous paragraph provides us with a useful decomposition

of the path from x to y, which we will be able to use to complete the proof. The fact

that dT is a shortest path metric allows us to write

dT (x, y) =
N∑

m=1

dT (xm−1, xm).

For m ∈ {2, . . . , N−1}, we have that i(m) 6= i(m+1), and so by applying Proposition

A.1.4(f), we can deduce that xm ∈ Ti(m) ∩Ti(m+1) ⊆ {ρi(m), Z
1
i(m)}. Similarly, we have

xm−1 ∈ Ti(m−1) ∩ Ti(m) ⊆ {ρi(m), Z
1
i(m)}. Thus, by the injectivity of γTxy, we must have

that {xm−1, xm} = {ρi(m), Z
1
i(m)}, which implies dT (xm−1, xm) = dT (ρi(m), Zi(m)) =

l(i(m))Di(m). Hence we can conclude that

dT (x, y)−
N−1∑
m=2

l(i(m))Di(m) = dT (x0, x1) + dT (xN−1, xN). (A.15)

As remarked before this lemma, ϕ◦γTxy is a geodesic path from ϕ(x) to ϕ(y). Thus

the shortest path property of R allows us to write

R(ϕ(x), ϕ(y)) =
N∑

m=1

R(ϕ(xm−1), ϕ(xm)). (A.16)

Let m ∈ {2, . . . , N − 1}. By applying ϕ to the expression for {xm−1, xm} that was

deduced above, we obtain that {ϕ(xm−1), ϕ(xm)} = {ϕ(ρi(m)), ϕ(Z1
i(m))}. Now, part

(b) of Lemma A.3.2 implies that

ϕ(ρi(m)) = πT (k112̇) = Fk(πT (112̇)) = Fk((
1

2
, 0)) = Fi(m)((0, 0)),

where k := i(m)|(|i(m)| − 1). In Proposition A.1.4(d) it was shown that Z1
i = Z1

i2,

for every i ∈ Σ∗. It follows that i(m)2̇ ∈ π−1
T (Z1

i(m)), and so

ϕ(Z1
i(m)) = πT (i(m)2̇) = Fi(m)(πT (2̇)) = Fi(m)((1, 0)).

Thus R(ϕ(xm−1), ϕ(xm)) = R(Fi(m)((0, 0)), Fi(m)((1, 0))). However, {(0, 0), (1, 0)} is

the only edge in Ẽ0, and so from the expression at (1.31), we can deduce that

R(ϕ(xm−1), ϕ(xm)) =
√

π/8l(i(m))Ri(m) = l(i(m))Di(m),
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where we have used Lemma A.2.1 to obtain the second equality. Substituting this

into (A.16), and combining the resulting equation with the equality at (A.15) yields

|dT (x, y)−R(ϕ(x), ϕ(y))| ≤
∑

m∈{1,N}
(dT (xm−1, xm) + R(ϕ(xm−1), ϕ(xm))) .

Now, x0 and x1 are both contained in Ti(1), and so the choice of n implies that

dT (x0, x1) < ε/4. Furthermore, ϕ(x0) and ϕ(x1) are both contained in ϕ(Ti(1)) = Ti(1),

and so we also have R(ϕ(x0), ϕ(x1)) < ε/4. Thus the summand with m = 1 is

bounded by ε/2. Similarly for m = N . Hence

|dT (x, y)−R(ϕ(x), ϕ(y))| < ε.

Since the choice of x, y and ε was arbitrary, the proof is complete. ¤

The final result that we present in this section completes the proof of the fact

that (T , dT , µ) and (T,R, µT ) are equivalent measure-metric spaces, where we use

the notation µT to represent the self-similar measure on (T, R), as defined in Section

1.8. Note that, since w(1)2+w(2)2+w(3)2 = ∆1+∆2+∆3 = 1, P-a.s., the appropriate

exponent for the measure µT is α = 2 and moreover, there are no tail fluctuations in

the µT -measure of sets of the form Ti. In particular, the equation at (1.51) becomes,

P-a.s.,

µT (Ti) = l(i)2, ∀i ∈ Σ∗. (A.17)

Theorem A.3.5 P-a.s., the probability measures µ and µT ◦ ϕ agree on the Borel

σ-algebra of (T , dT ).

Proof: Again, this argument holds P-a.s. First, note that µT is a non-atomic Borel

probability measure on (T, R). Thus, since ϕ is an isometry, µT ◦ ϕ is a non-atomic

Borel probability measure on (T , dT ). Secondly, µ is a Borel probability measure on

(T , dT ) by construction. Now, let A be the collection of sets of the form {ρi}, {Z1
i },

Ti, for i ∈ Σ∗, and the empty set. From Proposition A.1.4, we have that A is a π-

system. Furthermore, because for each x ∈ T , (Tn(x))n≥0 is a base of neighbourhoods

of x and contains sets in σ(A), it is the case that A generates the Borel σ-algebra of

(T , dT ). Thus, by standard measure theory (see [17], Theorem 3.3), to deduce the

result, it is sufficient to check that the measures µ and µT ◦ ϕ agree on A. Since

both measures are non-atomic, we are left with showing that they agree on (Ti)i∈Σ∗ .

Recall from Proposition A.1.4(g) that µ(Ti) = l(i)2. Applying this and the identities

of (A.13) and (A.17), we have

µT ◦ ϕ(Ti) = µT (Ti) = l(i)2 = µ(Ti),

which completes the proof. ¤
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Appendix B

Perron-Frobenius eigenvalue
derivative

In this appendix, we give a proof of the fact that the derivative of the Perron-Frobenius

eigenvalue of M(θ), as defined in Section 1.6, is strictly negative whenever M(1) is

regular and (W1) holds. This condition guarantees that, if the branching random

walk model is applicable to the resistance perturbations, Re
i (n) converges in mean to

Re
i , ([42], Theorem 1). In fact, that the assumption (R1) holds under the conditions

of the proposition is a simple extension of this result.

Proposition B.0.1 Suppose M(1) is regular and assume (W1). Let ρ(θ) denote the

Perron-Frobenius (maximum positive) eigenvalue of M(θ) for θ > 0, then

ρ′(1) < 0.

Proof: We start by rewriting M(θ) so that it does not depend on (He)e∈Ẽ0 . Define

N(θ) = (nee′(θ))e,e′∈Ẽ0 by

N(θ) := diag(H−θ)M(θ)diag(Hθ),

where entry in the ee′ position of diag(H±θ) is H±θ
e 1{e=e′}. Since these diagonal

matrices are invertible, N(θ) has the same eigenvalues as M(θ) and

nee′(θ) = E

(∑
i∈S

w(i)θ1{Fi(Ge′ )⊆Ge}

)
.

Since M(1) is positive regular, then so is N(1). Consequently, the same is true for

N(θ), θ > 0. Furthermore, nee′(θ) is analytic in C for θ = x + iy with x > 0. It

follows from [16], Theorem 1, that for θ ∈ R, θ > 0, the Perron-Frobenius eigenvalue
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of N(θ), ρ(θ) is differentiable. Moreover, if u(θ) = (ue(θ))e∈Ẽ0 , v(θ) = (ve(θ))e∈Ẽ0

are the left, right eigenvectors of N(θ) corresponding to ρ(θ) and normalised so that∑
e ue(θ)ue(θ) = 1,

∑
e ue(θ)ve(θ) = 1, then u(θ), v(θ) are differentiable and ue(θ) >

0, ve(θ) > 0, for all e ∈ Ẽ0. We can now follow a similar argument to [54], Proposition

2.2. First, we can differentiate u(θ)N(θ) = ρ(θ)u(θ) to obtain

u′(θ)N(θ) + u(θ)N ′(θ) = ρ′(θ)u(θ) + ρ(θ)u′(θ).

Multiplying on the right by v(θ) yields ρ′(θ) = u(θ)N ′(θ)v(θ). In particular,

ρ′(1) =
∑

e,e′∈Ẽ0

ue(1)ve′(1)E

(∑
i∈S

w(i) ln w(i)1{Fi(Ge′ )⊆Ge}

)
.

Since (W1) holds, E(w(i) ln w(i)) < 0, for every i ∈ S. The result follows. ¤
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Appendix C

Resistance and Dirichlet forms

The aim of this appendix is to explain the connection between Dirichlet and resistance

forms, at least within the framework of Chapter 2. In particular, we suppose that

(X, d, µ) is a measure-metric space satisfying the conditions of Chapter 2, and (E ,F)

is a regular Dirichlet on L2(X,µ) for which there exists a resistance form (E ,F ′)

such that F ′ ⊇ F . Moreover, we assume that the topology induced upon X by the

associated resistance metric, R, is compatible with the original topology of (X, d). In

our description of the connection between the two quadratic forms we use the idea

of an extended Dirichlet space, which we shall denote Fe. We follow [28] in defining

this to be the collection of µ-measurable functions f on X such that |f | < ∞, µ-a.e.,

and there exists an E-Cauchy sequence (fn)n≥0 in F such that fn(x) → f(x), µ-a.e.

Note that in this section we do not need the locality assumption on our Dirichlet form

(E ,F) or assume that its extended Dirichlet space (E ,Fe) is a resistance form. Our

main result is the following.

Proposition C.0.2

(a) Define F̃ := F ′ ∩ L2(X, µ), then (E , F̃) is a regular Dirichlet form.

(b) Suppose (E ,F) is recurrent, then (E ,Fe) is a resistance form. The associated

resistance metric RF is bounded above by R, and for x 6= y, we have

RF(x, y)−1 = inf{E(f, f) : f ∈ F , f(x) = 1, f(y) = 0}. (C.1)

Moreover, RF = R if and only if Fe = F ′.

Proof: The proof of (a) is straightforward. Clearly (E , F̃) is a symmetric, Markov

form. That it is closed is demonstrated in [39], Theorem 2.4.1. The denseness of its

domain in L2(X,µ) and regularity follow from the fact that F̃ ⊇ F .

We now prove (b). First note by the definition of Fe, and the fact that F ′ is

complete with respect to E , we must have that Fe ⊆ F ′, so E is well-defined on Fe.
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By construction, Fe is a linear subspace. Also observe that if (E ,F) is recurrent,

then 1 ∈ Fe and E(1, 1) = 0, ([28], Theorem 1.6.2). Hence, (E ,Fe) satisfies the first

property of a resistance form. That E(f, f) = 0 if and only if f is a constant, as

well as the fourth and fifth properties of a resistance form are easily checked. Thus it

remains to show that (Fe/ ∼, E) is a Hilbert space, where f ∼ g if and only if f − g

is constant, and also that we can extend any function defined on a finite set of points

to a function in Fe. This final property is a simple consequence of the regularity of

(E ,F), and we omit its proof.

Suppose (fn)n≥0 is a Cauchy sequence in (Fe, E). Fix x0 and define gn(x) :=

fn(x) − fn(x0) ∈ Fe. By the inequality at (2.17) for the resistance form (E ,F ′), we

have that (gn(x))n≥0 is Cauchy, and consequently convergent, for each x ∈ X. Define

g(x) := limn→∞ gn(x), and note that (gn)n≥0 is E-Cauchy. It follows that g ∈ Fe, and

E(fn − g, fn − g) → 0, which completes the proof of completeness.

We have thus proved that (E ,Fe) is a resistance form. That the associated resis-

tance metric RF is bounded above by R is clear from the definition of a resistance

metric after recalling that Fe ⊆ F ′. The expression for RF at (C.1) follows from the

fact that F is dense in (Fe, E). The final claim is a consequence of the one-to-one

correspondence between resistance metrics and resistance forms (see [39], Theorem

2.3.4 and Theorem 2.3.6). ¤

A question left open by this result is whether F̃e = F ′. In the case of (X, d) com-

pact, we shall show that this is true. This means that there is a natural correspondence

between the resistance form and a Dirichlet form, and thus also a connection between

the resistance form and a Markov process. However, in the general non-compact case,

this problem means that we are unable to say whether it is possible to construct a

Markov process that contains all the information about our original resistance form

(E ,F ′).

In the case of (X, d) compact the previous result may be stated more neatly.

This is mainly due to the fact that the regularity of a Dirichlet form implies 1 ∈ F ,

which immediately implies the recurrence of the related semi-group in our setting.

Specifically, we have the following result.

Proposition C.0.3 If (X, d) is compact, then

(a) (E ,F ′) is a regular Dirichlet form.

(b) (E ,F) is a resistance form. The associated resistance metric RF is bounded above

by R, and moreover, RF = R if and only if F = F ′.

Proof: To prove (a) it suffices to show that F ′ is contained within L2(X,µ). However,
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the inequality at (2.17) for the resistance form (E ,F ′) and the assumption that the

topology of R and d are compatible implies that F ′ ⊆ C(X). Consequently, because

X is compact and µ is a finite Borel measure, we must have that F ′ ⊆ L2(X, µ) as

desired.

We start the proof of (b) by showing that (E ,F) is recurrent. As remarked before

the proposition, that 1 ∈ F is a simple consequence of the regularity of (E ,F). Using

the first property of a resistance form, we must necessarily have E(1, 1) = 0, and

hence (E ,F) is recurrent ([28], Theorem 1.6.2). Consequently, the result will follow

from Proposition C.0.2 if we can show that Fe = F . However, by [28], Theorem

1.5.2, we have that F = Fe ∩ L2(X,µ). Note now that Fe ⊆ F ′ ⊆ L2(X, µ). Thus

Fe ∩ L2(X, µ) = Fe, and the proof is complete. ¤

Finally, note that this result implies the existence of proper resistance form sub-

spaces when we have regular Dirichlet form subspaces. A resistance form subspace

of a resistance form (E ,F ′) is a set F ′′ ⊆ F ′ such that (E ,F ′′) is also a resistance

form, and it is proper if F ′′ 6= F ′. The definition of a regular Dirichlet form subspace

is similar. For example, suppose that (X, d) is compact, so that (E ,F ′) is a regular

Dirichlet form. Now if F is a proper regular Dirichlet subspace of F ′, then by the

previous proposition we have a proper resistance form subspace. Examples of when

this occurs appear in [26] for the case of X = [0, 1]. Note that the regular Dirichlet

form associated with reflecting Brownian motion on the interval is also a resistance

form. Hence all the proper regular Dirichlet subspaces of this form that are exhibited

in [26] are also proper resistance form subspaces.
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