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Abstract

We consider a boundary value problem of the stationary transport
equation in a two-dimensional infinite strip domain. We prove the ex-
istence and the uniqueness of classical solutions to our boundary value
problem in the case that two coefficients in the equation are constants
and that both the boundary data and the scattering phase function are
independent of a spatial coordinate. We prove infinite differentiability of
the solution with respect to the spatial coordinate in this case, and we also
prove continuous differentiability with respect to the angular coordinate
under the assumption that both the boundary data and the scattering
phase function are continuously differentiable.
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1 Introduction

We consider the stationary transport equation, which is the following integro-
differential equation:

− ξ · ∇xI(x, ξ)− (µa(x) + µs(x))I(x, ξ)

+ µs(x)

∫
S1

p(x, ξ, ξ′)I(x, ξ′) dσξ′ = 0, (x, ξ) ∈ Ω× S1, (1.1)

where Ω = R × (0, 1) is an infinite strip domain in R2. Here, the absorption
coefficient µa(x) and the scattering coefficient µs(x) are nonnegative functions
and the scattering phase function p(x, ξ, ξ′) is a nonnegative function which
satisfies ∫

S1

p(x, ξ, ξ′) dσξ′ = 1, (x, ξ) ∈ Ω× S1.

We note that we call µa(x) + µs(x) the attenuation coefficient and denote it by
µt(x): µt(x) = µa(x) + µs(x). This equation is considered as a mathematical
model of propagation of photons with absorption and scattering [4] [5], and its
analysis has been very much paid attention to recently for its application.

We now pose a boundary condition to (1.1). Let us denote the boundary of
Ω× S1 by Γ; Γ := R× {0, 1} × S1. We introduce a parameter θ to identify S1

with the interval (−π, π] by the relation ξ = (cos θ, sin θ) for ξ ∈ S1. Let us also
denote

Γ+ := {(x1, 0, ξ)|x1 ∈ R, θ ∈ (−π, 0)} ∪ {(x1, 1, ξ)|x1 ∈ R, θ ∈ (0, π)} ,
Γ− := {(x1, 0, ξ)|x1 ∈ R, θ ∈ (0, π)} ∪ {(x1, 1, ξ)|x1 ∈ R, θ ∈ (−π, 0)} ,
Γ0 := {(x1, 0, ξ)|x1 ∈ R, θ ∈ {0, π}} ∪ {(x1, 1, ξ)|x1 ∈ R, θ ∈ {0, π}} ,

and Γ = Γ+ ∪Γ− ∪Γ0. We pose a boundary condition for the equation (1.1) as
follows:

I(x, ξ) = I0(x, ξ), (x, ξ) ∈ Γ−, (1.2)

where we later mention regularity of a given function I0(x, ξ).
Prior to the mathematical analysis, we should give definition of solutions to

the boundary value problem (1.1) and (1.2). Let a function τ(x, ξ) be

τ(x, ξ) :=
x2

sin θ
, θ ∈ (0, π)

and

τ(x, ξ) :=− 1− x2

sin θ
, θ ∈ (−π, 0),

where x2 represents the second component of x ∈ Ω. We remark that τ means
the distance between a point x ∈ Ω and the boundary point x − τξ ∈ ∂Ω.
Since lim

θ→0
τ(x, ξ) = lim

θ→±π
τ(x, ξ) = ∞ for each x ∈ Ω, we define τ(x, ξ) = ∞ for

θ ∈ {0, π}.
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Let Cb

((
Ω× S1

)
∪ Γ−

)
be the normed vector space consisting of all the

bounded continuous functions on
(
Ω× S1

)
∪ Γ− with a norm ∥ · ∥∞ defined by

∥I∥∞ := sup
(x,ξ)∈(Ω×S1)∪Γ−

|I(x, ξ)|,

and we remark that Cb

((
Ω× S1

)
∪ Γ−

)
is a Banach space. In a similar way,

we also introduce a Banach space Cb(Γ−) with a norm denoted by ∥ · ∥Γ− .
Under these preparations, we give the following definition.

Definition 1.1. We say I ∈ Cb

((
Ω× S1

)
∪ Γ−

)
is a classical solution to the

boundary value problem (1.1) and (1.2), if I satisfies the following integral
equation

I(x, ξ) = exp

(
−
∫ τ

0

µt(x− rξ) dr

)
I0(x− τξ, ξ)

+ µs

∫ τ

0

exp

(
−
∫ t

0

µt(x− rξ) dr

)∫
S1

p(x− tξ, ξ, ξ′)I(x− tξ, ξ′) dσξ′dt,

(x, ξ) ∈ (Ω× S1) ∪ Γ−. (1.3)

We remark that D. S. Anikonov et al. [1] proved the existence and the
uniqueness of weak solutions to the boundary value problem (1.1) and (1.2)
for a more general case where Ω is bounded and ∂Ω has C1 regularity, but as
far as the author knows, the existence and the uniqueness of classical solutions
has not been explicitly proved. In this paper, we discuss the existence and the
uniqueness of classical solutions, although we restrict ourselves for the case of
the infinite strip domain. We also discuss regularity of the classical solution in
the case, and it is necessary in discussion of a finite difference approach, aided
by numerical computation, to the boundary value problem.

In order to state our result, we should pose some assumptions. We assume
that our given boundary data I0 does not depend on the first component x1,
that the coefficients µa and µs are nonnegative constants and also that the
scattering phase function p is independent of x. Under these assumptions, we
remark that the solution I also does not depend on x1, and we can reduce the
equation (1.1) to the following equation

− sin θ
∂

∂x2
I(x2, ξ)−(µa + µs)I(x2, ξ)

+ µs

∫
S1

p(ξ, ξ′)I(x2, ξ
′) dσξ′ = 0, (x2, ξ) ∈ Ω̃× S1,

(1.4)

where Ω̃ is the interval (0, 1). We further suppose that p is continuous on S1×S1.
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Corresponding to (1.1), let us denote

Γ̃ :=
{
(0, ξ)|ξ ∈ S1

}
∪
{
(1, ξ)|ξ ∈ S1

}
,

Γ̃+ := {(0, ξ)|θ ∈ (−π, 0)} ∪ {(1, ξ)|θ ∈ (0, π)} ,
Γ̃− := {(0, ξ)|θ ∈ (0, π)} ∪ {(1, ξ)|θ ∈ (−π, 0)} ,
Γ̃0 := {(0, ξ)|θ ∈ {0, π}} ∪ {(1, ξ)|θ ∈ {0, π}} ,

and the boundary condition can be reduced to

I(x2, ξ) = Ĩ0(x2, ξ), (x2, ξ) ∈ Γ̃−, (1.5)

where Ĩ0 is a given function corresponding to I0 on Γ−. For simplicity, we omit
the tilde and the subscription of x2 in the discussion below.

We rewrite the definition of classical solutions for our boundary value prob-
lem (1.4) and (1.5) as follows.

Definition 1.2. We say I ∈ Cb

((
Ω× S1

)
∪ Γ−

)
is a classical solution to the

boundary value problem (1.4) and (1.5), if I satisfies the following integral
equations: for x ∈ [0, 1) and θ ∈ (0, π),

I(x, ξ) = exp

(
−µa + µs

sin θ
x

)
I0(0, ξ)

+
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt (1.6)

and for x ∈ (0, 1] and θ ∈ (−π, 0),

I(x, ξ) = exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ)

− µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt. (1.7)

Remark 1.3. If the solution I exists and belongs to Cb

((
Ω× S1

)
∪ Γ−

)
, we

differentiate the right hand side of (1.6) and (1.7) with respect to x to obtain
the following equations: for x ∈ (0, 1) and θ ∈ (0, π),

∂I

∂x
(x, ξ) =− µa + µs

sin θ
exp

(
−µa + µs

sin θ
x

)
I0(0, ξ)

+
µs

sin θ

∫
S1

p(ξ, ξ′)I(x, ξ′) dσξ′

− µa + µs

sin θ

µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt

=− µa + µs

sin θ
I(x, ξ) +

µs

sin θ

∫
S1

p(ξ, ξ′)I(x, ξ′) dσξ′
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and for x ∈ (0, 1) and θ ∈ (−π, 0),

∂I

∂x
(x, ξ) =− µa + µs

sin θ
exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ)

+
µs

sin θ

∫
S1

p(ξ, ξ′)I(x, ξ′) dσξ′

+
µa + µs

sin θ

µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt

=− µa + µs

sin θ
I(x, ξ) +

µs

sin θ

∫
S1

p(ξ, ξ′)I(x, ξ′) dσξ′ .

Substituting x = 0 for the equation (1.6), we have I(0, ξ) = I0(x, ξ) for θ ∈
(0, π). Similary, substituting x = 1 for the equation (1.7), we have I(1, ξ) =
I0(1, ξ) for θ ∈ (−π, 0). Consequently, the classical solution satisfies the equa-
tion (1.4) with the boundary condition (1.5) except for θ ∈ {0, π}.

In this paper, we prove the following three theorems, which are the main
results.

Theorem 1.4. Suppose that I0 ∈ Cb(Γ−) and µa > 0. Then the equation (1.4)
with the boundary condition (1.5) has a unique classical solution I.

Theorem 1.5. Under the same assumptions as Theorem 1.4, there exists
∂I

∂x
in C(Ω× S1). Moreover, the classical solution I is infinitely differentiable with
respect to x in Ω× S1.

Theorem 1.6. In addition to the assumptions in Theorem 1.4, we suppose that

p is continuously differentiable and that
∂I0
∂θ

∈ Cb(Γ−). Then, there exists
∂I

∂θ
in C(Ω× S1).

2 Existence and Uniqueness of Solutions

We give a proof of Theorem 1.4. We firstly prove the uniqueness of classical
solutions by some estimates and secondly prove the existence of a solution by a
constructive method.

2.1 Uniqueness of Solutions

We start from the following proposition.

Proposition 2.1. Suppose that I0 ∈ Cb(Γ−) and µa > 0. Then, the clas-
sical solution I to the boundary value problem (1.4) and (1.5) is unique in
Cb

((
Ω× S1

)
∪ Γ−

)
, if it exists.
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Proof. Let I1 and I2 be two classical solutions and let us denote by I the dif-
ference of these two functions; I := I1 − I2. Then, by definition of classical
solutions, I belongs to Cb

((
Ω× S1

)
∪ Γ−

)
and satisfies the following integral

equations: for x ∈ [0, 1) and θ ∈ (0, π),

I(x, ξ) =
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt (2.1)

and for x ∈ (0, 1] and θ ∈ (−π, 0),

I(x, ξ) = − µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt. (2.2)

By the equation (2.1), we obtain, for x ∈ [0, 1) and θ ∈ (0, π),

|I(x, ξ)| ≤ µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)dσξ′dt∥I∥∞

=
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
dt∥I∥∞

≤ µs

µa + µs
∥I∥∞.

Similarly, by the equation (2.2), we obtain, for x ∈ (0, 1] and θ ∈ (−π, 0),

|I(x, ξ)| ≤ − µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)dσξ′dt∥I∥∞

= − µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
dt∥I∥∞

≤ µs

µa + µs
∥I∥∞.

Thus, we have ∥I∥∞ ≤ µs

µa + µs
∥I∥∞, which leads us to the uniqueness of the

classical solution.

2.2 Existence of Solutions

We prove the existence of classical solutions to the boundary value problem
(1.4) and (1.5), and, to this end, we define a sequence of functions {I(n)}n≥0 in
Cb

(
(Ω× S1) ∪ Γ−

)
. We firstly define I(0) ∈ Cb

(
(Ω× S1) ∪ Γ−

)
as follows:

• For x ∈ [0, 1) and θ ∈ (0, π), I(0)(x, ξ) := exp

(
−µa + µs

sin θ
x

)
I0(0, ξ).

• For x ∈ (0, 1] and θ ∈ (−π, 0), I(0)(x, ξ) := exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ).

• For x ∈ (0, 1) and θ ∈ {0, π}, I(0)(x, ξ) := 0.
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Once we suppose to define up to I(n), we define I(n+1) as follows:

• For x ∈ [0, 1) and θ ∈ (0, π),

I(n+1)(x, ξ) :=
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.

• For x ∈ (0, 1] and θ ∈ (−π, 0),

I(n+1)(x, ξ) := − µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.

• For x ∈ (0, 1) and θ ∈ {0, π},

I(n+1)(x, ξ) :=
µs

µa + µs

∫
S1

p(ξ, ξ′)I(n)(x, ξ′) dσξ′ .

For the sequence {I(n)}n≥0, we have the next proposition to conclude that
the sequence is well-defined.

Proposition 2.2. If I0 ∈ Cb(Γ−), then I(n) ∈ Cb

((
Ω× S1

)
∪ Γ−

)
for all the

nonnegative integers n.

Proof. We prove it by induction on n. We consider the case n = 0. We remark
that I(0) satisfies ∥I(0)∥∞ ≤ ∥I0∥Γ− . To prove continuity of I(0), we must check
continuity at (x, ξ) ∈ (0, 1)× {ξ0, ξπ}, where we denote by ξ0 and ξπ the points
(1, 0) = (cos 0, sin 0) and (−1, 0) = (cosπ, sinπ), respectively. Continuity at the
other points is obvious. Since I0 is bounded, for x ∈ (0, 1),

lim
θ↓0

I(0)(x, ξ) = lim
θ↓0

exp

(
−µa + µs

sin θ
x

)
I0(0, ξ) = 0

and

lim
θ↑0

I(0)(x, ξ) = lim
θ↑0

exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ) = 0.

In the same way, for x ∈ (0, 1),

lim
θ↓−π

I(0)(x, ξ) = lim
θ↓−π

exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ) = 0
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and

lim
θ↑π

I(0)(x, ξ) = lim
θ↑π

exp

(
−µa + µs

sin θ
x

)
I0(0, ξ) = 0.

Thus, we show that I(0) ∈ Cb

((
Ω× S1

)
∪ Γ−

)
.

Next, we suppose I(n) ∈ Cb

((
Ω× S1

)
∪ Γ−

)
. We can prove the following

lemma by straightforward estimates.

Lemma 2.3. Suppose I(n) ∈ Cb

((
Ω× S1

)
∪ Γ−

)
. Then, the following estimate

holds:
∥I(n+1)∥∞ ≤ µs

µa + µs
∥I(n)∥∞. (2.3)

From Lemma 2.3, I(n+1) is bounded on (Ω×S1)∪Γ−. We prove continuity
at (x, ξ) ∈ (0, 1)×{ξ0, ξπ}. For the same reason as the case n = 0, this completes
the proof. We consider continuity as θ ↓ 0 and as θ ↑ π. Using the following
equality: for all x ∈ [0, 1) and θ ∈ (0, π),

µs

µa + µs
=

µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
dt

+
µs

µa + µs
exp

(
−µa + µs

sin θ
x

)
, (2.4)

we have, for x ∈ (0, 1) and θ ∈ (0, π),

|I(n+1)(x, ξ0)− I(n+1)(x, ξ)|

=

∣∣∣∣ µs

µa + µs
exp

(
−µa + µs

sin θ
x

)∫
S1

p(ξ0, ξ
′)I(n)(x, ξ′) dσξ′

+
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
dt

∫
S1

p(ξ0, ξ
′)I(n)(x, ξ′) dσξ′

− µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

∣∣∣∣
≤ J1 + J2 + J3,

where

J1 :=
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
dt

×
∫
S1

|p(ξ0, ξ′)− p(ξ, ξ′)||I(n)(x, ξ′)| dσξ′ ,

J2 :=
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)|I(n)(x, ξ′)− I(n)(t, ξ′)| dσξ′dt

and
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J3 :=
µs

µa + µs
exp

(
−µa + µs

sin θ
x

)∫
S1

p(ξ0, ξ
′)|I(n)(x, ξ′)| dσξ′ .

We estimate each term of the right hand side. By definition of J1, we have

J1 ≤ µa

µa + µs
2π∥I(n)∥∞ max

ξ′∈S1
|p(ξ0, ξ′)− p(ξ, ξ′)|.

Since p is continuous, lim
θ↓0

max
ξ′∈S1

|p(ξ0, ξ′)− p(ξ, ξ′)| = 0. Thus, we get lim
θ↓0

J1 = 0.

Also, by definition of J3, we have

J3 ≤ µs

µa + µs
exp

(
−µa + µs

sin θ
x

)
∥I(n)∥∞.

From lim
θ↓0

exp

(
−µa + µs

sin θ
x

)
= 0 for all x ∈ (0, 1), we get lim

θ↓0
J3 = 0. Finally,

for all δ with 0 < δ < x, we have

J2 =
µs

sin θ

∫ x−δ

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)|I(n)(x, ξ′)− I(n)(t, ξ′)| dσξ′dt

+
µs

sin θ

∫ x

x−δ

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)|I(n)(x, ξ′)− I(n)(t, ξ′)| dσξ′dt

≤2∥I(n)∥∞
µs

µa + µs
exp

(
−µa + µs

sin θ
δ

)
+

µs

µa + µs
sup

t∈(x−δ,x)

(
max
ξ∈S1

|I(n)(x, ξ′)− I(n)(t, ξ′)|
)
.

Accordingly, we have

lim
θ↓0

J2 ≤ µs

µa + µs
sup

t∈(x−δ,x)

(
max
ξ∈S1

|I(n)(x, ξ′)− I(n)(t, ξ′)|
)
.

Since I(n) is continuous by the induction hypothesis, the right hand side of this
inequality becomes smaller as δ becomes smaller. As a result,

lim
θ↓0

|I(n+1)(x, ξ0)− I(n+1)(x, ξ)| = 0.

Similarly, we can prove that lim
θ↑π

|I(n+1)(x, ξπ)− I(n+1)(x, ξ)| = 0. We secondly

consider continuity as θ ↑ 0 and as θ ↓ −π. For x ∈ (0, 1) and θ ∈ (−π, 0),

|I(n+1)(x, ξ0)− I(n+1)(x, ξ)| ≤ J ′
1 + J ′

2 + J ′
3,

9



where

J ′
1 := − µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
dt

×
∫
S1

|p(ξ0, ξ′)− p(ξ, ξ′)||I(n)(x, ξ′)| dσξ′ ,

J ′
2 := − µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
×
∫
S1

p(ξ, ξ′)|I(n)(x, ξ′)− I(n)(t, ξ′)| dσξ′dt

and

J ′
3 :=

µs

µa + µs
exp

(
µa + µs

sin θ
(1− x)

)∫
S1

p(ξ0, ξ
′)|I(n)(x, ξ′)| dσξ′ .

Here, we used the following equality: for all x ∈ (0, 1] and θ ∈ (−π, 0),

µs

µa + µs
= − µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
dt

− µs

µa + µs
exp

(
µa + µs

sin θ
(1− x)

)
. (2.5)

In the same way as the case θ ∈ (0, π), we can prove that

lim
θ↑0

|I(n+1)(x, ξ0)− I(n+1)(x, ξ)| = 0

and
lim
θ↓−π

|I(n+1)(x, ξπ)− I(n+1)(x, ξ)| = 0.

As a result, we conclude that I(n+1) ∈ Cb

((
Ω× S1

)
∪ Γ−

)
.

We define a sequence of functions {In}n≥0 by

In(x, ξ) :=
n∑

k=0

I(k)(x, ξ).

By definition, In belongs to Cb

((
Ω× S1

)
∪ Γ−

)
for all the nonnegative integers

n. Since the estimate (2.3) holds for all n, we obtain

∥I(n)∥∞ ≤
(

µs

µa + µs

)n

∥I0∥Γ− .

Accordingly, we have

∥Im − In∥∞ =

∥∥∥∥∥
m∑

k=n+1

I(k)

∥∥∥∥∥
∞

≤
m∑

k=n+1

∥I(k)∥∞ ≤
m∑

k=n+1

(
µs

µa + µs

)k

∥I0∥Γ−

10



for all the nonnegative integer m and n with m > n. Since µa is positive, the
right hand side of the inequality tends to 0 as m and n tend to ∞. For this
reason, {In}n≥0 is a Cauchy sequence in Cb

((
Ω× S1

)
∪ Γ−

)
. Consequently,

from the completeness of the space, we conclude that there exists I = lim
n→∞

In =
∞∑

n=0

I(n) in Cb

((
Ω× S1

)
∪ Γ−

)
.

At the end of this subsection, we check that the function I above is indeed
a solution to the boundary value problem (1.4) and (1.5). For x ∈ [0, 1) and
θ ∈ (0, π),

I(x, ξ) =

∞∑
n=0

I(n)(x, ξ) = I(0)(x, ξ) +

∞∑
n=1

I(n)(x, ξ)

= exp

(
−µa + µs

sin θ
x

)
I0(0, ξ)

+
∞∑

n=0

µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

=exp

(
−µa + µs

sin θ
x

)
I0(0, ξ)

+
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)
∞∑

n=0

I(n)(t, ξ′) dσξ′dt

=exp

(
−µa + µs

sin θ
x

)
I0(0, ξ)

+
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt,

where we used the uniform convergence of
∞∑

n=0

I(n) in the fourth equality. Sim-

ilarly, for x ∈ (0, 1] and θ ∈ (−π, 0),

I(x, ξ) = exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ)

− µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)I(t, ξ′) dσξ′dt.

Therefore, I is a solution to the boundary value problem (1.4) and (1.5).

3 Differentiability with respect to x

If the function I is the unique solution to the boundary value problem (1.4) and
(1.5), I satisfies

∂I

∂x
(x, ξ) = −µa + µs

sin θ
I(x, ξ) +

µs

sin θ

∫
S1

p(ξ, ξ′)I(x, ξ′) dσξ′

11



except for θ ∈ {0, π}. Since I is continuous on (Ω×S1)∪Γ−, the right hand side
of this equation is also continuous except for θ ∈ {0, π}. Now, it is not obvious

whether
∂I

∂x
(x, ξ) is defined and continuous at θ ∈ {0, π}. In this section, we

prove that
∂I

∂x
belongs to C(Ω× S1).

3.1 Preliminaries

We prepare some notation to prove Theorem 1.5. We take a number δ with
0 < δ < 1/2 and denote by K a closed interval [δ, 1 − δ] in (0, 1). We also

take a sequence of positive numbers {δn}n≥0 such that
∞∑

n=0

δn = δ, and the

corresponding closed intervals {Kn}n≥0 such that Kn :=

[
n∑

m=0

δm, 1−
n∑

m=0

δm

]
.

We introduce the supremum norms ∥ · ∥K and ∥ · ∥n by

∥I∥K := sup
K×S1

|I(x, ξ)|

and
∥I∥n := sup

Kn×S1

|I(x, ξ)|,

respectively.
We differentiate each term of the series {I(n)}n≥0 with respect to x. For

x ∈ (0, 1) and θ ∈ (0, π), we have

∂I(0)

∂x
(x, ξ) =− µa + µs

sin θ
exp

(
−µa + µs

sin θ
x

)
I0(0, ξ),

∂I(n+1)

∂x
(x, ξ) =

µs

sin θ

∫
S1

p(ξ, ξ′)I(n)(x, ξ′) dσξ′

− µs(µa + µs)

sin2 θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.

For x ∈ (0, 1) and θ ∈ (−π, 0), we have

∂I(0)

∂x
(x, ξ) =− µa + µs

sin θ
exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ),

∂I(n+1)

∂x
(x, ξ) =

µs

sin θ

∫
S1

p(ξ, ξ′)I(n)(x, ξ′) dσξ′dt

+
µs(µa + µs)

sin2 θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.

12



For x ∈ (0, 1) and θ ∈ {0, π}, we have formally

∂I(0)

∂x
(x, ξ) =0,

∂I(n+1)

∂x
(x, ξ) =

µs

µa + µs

∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(x, ξ′) dσξ′ .

Since
∂I(0)

∂x
is bounded on K0 × S1, the following lemma guarantees that

∂I(n)

∂x
is bounded on Kn × S1 for all n.

Lemma 3.1. If
∂I(n)

∂x
exists and is bounded on Kn × S1, then

∂I(n+1)

∂x
exists

on Kn+1 × S1 and the following estimate holds:∥∥∥∥∂I(n+1)

∂x

∥∥∥∥
n+1

≤ 2µs

e(µa + µs)δn+1
∥I(n)∥∞ +

µs

µa + µs

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

.

Proof. For x ∈ Kn+1 and θ ∈ (0, π), we have∣∣∣∣∂I(n+1)

∂x
(x, ξ)

∣∣∣∣ = ∣∣∣∣ µs

sin θ

∫
S1

p(ξ, ξ′)I(n)(x, ξ′) dσξ′

− µs(µa + µs)

sin2 θ

∫ x−δn+1

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

− µs(µa + µs)

sin2 θ

∫ x

x−δn+1

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

∣∣∣∣
≤ J4 + J5 + J6,

where

J4 :=
µs(µa + µs)

sin2 θ

∫ x−δn+1

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)
∣∣∣I(n)(t, ξ′)∣∣∣ dσξ′dt,

J5 :=
µs

sin θ
exp

(
−µa + µs

sin θ
δn+1

)∫
S1

p(ξ, ξ′)
∣∣∣I(n)(x− δn+1, ξ

′)
∣∣∣ dσξ′

and

J6 :=
µs

sin θ

∫ x

x−δn+1

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)

∣∣∣∣∂I(n)∂x
(t, ξ′)

∣∣∣∣ dσξ′dt.
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Here, we did integration by parts with respect to t to obtain J6. Since [x −
δn+1, x] ⊂ Kn, we obtain∣∣∣∣∂I(n+1)

∂x
(x, ξ)

∣∣∣∣ ≤ 2µs

sin θ
exp

(
−µa + µs

sin θ
δn+1

)
∥I(n)∥∞ +

µs

µa + µs

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

≤ 2µs

e(µa + µs)δn+1
∥I(n)∥∞ +

µs

µa + µs

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

.

Here, in the last inequality we used the fact that the function

f(z) := 2µsz exp (− (µa + µs) δn+1z) , z ∈ (0,∞)

achieves its maximum value
2µs

e(µa + µs)δn+1
at z =

1

(µa + µs)δn+1
. Similarly,

for x ∈ Kn+1 and θ ∈ (−π, 0), we have∣∣∣∣∂I(n+1)

∂x
(x, ξ)

∣∣∣∣ ≤ J ′
4 + J ′

5 + J ′
6,

where

J ′
4 :=

µs

sin θ

∫ 1

x+δn+1

µa + µs

sin θ
exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)|I(n)(t, ξ′)| dσξ′dt,

J ′
5 :=

µs

sin θ
exp

(
µa + µs

sin θ
δn+1

)∫
S1

p(ξ, ξ′)|I(n)(x+ δn+1), ξ
′)| dσξ′

and

J ′
6 :=− µs

sin θ

∫ x+δn+1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)

∣∣∣∣∂I(n)∂x
(t, ξ′)

∣∣∣∣ dσξ′dt.

Since [x, x+ δn+1] ⊂ Kn, we obtain∣∣∣∣∂I(n+1)

∂x
(x, ξ)

∣∣∣∣ ≤ 2µs

| sin θ|
exp

(
−µa + µs

| sin θ|
δn+1

)
∥I(n)∥∞ +

µs

µa + µs

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

≤ 2µs

e(µa + µs)δn+1
∥I(n)∥∞ +

µs

µa + µs

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

.

For x ∈ Kn+1 and θ ∈ {0, π}, we obviously have∣∣∣∣∂I(n+1)

∂x
(x, ξ)

∣∣∣∣ ≤ µs

µa + µs

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

.

Therefore, we obtain the statement of the lemma.
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3.2 Differentiability with respect to x

Let us denote µ̃a :=
µa

2
, δ0 :=

µ̃a

µ̃a + µs
δ, and δn+1 :=

µs

µ̃a + µs
δn. Using Lemma

3.1, we get the following estimates:∥∥∥∥∂I(n)∂x

∥∥∥∥
n

≤ µs

µa + µs

∥∥∥∥∂I(n−1)

∂x

∥∥∥∥
n−1

+
2µs

e(µa + µs)δn
∥I(n−1)∥∞

≤
(

µs

µa + µs

)n ∥∥∥∥∂I(0)∂x

∥∥∥∥
0

+
2µs

e(µa + µs)

n−1∑
k=0

1

δk+1

(
µs

µa + µs

)n−1−k

∥I(k)∥∞.

Remembering that ∥I(k)∥∞ ≤
(

µs

µa + µs

)k

∥I0∥Γ− , we have

µs

µa + µs

n−1∑
k=0

1

δk+1

(
µs

µa + µs

)n−1−k

∥I(k)∥∞

≤
n−1∑
k=0

1

δk+1

(
µs

µa + µs

)n

∥I0∥Γ−

=
n−1∑
k=0

1

δ0

(
µ̃a + µs

µs

)k+1(
µs

µa + µs

)n

∥I0∥Γ−

≤
∥I0∥Γ−

δ0

n−1∑
k=0

(
µ̃a + µs

µa + µs

)n

=
∥I0∥Γ−

δ0
n

(
µ̃a + µs

µa + µs

)n

.

Consequently, we have∥∥∥∥∂I(n)∂x

∥∥∥∥
n

≤
(

µs

µa + µs

)n ∥∥∥∥∂I(0)∂x

∥∥∥∥
0

+
2

e
n

(
µ̃a + µs

µa + µs

)n ∥I0∥Γ−

δ0
.

Hence, for all the nonnegative integer N ,

N∑
n=0

∥∥∥∥∂I(n)∂x

∥∥∥∥
K

≤
N∑

n=0

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

≤
∥∥∥∥∂I(0)∂x

∥∥∥∥
0

N∑
n=0

(
µs

µa + µs

)n

+
2∥I0∥Γ−

eδ0

N∑
n=0

n

(
µ̃a + µs

µa + µs

)n

.

(3.1)
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Since both
µs

µa + µs
and

µ̃a + µs

µa + µs
are less than unity, the right hand side of the

equation (3.1) converges as N tends to ∞. This implies that the series
∞∑

n=0

∂I(n)

∂x

converges absolutely and uniformly on K×S1. We can prove in a similar way as

the case with I(n) that
∂I(n)

∂x
is continuous on Kn × S1 for all n. So,

∞∑
n=0

∂I(n)

∂x

is continuous on K × S1. Now, we can take any δ with 0 < δ < 1/2 and we

conclude that
∂I

∂x
=

∞∑
n=0

∂I(n)

∂x
belongs to C(Ω× S1).

3.3 m times Differentiability with respect to x

Let δ and K be the positive number and the closed interval defined in subsection
3.1, respectively. We take a sequence of positive numbers {δn}n≥0 and the
corresponding closed intervals {Kn}n≥0 as in subsection 3.2, and suppose that
I(n) is bounded on Kn × S1 up to m times derivatives with respect to x. By
the same discussion as in subsection 3.1, we obtain the following estimate.

Lemma 3.2. For all the nonnegative integers m and n,∥∥∥∥∂mI(n+1)

∂xm

∥∥∥∥
n+1

≤ µs

µa + µs

∥∥∥∥∂mI(n)

∂xm

∥∥∥∥
n

+
µs

µa + µs

m−1∑
l=1

(
m− l

eδn+1

)m−l ∥∥∥∥∂lI(n)

∂xl

∥∥∥∥
n

+
2µs

e(µa + µs)

(
m

eδn+1

)m

∥I(n)∥∞.

Proof. For simplicity, we give a proof only the case m = 2. Proof for the case
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m ≥ 3 is similar. For x ∈ Kn+1 and θ ∈ (0, π), we have∣∣∣∣∂2I(n+1)

∂x2
(x, ξ)

∣∣∣∣
=

∣∣∣∣ µs

sin θ
exp

(
−µa + µs

sin θ
δn+1

)∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(x− δn+1, ξ

′) dσξ′

− µs(µa + µs)

sin2 θ
exp

(
−µa + µs

sin θ
δn+1

)∫
S1

p(ξ, ξ′)I(n)(x− δn+1, ξ
′) dσξ′

+
µs

sin θ

∫ x

x−δn+1

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)
∂2I(n)

∂x2
(t, ξ′) dσξ′dt

+
µs(µa + µs)

2

sin3 θ

∫ x−δn+1

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

∣∣∣∣∣
≤
(

µs

sin θ
exp

(
−µa + µs

sin θ
δn+1

))∥∥∥∥∂I(n)∂x

∥∥∥∥
n

+ 2

(
µs(µa + µs)

sin2 θ
exp

(
−µa + µs

sin θ
δn+1

))
∥I(n)∥∞ +

µs

µa + µs

∥∥∥∥∂2I(n)

∂x2

∥∥∥∥
n

.

Using the fact the function

fm(z) := µsz
m exp (− (µa + µs) δn+1z) , z ∈ (0,∞)

achieves its maximum value
µsm

m

(e(µa + µs)δn+1)
m at z =

m

(µa + µs)δn+1
for all

m ∈ N, we obtain the following estimate for x ∈ Kn+1 and θ ∈ (0, π):∣∣∣∣∂2I(n+1)

∂x2
(x, ξ)

∣∣∣∣ ≤ µs

µa + µs

∥∥∥∥∂2I(n)

∂x2

∥∥∥∥
n

+
µs

µa + µs

1

eδn+1

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

+
µs

µa + µs

8

e2δ2n+1

∥I(n)∥∞.

For the case x ∈ Kn+1 and θ ∈ (−π, 0), we obtain the same estimate as above.
This completes the proof of Lemma 3.2.

Now we take {δn}n≥0 as follows: for a fixed m ∈ N,

δ0 = δ
(m)
0 :=

(
1−

(
µs

µ̃a + µs

) 1
m

)
δ

and

δn+1 = δ
(m)
n+1 :=

(
µs

µ̃a + µs

) 1
m

δ(m)
n .

Here, we remark that δ
(m)
n < 1 for all m, n from the definition of δ.
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Then, we can prove that the series
∞∑

n=0

∂mI(n)

∂xm
converges absolutely and

uniformly on K × S1. We show the convergence in the case m = 2. Applying
Lemma 3.1 and Lemma 3.2, we obtain the following estimate:∥∥∥∥∂2I(n)

∂x2

∥∥∥∥ ≤ µs

µa + µs

∥∥∥∥∂2I(n−1)

∂x2

∥∥∥∥
n−1

+
µs

µa + µs

1

eδn

∥∥∥∥∂I(n−1)

∂x

∥∥∥∥
n−1

+
µs

µa + µs

8

e2δ2n
∥I(n−1)∥∞

≤
(

µs

µa + µs

)n ∥∥∥∥∂2I(0)

∂x2

∥∥∥∥
0

+
n−1∑
k=0

1

eδk+1

(
µs

µa + µs

)n ∥∥∥∥∂I(0)∂x

∥∥∥∥
0

+
n−1∑
k=1

1

eδk+1

k−1∑
l=0

2µs

e (µa + µs) δk−l

(
µs

µa + µs

)n−1

∥I(0)∥∞

+ 8

n−1∑
k=0

1

(eδk+1)
2

(
µs

µa + µs

)n

∥I(0)∥∞.

We now take δ
(2)
n , defined above, as δn. Since δ

(2)
n < 1 for all n and

µs

µ̃a + µs
< 1,

the following estimate holds: for all k with 0 ≤ k ≤ n,
1

δ
(2)
k

≤ 1

δ
(2)
n

≤ 1

(δ
(2)
n )2

.

After all, we obtain the following estimate:∥∥∥∥∂2I(n)

∂x2

∥∥∥∥ ≤
(

µs

µa + µs

)n ∥∥∥∥∂2I(0)

∂x2

∥∥∥∥
0

+
n

e(δ
(2)
n )2

(
µs

µa + µs

)n ∥∥∥∥∂I(0)∂x

∥∥∥∥
0

+
n(n− 1)

(eδ
(2)
n )2

(
µs

µa + µs

)n

∥I(0)∥∞ +
8n

(eδ
(2)
n )2

(
µs

µa + µs

)n

∥I(0)∥∞

≤
(

µs

µa + µs

)n ∥∥∥∥∂2I(0)

∂x2

∥∥∥∥
0

+
n

e(δ
(2)
0 )2

(
µ̃a + µs

µa + µs

)n ∥∥∥∥∂I(0)∂x

∥∥∥∥
0

+
n(n− 1)

(eδ
(2)
0 )2

(
µ̃a + µs

µa + µs

)n

∥I(0)∥∞ +
8n

(eδ
(2)
0 )2

(
µ̃a + µs

µa + µs

)n

∥I(0)∥∞.

Therefore, for all N ,

N∑
n=0

∥∥∥∥∂2I(n)

∂x2

∥∥∥∥
K

≤
∥∥∥∥∂2I(0)

∂x2

∥∥∥∥
0

N∑
n=0

(
µs

µa + µs

)n

+
1

e(δ
(2)
0 )2

∥∥∥∥∂I(0)∂x

∥∥∥∥
0

N∑
n=0

n

(
µ̃a + µs

µa + µs

)n

+
1

(eδ
(2)
0 )2

∥I(0)∥∞
N∑

n=0

n(n+ 7)

(
µ̃a + µs

µa + µs

)n

. (3.2)
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Since the right hand side of the equation (3.2) converges as N tends to ∞,

the series
∞∑

n=0

∂2I(n)

∂x2
converges absolutely and uniformly on K × S1. We can

also prove continuity of
∂mI(n)

∂xm
in the same way as I(n). Therefore,

∂mI

∂xm
=

∞∑
n=0

∂mI(n)

∂xm
is continuous on K × S1. Since we can take a compact set K

arbitrarily, we conclude that
∂mI

∂xm
belongs to C(Ω× S1).

4 Differentiability with respect to θ

We discuss differentiability of I with respect to θ in this section.

4.1 Preliminaries

We now differentiate each term of the sequence {I(n)}n≥0 with respect to θ.
For x ∈ (0, 1) and θ ∈ (0, π), we have

∂I(0)

∂θ
(x, ξ) =

µa + µs

sin2 θ
x cos θ exp

(
−µa + µs

sin θ
x

)
I0(0, ξ)

+ exp

(
−µa + µs

sin θ
x

)
∂I0
∂θ

(0, ξ),

∂I(n+1)

∂θ
(x, ξ) =− µs cos θ

sin2 θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

+
µs(µa + µs) cos θ

sin3 θ

∫ x

0

(x− t) exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

+
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

∂p

∂θ
(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.
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For x ∈ (0, 1) and θ ∈ (−π, 0), we have

∂I(0)

∂θ
(x, ξ) =

µa + µs

sin2 θ
(1− x) cos θ exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ)

+ exp

(
µa + µs

sin θ
(1− x)

)
∂I0
∂θ

(1, ξ),

∂I(n+1)

∂θ
(x, ξ) =

µs cos θ

sin2 θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

+
µs(µa + µs) cos θ

sin3 θ

∫ 1

x

(t− x) exp

(
µa + µs

sin θ
(t− x)

)
×
∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

− µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

∂p

∂θ
(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.

In the case of x ∈ (0, 1) and θ ∈ {0, π}, unlike the other cases, some further
discussions are needed. We first introduce the following proposition.

Proposition 4.1. For x ∈ (0, 1) and θ ∈ {0, π},

∂I(0)

∂θ
(x, ξ) =0,

∂I(n+1)

∂θ
(x, ξ) =

µs

µa + µs

∫
S1

∂p

∂θ
(ξ, ξ′)I(n)(x, ξ′) dσξ′

− µs

(µa + µs)2

∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(x, ξ′) dσξ′ .

Proof. For n = 0 and x ∈ (0, 1), since I0 is bounded on Γ−, we have

lim
θ↓0

I(0)(x, ξ)− I(0)(x, ξ0)

θ
= lim

θ↓0

1

θ
exp

(
−µa + µs

sin θ
x

)
I0(0, ξ) = 0

and

lim
θ↑0

I(0)(x, ξ)− I(0)(x, ξ0)

θ
= lim

θ↑0

1

θ
exp

(
µa + µs

sin θ
(1− x)

)
I0(1, ξ) = 0.

Thus, we have for x ∈ (0, 1) and θ = 0,

∂I(0)

∂θ
(x, ξ) = 0.

Similarly, we have for x ∈ (0, 1) and θ = π,

∂I(0)

∂θ
(x, ξ) = 0.
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For I(n+1), we consider differentiability only at θ = 0. Differentiability at θ = π
can be proved similarly. Using the equality (2.4), we have

lim
θ↓0

I(n+1)(x, ξ)− I(n+1)(x, ξ0)

θ

= lim
θ↓0

{
µs

θ sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

(
p(ξ, ξ′)I(n)(t, ξ′)− p(ξ0, ξ

′)I(n)(x, ξ′)
)
dσξ′dt

− µs

θ(µa + µs)
exp

(
−µa + µs

sin θ
x

)∫
S1

p(ξ0, ξ
′)I(n)(x, ξ′) dσξ′

}
= lim

θ↓0
(J7 + J8 + J9),

where

J7 :=
µs

θ sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

(p(ξ, ξ′)− p(ξ0, ξ
′)) I(n)(x, ξ′) dσξ′dt,

J8 :=
µs

θ sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)
(
I(n)(t, ξ′)− I(n)(x, ξ′)

)
dσξ′dt

and

J9 := − µs

θ(µa + µs)
exp

(
−µa + µs

sin θ
x

)∫
S1

p(ξ0, ξ
′)I(n)(x, ξ′) dσξ′ .

Now, we consider the limit of each term above. Since x ∈ (0, 1), we have
lim
θ↓0

J9 = 0. We also have

J7 =
µs

µa + µs

(
1− exp

(
−µa + µs

sin θ
x

))∫
S1

p(ξ, ξ′)− p(ξ0, ξ
′)

θ
I(n)(x, ξ′) dσξ′ .

Since p is continuously differentiable with respect to θ, we can change the order
of integration and taking the limit. Hence, we have

lim
θ↓0

J7 =
µs

µa + µs

∫
S1

∂p

∂θ
(ξ0, ξ

′)I(n)(x, ξ′) dσξ′ .

We take δ′ with 0 < δ′ < δn+1 and separate the interval of integration in J8
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into two parts:

J8 =
µs

θ sin θ

(∫ x−δ′

0

+

∫ x

x−δ′

)
exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)
(
I(n)(t, ξ′)− I(n)(x, ξ′)

)
dσξ′dt.

The integral over [0, x− δ′] above tends to 0 as θ tends to 0. We integrate the
second term by parts with respect to t, and we have

µs

θ sin θ

∫ x

x−δ′
exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)
(
I(n)(t, ξ′)− I(n)(x, ξ′)

)
dσξ′dt

=
µs

θ sin θ
exp

(
−µa + µs

sin θ
δ′
)∫

S1

p(ξ, ξ′)
(
I(n)(x, ξ′)− I(n)(x− δ′, ξ′)

)
dσξ′

− µs

θ(µa + µs)

∫ x

x−δ′
exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)

(
∂I(n)

∂x
(t, ξ′)− ∂I(n)

∂x
(x, ξ′)

)
dσξ′dt

− µs

θ(µa + µs)

∫ x

x−δ′
exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(x, ξ′) dσξ′dt.

The first term of the right hand side above tends to 0 as θ tends to 0. From the
third term, we have

lim
θ↓0

− µs

θ(µa + µs)

∫ x

x−δ′
exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(x, ξ′) dσξ′dt

= lim
θ↓0

− µs sin θ

θ(µa + µs)2

(
1− exp

(
−µa + µs

sin θ
δ

))∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(x, ξ′) dσξ′

= − µs

(µa + µs)2

∫
S1

p(ξ0, ξ
′)
∂I(n)

∂x
(x, ξ′) dσξ′ .
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Finally, we estimate the second term:∣∣∣∣− µs

θ(µa + µs)

∫ x

x−δ′
exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)

(
∂I(n)

∂x
(t, ξ′)− ∂I(n)

∂x
(x, ξ′)

)
dσξ′dt

∣∣∣∣
≤ µs

θ(µa + µs)

∫ x

x−δ′
exp

(
−µa + µs

sin θ
(x− t)

)
dt

× sup
t∈(x−δ′,x)

(
max
ξ∈S1

∣∣∣∣∂I(n)∂x
(t, ξ)− ∂I(n)

∂x
(x, ξ)

∣∣∣∣)
≤ µs sin θ

θ(µa + µs)2
sup

t∈(x−δ′,x)

(
max
ξ∈S1

∣∣∣∣∂I(n)∂x
(t, ξ)− ∂I(n)

∂x
(x, ξ)

∣∣∣∣) .

From the estimate above, we obtain

lim
θ↓0

∣∣∣∣− µs

θ(µa + µs)

∫ x

x−δ′
exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)

(
∂I(n)

∂x
(t, ξ′)− ∂I(n)

∂x
(x, ξ′)

)
dσξ′dt

∣∣∣∣
≤ µs

(µa + µs)2
sup

t∈(x−δ′,x)

(
max
ξ∈S1

∣∣∣∣∂I(n)∂x
(t, ξ)− ∂I(n)

∂x
(x, ξ)

∣∣∣∣) .

Since
∂I(n)

∂x
is continuous and bounded, we can make the right hand side of the

inequality arbitrarily small by taking δ′ sufficiently small. Therefore,

lim
θ↓0

I(n+1)(x, ξ)− I(n+1)(x, ξ0)

θ
=

µs

µa + µs

∫
S1

∂p

∂θ
(ξ0, ξ

′)I(n)(x, ξ′) dσξ′

− µs

(µa + µs)2

∫
S1

p(ξ0, ξ
′)
∂I(n)

∂x
(x, ξ′) dσξ′ .

Using the equality (2.5), we have

lim
θ↑0

I(n+1)(x, ξ)− I(n+1)(x, ξ0)

θ
= lim

θ↑0
(J ′

7 + J ′
8 + J ′

9),

where

J ′
7 := − µs

θ sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
×
∫
S1

(p(ξ, ξ′)− p(ξ0, ξ
′)) I(n)(x, ξ′) dσξ′dt,
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J ′
8 := − µs

θ sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)
×
∫
S1

p(ξ, ξ′)
(
I(n)(t, ξ′)− I(n)(x, ξ′)

)
dσξ′dt

and

J ′
9 :=

µs

θ(µa + µs)
exp

(
µa + µs

sin θ
(1− x)

)∫
S1

p(ξ0, ξ
′)I(n)(x, ξ′) dσξ′ .

In the same way as the case θ ↓ 0, we have

lim
θ↑0

J ′
7 =

µs

µa + µs

∫
S1

∂p

∂θ
(ξ0, ξ

′)I(n)(x, ξ′) dσξ′ ,

lim
θ↑0

J ′
8 =− µs

(µa + µs)2

∫
S1

p(ξ0, ξ
′)
∂I(n)

∂x
(x, ξ′) dσξ′

and

lim
θ↑0

J ′
9 =0,

that is,

lim
θ↑0

I(n+1)(x, ξ)− I(n+1)(x, ξ0)

θ
=

µs

µa + µs

∫
S1

∂p

∂θ
(ξ0, ξ

′)I(n)(x, ξ′) dσξ′

− µs

(µa + µs)2

∫
S1

p(ξ0, ξ
′)
∂I(n)

∂x
(x, ξ′) dσξ′ .

Thus, we obtain the statement of the proposition.

With a similar calculation, we can prove that

lim
θ→0

∂I(n+1)

∂θ
(x, ξ) =

∂I(n+1)

∂θ
(x, ξ0)

and

lim
θ→±π

∂I(n+1)

∂θ
(x, ξ) =

∂I(n+1)

∂θ
(x, ξπ)

for x ∈ (0, 1), that is,
∂I(n+1)

∂θ
is continuous on Ω× S1.

24



4.2 Differentiability with respect to θ

We prove the following proposition.

Proposition 4.2. For every compact set K in (0, 1),
∞∑

n=0

∂I(n)

∂θ
(x, ξ) converges

absolutely and uniformly on K × S1.

We take a closed interval K, a sequence of positive numbers {δn}n≥0 and
the corresponding closed intervals {Kn}n≥0 as in subsection 3.1. Then, the
following lemma holds.

Lemma 4.3. If
∂I(n)

∂x
exists and bounded on Kn × S1, then the following esti-

mate holds:∥∥∥∥∂I(n+1)

∂θ

∥∥∥∥
n+1

≤C
µs

(µa + µs)2δn+1
∥I(n)∥∞ +

µs

(µa + µs)2

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

+
2πµs

µa + µs

∥∥∥∥∂p∂θ
∥∥∥∥
∞

∥I(n)∥∞

with some constant C > 0.

Proof. For x ∈ Kn+1 and θ ∈ (0, π), separating the interval of integration into
two parts and integrating by parts with respect to t, we obtain

∂I(n+1)

∂θ
(x, ξ) = J10 + J11 + J12 + J13 + J14,

where

J10 :=− µs cos θ

sin2 θ

∫ x−δn+1

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt,

J11 :=− µs cos θ

sin2 θ
δn+1 exp

(
−µa + µs

sin θ
δn+1

)∫
S1

p(ξ, ξ′)I(n)(x− δn+1, ξ
′) dσξ′ ,

J12 :=− µs cos θ

sin2 θ

∫ x

x−δn+1

(x− t) exp

(
−µa + µs

sin θ
(x− t)

)
×
∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(t, ξ′) dσξ′dt,

J13 :=
µs

sin θ

∫ x−δn+1

0

µa + µs

sin2 θ
(x− t) cos θ

× exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt

and

J14 :=
µs

sin θ

∫ x

0

exp

(
−µa + µs

sin θ
(x− t)

)∫
S1

∂p

∂θ
(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.
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Here, we obtain the following estimates:

|J10| ≤
µs

(µa + µs)2 sin θ
exp

(
−µa + µs

sin θ
δn+1

)
∥I(n)∥∞

≤ µs

(µa + µs)2eδn+1
∥I(n)∥∞,

|J11| ≤
µs

4(µa + µs)2e2δn+1
∥I(n)∥∞,

|J12| ≤
µs

(µa + µs)2

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

,

|J13| ≤
µs

4(µa + µs)2e2δn+1
∥I(n)∥∞,

and

|J14| ≤
2πµs

µa + µs

∥∥∥∥∂p∂θ
∥∥∥∥
∞

∥I(n)∥∞.

Thus, we have∣∣∣∣∂I(n+1)

∂θ
(x, ξ)

∣∣∣∣ ≤ µs

(µa + µs)2eδn+1
∥I(n)∥∞ +

µs

2(µa + µs)2e2δn+1
∥I(n)∥∞

+
µs

(µa + µs)2

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

+
2πµs

µa + µs

∥∥∥∥∂p∂θ
∥∥∥∥
∞

∥I(n)∥∞ (4.1)

for x ∈ Kn+1 and θ ∈ (0, π).
In a similar way, we have, for x ∈ Kn+1 and θ ∈ (−π, 0),

∂I(n+1)

∂θ
(x, ξ) = J ′

10 + J ′
11 + J ′

12 + J ′
13 + J ′

14,

where

J ′
10 :=

µs cos θ

sin2 θ

∫ 1

x+δn+1

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt,

J ′
11 :=

µs cos θ

sin2 θ
δn+1 exp

(
µa + µs

sin θ
δn+1

)∫
S1

p(ξ, ξ′)I(n)(x+ δn+1, ξ
′) dσξ′ ,

J ′
12 :=− µs cos θ

sin2 θ

∫ x+δn+1

x

(t− x) exp

(
−µa + µs

sin θ
(t− x)

)
×
∫
S1

p(ξ, ξ′)
∂I(n)

∂x
(t, ξ′) dσξ′dt,

J ′
13 :=

µs

sin θ

∫ 1

x−δn+1

µa + µs

sin2 θ
(t− x) cos θ

× exp

(
µa + µs

sin θ
(t− x)

)∫
S1

p(ξ, ξ′)I(n)(t, ξ′) dσξ′dt
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and

J ′
14 :=− µs

sin θ

∫ 1

x

exp

(
µa + µs

sin θ
(t− x)

)∫
S1

∂p

∂θ
(ξ, ξ′)I(n)(t, ξ′) dσξ′dt.

Since J ′s above satisfy the same estimates as Js’, the estimate (4.1) also holds
for x ∈ Kn+1 and θ ∈ (−π, 0). It is obvious that the estimate (4.1) holds
for x ∈ Kn+1 and θ ∈ {0, π}. If we take a positive constant C such that

C >
1

e
+

1

2e2
, we obtain the estimation in the statement of this lemma.

We now take {δ(1)n }n≥0, defined in subsection 3.2, as {δn}n≥0. From Lemma
4.3, we obtain, for all N ,

N∑
n=0

∥∥∥∥∂I(n)∂θ

∥∥∥∥
K

≤
N∑

n=0

∥∥∥∥∂I(n)∂θ

∥∥∥∥
n

≤
∥∥∥∥∂I(0)∂θ

∥∥∥∥
0

+
2πµs

µa + µs

∥∥∥∥∂p∂θ
∥∥∥∥
∞

N−1∑
n=0

∥I(n)∥∞

+ C
µs

(µa + µs)2e

N−1∑
n=0

1

δn+1
∥I(n)∥∞+

µs

(µa + µs)2

N−1∑
n=0

∥∥∥∥∂I(n)∂x

∥∥∥∥
n

.

Obviously, the first term of the right hand side above is finite. The other
terms converge as N tends to ∞ as we have seen in subsection 3.2. Thus the

series
∞∑

n=0

∂I(n)

∂θ
converges absolutely and uniformly on K × S1. Since

∂I(n)

∂θ
is

continuous on K × S1,
∂I

∂θ
=

∞∑
n=0

∂I(n)

∂θ
is also continuous on K × S1. Now we

take K arbitrarily to conclude that
∂I

∂θ
∈ C(Ω× S1).
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