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Abstract. On the basis of fractional calculus, we introduce an explicit formu-
lation of the integral of controlled paths along Hölder rough paths in terms of
Lebesgue integrals for fractional derivatives. The additivity with respect to the
interval of integration, a fundamental property of the integral, is not apparent
under the formulation because the fractional derivatives depend heavily on the
endpoints of the interval of integration. In this paper, we provide a proof of
the additivity of the integral under the formulation. Our proof seems to be
simpler than those provided in previous studies and is suitable for utilizing the
fractional calculus approach to rough path analysis.

1. Introduction

Since Terry Lyons introduced rough path analysis in the seminal paper [18],
several different approaches to the fundamental theory of rough path analysis
have been proposed. One of them is based on fractional calculus, which was
introduced by Hu and Nualart [11]. In [11], using basic formulas of fractional
calculus and ideas from rough path analysis, they introduced an integral with
respect to Hölder continuous functions of order β ∈ (1/3, 1/2), and established
a differential equation driven by the Hölder continuous functions by using the
integral. The results of [11] have been applied to the study of stochastic calcu-
lus, particularly stochastic differential equations driven by fractional Brownian
motions with Hurst parameter H ∈ (1/3, 1/2), for example, [2, 3, 6, 7, 21]. The
integral introduced in [11] is given explicitly by Lebesgue integrals for fractional
derivatives, unlike the usual rough integral given by the limit of the compensated
Riemann–Stieltjes sums. (The integrals with respect to rough paths are called
rough integrals.) The usual rough integral is based on a discrete approxima-
tion argument from the Riemann–Stieltjes integration due to Young [23], called
the Young integral, whereas the integral in [11] is derived from such an explicit
definition via fractional calculus for Young integrals with respect to Hölder con-
tinuous functions provided in the integration by Zähle [24]. The author’s previous
study [15] provided a slight reformulation of the integral in [11] in the setting of
controlled path theory [10] and showed that it is consistent with the usual rough
integral of controlled paths along Hölder rough paths of order β ∈ (1/3, 1/2]. (For
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a study related to [15], we refer the reader to [14].) Such explicit definitions in
terms of Lebesgue integrals for fractional derivatives enable us to provide direct
quantitative estimates of rough integrals and solutions to differential equations
driven by rough paths [1, 8, 9, 11,17,21].

The purpose of this paper is to further investigate the rough integral based on
fractional calculus in [11,15]. In particular, we are interested in finding a proof of
additivity with respect to the interval of integration, namely, equality∫ s

r

Yu dXu +

∫ t

s

Yu dXu =

∫ t

r

Yu dXu (1.1)

for 0 ≤ r ≤ s ≤ t ≤ T . Here, T denotes a positive constant, and the integrals
above stand for the rough integral of an X-controlled path (Y, Y ′) along a Hölder
rough path (X,X) of order β ∈ (1/3, 1/2]. Additivity is a fundamental property
of rough integrals and is usually used to prove the well-posedness of differential
equations driven by rough paths. However, it is not obvious for rough integrals
based on fractional calculus because the left- and right-sided fractional derivatives
in the above-mentioned explicit definition depend heavily on the left- and right-
endpoints, respectively, of the interval of integration. (See Definitions 2.1 and 2.9
for further details.) One can verify the additivity of the rough integrals based
on fractional calculus by using the following two types of argument: (a) one
utilizes the consistency of the rough integrals with the Riemann–Stieltjes integrals
for a smooth approximation of Hölder rough paths and continuity of the rough
integrals with respect to a suitable rough path metric as in [11–13]; or (b) one
utilizes consistency with the limit of compensated Riemann–Stieltjes sums, that
is, the usual rough integral as in [14, 15]. Argument (a) corresponds to the case
of geometric Hölder rough paths, and is not a strict limit for applications to
stochastic calculus. Although the consistency shown in [14, 15] is not limited to
geometric Hölder rough paths, (a) and (b) rely on the additivity of the Riemann–
Stieltjes integrals and usual rough integrals, respectively. The argument of this
paper for proof of the additivity of the rough integral seems to be simpler than
both (a) and (b).

We briefly sketch the proof of equality (1.1) provided in this paper as follows:
Let us consider the function h defined by

h(x) :=

∫ t

x

Yu dXu −
∫ s

x

Yu dXu

for x ∈ [0, s]. It is clear that (1.1) is equivalent to h(r) = h(s). Thus, it suffices
to show that h is a constant function on [0, s]. By the definition of h, we have

h(y)− h(x) =

(∫ s

x

Yu dXu −
∫ s

y

Yu dXu

)
−
(∫ t

x

Yu dXu −
∫ t

y

Yu dXu

)
for 0 ≤ x < y ≤ s. As we will see in subsequent sections, the first and second
terms on the right-hand side of the preceding equality are suitable for use of
the rough integral in [11, 15] because the two integrals of each term possess the
same right-endpoint. Indeed, by using the explicit definition and quantitative
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estimates of the rough integral, we can take θ > 1 and easily show that the
inequality |h(y)−h(x)| ≤ C(y−x)θ holds for 0 ≤ x < y ≤ s. Here, C is a positive
constant that is independent of x and y. Therefore, it follows from θ > 1 that h is
a constant function on [0, s]. (See the proofs of Propositions 2.7 and 2.15 for more
details.) The argument of this paper described above is valid for general Hölder
rough paths and makes the fundamental property (1.1) self-contained. Since it
seems to be suitable for rough integrals based on fractional calculus, our proof may
be useful for further developments of the fractional calculus approach to rough
path analysis. We now comment on the author’s previous study [16], which can be
regarded as an extension of [15] to any Hölder exponent β ∈ (0, 1]. Combining the
argument of this paper with [16], it is straightforward to show that the additivity
of the rough integral in [16] holds for geometric β-Hölder rough paths in the case
β ∈ (0, 1/3]. We restrict our attention to the case β ∈ (1/3, 1] for the sake of
simplicity.

The remainder of this paper is organized as follows. In Sections 2.1 and 2.2,
we briefly define the notation and terminology, which includes the definition of
fractional derivatives and their slight generalizations. Section 2.3 demonstrates
that the additivity of the Young integral based on fractional calculus in [24] follows
from the aforementioned argument. Section 2.4 focuses on the additivity of the
rough integral in [11, 15].

2. Framework and Results

In this section, we briefly review both the Young integral and the rough integral
based on fractional calculus in [24] and [11,15], respectively, and provide proofs of
additivity with respect to the interval of integration for these integrals. We also
briefly review concepts, such as fractional derivatives, Hölder rough paths, and
controlled paths. We followed standard treatments for rough path analysis [4, 5,
10,18–20] and fractional calculus [22, 24].

2.1. Notation. Let V and W be finite-dimensional normed spaces with norms
∥ · ∥V and ∥ · ∥W , respectively. Although the fundamental theories of rough paths
and controlled paths are valid for suitable infinite-dimensional Banach spaces, we
consider only finite-dimensional cases in this paper to avoid technical difficulties
that are not relevant to our theme. Let L(V,W ) denote the set of all linear maps
from V toW . Let T denote a positive constant that is fixed throughout this paper.
Simplex {(s, t) ∈ R2 : 0 ≤ s ≤ t ≤ T} is denoted by △ and is a closed subset of
R2. Let C([0, T ], V ) and C(△, V ) denote the spaces of all V -valued continuous
functions on the interval [0, T ] and △, respectively. Let a, b ∈ [0, T ] with a < b.
For ψ ∈ C([0, T ], V ), we set ∥ψ∥∞;[a,b] := supa≤t≤b ∥ψt∥V . Let λ ∈ (0, 1]. We set

∥ψ∥λ;[a,b] := sup
a≤s<t≤b

∥ψt − ψs∥V
(t− s)λ

and ∥Ψ∥λ;[a,b] := sup
a≤s<t≤b

∥Ψs,t∥V
(t− s)λ

for ψ ∈ C([0, T ], V ) and Ψ ∈ C(△, V ). We set Cλ
1 (V ) := {ψ ∈ C([0, T ], V ) :

∥ψ∥λ;[0,T ] < ∞} and Cλ
2 (V ) := {Ψ ∈ C(△, V ) : ∥Ψ∥λ;[0,T ] < ∞}. Hereafter, d1

and d2 denote positive integers, E and F denote the Euclidean spaces Rd1 and
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Rd2 , respectively, and | · | denotes the Euclidean norms of E, F , and their tensor
spaces. For α ∈ R, we set (−1)α := eiπα. Let 1A denote the indicator function of
a subset A ⊂ R; in fact, A is taken as a half-open interval (a, b].

2.2. Fractional derivatives. Let a, b ∈ R with a < b. For p ∈ [1,∞), let Lp(a, b)
denote the complex Lp-space on the interval [a, b] with respect to the Lebesgue
measure. Let f ∈ L1(a, b) and α ∈ (0,∞). The left- and right-sided Riemann–
Liouville fractional integrals of f of order α are defined for almost all t ∈ (a, b)
by

Iαa+f(t) :=
1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds

and

Iαb−f(t) :=
(−1)−α

Γ(α)

∫ b

t

(s− t)α−1f(s) ds,

respectively, where Γ denotes the gamma function. For p ∈ [1,∞), let Iαa+(L
p) and

Iαb−(L
p) denote the images of Lp(a, b) by the operators Iαa+ and Iαb−, respectively.

Let f ∈ Iαa+(L
1) with 0 < α < 1. The left-sided Weyl–Marchaud fractional

derivative of f of order α is defined for almost all t ∈ (a, b) by

Dα
a+f(t) :=

1

Γ(1− α)

(
f(t)

(t− a)α
+ α

∫ t

a

f(t)− f(s)

(t− s)α+1
ds

)
.

Similarly, let f ∈ Iαb−(L
1) with 0 < α < 1. The right-sided Weyl–Marchaud

fractional derivative of f of order α is defined for almost all t ∈ (a, b) by

Dα
b−f(t) :=

(−1)α

Γ(1− α)

(
f(t)

(b− t)α
+ α

∫ b

t

f(t)− f(s)

(s− t)α+1
ds

)
.

Here, the integrals above are well-defined for almost all t ∈ (a, b). Let f be a
real-valued Hölder continuous function of order λ ∈ (0, 1] on the interval [a, b]
and α ∈ (0, λ). Then, Dα

a+f(t) and D
α
b−f(t) are well-defined for all t ∈ (a, b] and

t ∈ [a, b), respectively. In addition, we define Dα
a+(f − f(a))(a) := 0 and Dα

b−(f −
f(b))(b) := 0. For further details on the fractional integrals and derivatives,
see [22,24].

To describe our integration, we introduce slight generalizations of the fractional
derivatives of Hölder continuous functions. Let a ∈ [0, T ), b ∈ (0, T ], λ ∈ (0, 1],
and α ∈ (0, λ). First, for Ψ ∈ Cλ

2 (V ), we define Dα
a+Ψ and Dα

b−Ψ by

Dα
a+Ψ(a) := 0,

Dα
a+Ψ(u) :=

1

Γ(1− α)

(
Ψa,u

(u− a)α
+ α

∫ u

a

Ψv,u

(u− v)α+1
dv

)
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for u ∈ (a, T ] and

Dα
b−Ψ(b) := 0,

Dα
b−Ψ(u) :=

(−1)1+α

Γ(1− α)

(
Ψu,b

(b− u)α
+ α

∫ b

u

Ψu,v

(v − u)α+1
dv

)
for u ∈ [0, b). It follows from a straightforward computation that

∥Dα
a+Ψ(u)∥V ≤ 1

Γ(1− α)

λ

λ− α
∥Ψ∥λ;[a,u](u− a)λ−α (2.1)

for u ∈ [a, T ] and

∥Dα
b−Ψ(u)∥V ≤ 1

Γ(1− α)

λ

λ− α
∥Ψ∥λ;[u,b](b− u)λ−α (2.2)

for u ∈ [0, b]. If Ψ ∈ Cλ
2 (V ) is of the form Ψs,t = ψt − ψs for (s, t) ∈ △ for

some ψ ∈ Cλ
1 (V ), then Dα

a+Ψ = Dα
a+(ψ − ψa) and Dα

b−Ψ = Dα
b−(ψ − ψb) holds by

definition. Next, we consider Ψ ∈ C(△, V ) such that

sup
0≤s<t≤T

∥Ψt,t −Ψs,t∥V
(t− s)λ

<∞.

For u ∈ (a, T ], we define Dα
a+Ψ·,u(u) ∈ V by

Dα
a+Ψ·,u(u) :=

1

Γ(1− α)

(
Ψu,u

(u− a)α
+ α

∫ u

a

Ψu,u −Ψv,u

(u− v)α+1
dv

)
.

Let x, y ∈ [a, T ] with x < y. For u ∈ (a, T ], we define Dα
a+(Ψ·,u1(x,y])(u) ∈ V by

Dα
a+(Ψ·,u1(x,y])(u)

:=
1

Γ(1− α)

(
Ψu,u1(x,y](u)

(u− a)α
+ α

∫ u

a

Ψu,u1(x,y](u)−Ψv,u1(x,y](v)

(u− v)α+1
dv

)
.

By dividing the domain (a, T ] into (a, x], (x, y], and (y, T ], it is easy to see that
Dα

a+(Ψ·,u1(x,y])(u) is well-defined for u ∈ (a, T ]. If Ψ is of the form Ψs,t = ψs

for (s, t) ∈ △ for some ψ ∈ Cλ
1 (V ), then for u ∈ (a, T ], Dα

a+Ψ·,u(u) = Dα
a+ψ(u)

holds and Dα
a+(Ψ·,u1(x,y])(u) = Dα

a+(ψ1(x,y])(u) is well-defined. We refer to (2.8)
and (2.9) for an example of Dα

a+Ψ·,u(u), which is fundamental to the argument in
Section 2.4.

2.3. Additivity of Young integral. In Section 2.3, we introduce the Young
integral based on fractional calculus in [24] (Definition 2.1 below) and provide a
proof of the additivity with respect to the interval of integration for the Young
integral (Theorem 2.8). Theorem 2.8 follows from Proposition 2.7. To prove
Proposition 2.7, we introduce the following lemmas and propositions. The symbol
IX(Y )s,t in Definition 2.1 denotes the integral of Y along X on [s, t].
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Definition 2.1. Let Y ∈ Cλ
1 (L(E,F )) and X ∈ Cµ

1 (E) with λ + µ > 1. Take
α ∈ (1− µ, λ). For (s, t) ∈ △, we define IX(Y )s,t ∈ F by

IX(Y )s,t := Ys(Xt −Xs) + (−1)α
∫ t

s

Dα
s+(Y − Ys)(u)D

1−α
t− (X −Xt)(u) du.

In the setting of Definition 2.1, Dα
s+(Y −Ys) and D1−α

t− (X−Xt) are well-defined
from α < λ and 1− α < µ, respectively. In addition, from (2.1) and (2.2), we see
that there exists a positive constant C, depending only on λ and α, such that

|IX(Y )s,t − Ys(Xt −Xs)| ≤ C∥Y ∥λ;[s,t]∥X∥µ;[s,t](t− s)λ+µ

for (s, t) ∈ △. Although the preceding inequality is not required in this paper, a
similar inequality (2.7) is used in the proof of Proposition 2.7. As Lemma 2.2 and
Proposition 2.3 are provided in [24], we omit these proofs.

Lemma 2.2. Let X ∈ Cµ
1 (E) and α ∈ (1−µ, 1). Fix (s, t) ∈ △ with s < t. Then,

for x, y ∈ [s, t] with x < y,

Xy −Xx = (−1)α
∫ t

s

Dα
s+1(x,y](u)D

1−α
t− (X −Xt)(u) du.

For the indicator function 1(x,y] of (x, y] ⊂ [s, t], it is known that (1) 1(x,y] ∈
Iαs+(L

p) if and only if αp < 1; and (2) the equality

Dα
s+1(x,y](u) =

1

Γ(1− α)

(
1(x,t](u)

(u− x)α
−

1(y,t](u)

(u− y)α

)
holds for u ∈ (s, t). For further details, see Proposition 2.2 in [24]. Proposition 2.3
follows from Definition 2.1 and Lemma 2.2 immediately.

Proposition 2.3. Let Y ∈ Cλ
1 (L(E,F )) and X ∈ Cµ

1 (E) with λ + µ > 1 and
α ∈ (1− µ, λ). Then, for (s, t) ∈ △,

IX(Y )s,t = (−1)α
∫ t

s

Dα
s+Y (u)D1−α

t− (X −Xt)(u) du.

Although Lemma 2.4 is elementary, it plays a key role in this paper.

Lemma 2.4. Let Y ∈ Cλ
1 (F ) and α ∈ (0, λ). Fix s ∈ (0, T ] and x, y ∈ [0, s] with

x < y. Then, for u ∈ (x, s],

Dα
x+(Y 1(y,s])(u) = Dα

y+Y (u)1(y,s](u).

Proof. From the definition of Dα
x+(Y 1(y,s])(u),

Dα
x+(Y 1(y,s])(u) =

1

Γ(1− α)

(
Yu1(y,s](u)

(u− x)α
+ α

∫ u

x

Yu1(y,s](u)− Yv1(y,s](v)

(u− v)α+1
dv

)
for u ∈ (x, s]. Hence, for u ∈ (y, s], we have

Γ(1− α)Dα
x+(Y 1(y,s])(u) =

Yu
(u− x)α

+ α

∫ y

x

Yu
(u− v)α+1

dv + α

∫ u

y

Yu − Yv
(u− v)α+1

dv

=
Yu

(u− y)α
+ α

∫ u

y

Yu − Yv
(u− v)α+1

dv = Γ(1− α)Dα
y+Y (u).
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Clearly, for u ∈ (x, y], Dα
x+(Y 1(y,s])(u) = 0. Thus, the proof is complete. □

Using the lemmas and proposition above, we obtain the following equality.

Proposition 2.5. Let Y ∈ Cλ
1 (L(E,F )) and X ∈ Cµ

1 (E) with λ + µ > 1 and
α ∈ (1− µ, λ). Fix s ∈ (0, T ]. Then, for x, y ∈ [0, s] with x < y,

IX(Y )x,s − IX(Y )y,s − Yx(Xy −Xx)

= (−1)α
∫ s

x

Dα
x+((Y − Yx)1(x,y])(u)D

1−α
s− (X −Xs)(u) du.

Proof. By Proposition 2.3 and Lemma 2.4, we have

IX(Y )x,s − IX(Y )y,s

= IX(Y )x,s − (−1)α
∫ s

x

Dα
y+Y (u)1(y,s](u)D

1−α
s− (X −Xs)(u) du

= (−1)α
∫ s

x

(Dα
x+Y (u)−Dα

x+(Y 1(y,s])(u))D
1−α
s− (X −Xs)(u) du

= (−1)α
∫ s

x

Dα
x+(Y 1(x,y])(u)D

1−α
s− (X −Xs)(u) du. (2.3)

By Lemma 2.2, we have

Yx(Xy −Xx) = (−1)α
∫ s

x

Dα
x+(Yx1(x,y])(u)D

1−α
s− (X −Xs)(u) du. (2.4)

Combining (2.3) and (2.4) yields the desired equality. □

To provide a quantitative estimate of the right-hand side of the equality in
Proposition 2.5, we introduce Proposition 2.6.

Proposition 2.6. Let Y ∈ Cλ
1 (F ) and α ∈ (0, λ). Fix s ∈ (0, T ]. Then, there

exists a positive constant C1 that depends only on λ and α such that for x, y ∈ [0, s]
with x < y,∫ s

x

|Dα
x+((Y − Yx)1(x,y])(u)| du ≤ C1∥Y ∥λ;[x,y](y − x)λ−α+1.

Proof. From the definition of Dα
x+((Y − Yx)1(x,y])(u),

Dα
x+((Y − Yx)1(x,y])(u) =

1

Γ(1− α)

(
(Yu − Yx)1(x,y](u)

(u− x)α

+ α

∫ u

x

(Yu − Yx)1(x,y](u)− (Yv − Yx)1(x,y](v)

(u− v)α+1
dv

)
for u ∈ (x, s]. Hence, for u ∈ (x, y], we have

Dα
x+((Y − Yx)1(x,y])(u) = Dα

x+(Y − Yx)(u).
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Thus, from (2.1),∫ y

x

|Dα
x+((Y − Yx)1(x,y])(u)| du

=

∫ y

x

|Dα
x+(Y − Yx)(u)| du

≤ 1

Γ(1− α)

λ

λ− α
∥Y ∥λ;[x,y]

∫ y

x

(u− x)λ−α du

=
1

Γ(1− α)

λ

λ− α
∥Y ∥λ;[x,y](λ− α + 1)−1(y − x)λ−α+1. (2.5)

Additionally, for u ∈ (y, s], we have

Dα
x+((Y − Yx)1(x,y])(u) =

−α
Γ(1− α)

∫ y

x

Yv − Yx
(u− v)α+1

dv.

Thus, a straightforward computation yields∫ s

y

|Dα
x+((Y − Yx)1(x,y])(u)| du

≤ α

Γ(1− α)
∥Y ∥λ;[x,y]

∫ s

y

∫ y

x

(v − x)λ(u− v)−α−1 dv du

≤ α

Γ(1− α)
∥Y ∥λ;[x,y](y − x)λ

× α−1(1− α)−1{(s− y)1−α − (s− x)1−α + (y − x)1−α}

≤ 1

Γ(1− α)
∥Y ∥λ;[x,y](1− α)−1(y − x)λ−α+1. (2.6)

Therefore, from (2.5) and (2.6), we have∫ s

x

|Dα
x+((Y − Yx)1(x,y])(u)| du

=

∫ y

x

|Dα
x+((Y − Yx)1(x,y])(u)| du+

∫ s

y

|Dα
x+((Y − Yx)1(x,y])(u)| du

≤ 1

Γ(1− α)

(
λ

λ− α
(λ− α + 1)−1 + (1− α)−1

)
∥Y ∥λ;[x,y](y − x)λ−α+1.

This completes the proof. □

By using Propositions 2.5 and 2.6, we prove Proposition 2.7.

Proposition 2.7. Let Y ∈ Cλ
1 (L(E,F )) and X ∈ Cµ

1 (E) with λ + µ > 1 and
α ∈ (1− µ, λ). Fix s, t ∈ (0, T ] with s ≤ t and set g(x) := IX(Y )x,t − IX(Y )x,s for
x ∈ [0, s]. Then, g is a constant function on [0, s].
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Proof. Suppose s < t because g(x) = 0 obviously holds for x ∈ [0, s] when s = t.
Then, for x, y ∈ [0, s] with x < y,

g(y)− g(x) = (IX(Y )y,t − IX(Y )y,s)− (IX(Y )x,t − IX(Y )x,s)

= (IX(Y )x,s − IX(Y )y,s)− (IX(Y )x,t − IX(Y )y,t)

= (IX(Y )x,s − IX(Y )y,s − Yx(Xy −Xx))

− (IX(Y )x,t − IX(Y )y,t − Yx(Xy −Xx)).

By Propositions 2.5 and 2.6, we have

|IX(Y )x,b − IX(Y )y,b − Yx(Xy −Xx)|

≤
∫ b

x

|Dα
x+((Y − Yx)1(x,y])(u)(−1)αD1−α

b− (X −Xb)(u)| du

≤ C1∥Y ∥λ;[x,y](y − x)λ−α+1∥D1−α
b− (X −Xb)∥∞;[x,b] (2.7)

for b ∈ [s, t]. Thus, by the triangle inequality and (2.7) with b = s, t, we have

|g(y)− g(x)| ≤ C1∥Y ∥λ;[0,s]CX
s,t(y − x)λ−α+1,

where we write CX
s,t := ∥D1−α

s− (X −Xs)∥∞;[0,s]+ ∥D1−α
t− (X −Xt)∥∞;[0,t]. Therefore,

it follows from λ− α + 1 > 1 that g is a constant function on [0, s]. □
We now prove the additivity of IX(Y )s,t.

Theorem 2.8. Let Y ∈ Cλ
1 (L(E,F )) and X ∈ Cµ

1 (E) with λ + µ > 1 and α ∈
(1 − µ, λ). Then, the equality IX(Y )r,s + IX(Y )s,t = IX(Y )r,t holds for 0 ≤ r ≤
s ≤ t ≤ T .

Proof. Suppose s > 0 because the equality obviously holds when s = 0. Then, it
follows from Proposition 2.7 that

IX(Y )r,t − IX(Y )r,s = g(r) = g(s) = IX(Y )s,t − IX(Y )s,s = IX(Y )s,t.

Thus, the proof is complete. □
2.4. Additivity of rough integral. In Section 2.4, following the steps in Sec-
tion 2.3, we provide a proof of the additivity of the rough integral (Theorem 2.16).
First, we recall the definitions of Hölder rough paths and controlled paths and in-
troduce the rough integral based on fractional calculus in [11, 15] (Definition 2.9
below). Let β denote a real number with 1/3 < β ≤ 1/2. This number is fixed
throughout Section 2.4. We say that pair (X,X) is a β-Hölder rough path in E if
(X,X) satisfies the following two conditions:

(1) X ∈ Cβ
1 (E) and X ∈ C2β

2 (E ⊗ E);
(2) Xs,t − Xs,u − Xu,t = (Xu −Xs)⊗ (Xt −Xu) holds for 0 ≤ s ≤ u ≤ t ≤ T .

The space of all β-Hölder rough paths in E is denoted by Ωβ(E). Let X ∈ Cβ
1 (E).

We say that pair (Y, Y ′) is an X-controlled path with values in F if (Y, Y ′) satisfies
the following two conditions:

(1) Y ∈ Cβ
1 (F ) and Y

′ ∈ Cβ
1 (L(E,F ));

(2) RY ∈ C2β
2 (F ), where RY

s,t := Yt − Ys − Y ′
s (Xt −Xs) for (s, t) ∈ △.
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The space of all X-controlled paths with values in F is denoted by Qβ
X(F ). For

further details and examples of Hölder rough paths and controlled paths, see
[4, 5, 10]. Let γ denote a real number with (1 − β)/2 < γ < β. This number is
fixed throughout Section 2.4. The symbol I(X,X)(Y, Y

′)s,t in Definition 2.9 denotes
the rough integral of (Y, Y ′) along (X,X) on [s, t] in this paper.

Definition 2.9. Let (X,X) ∈ Ωβ(E) and (Y, Y ′) ∈ Qβ
X(L(E,F )). For (s, t) ∈ △,

we define I(X,X)(Y, Y
′)s,t ∈ F by

I(X,X)(Y, Y
′)s,t := Ys(Xt −Xs) + Y ′

sXs,t

+ (−1)1−γ

∫ t

s

D1−γ
s+ RY (u)Dγ

t−(X −Xt)(u) du

+ (−1)1−2γ

∫ t

s

D1−2γ
s+ (Y ′ − Y ′

s )(u)D
γ
t−(D

γ
t−X)(u) du.

In the setting of Definition 2.9, D1−γ
s+ RY , D1−2γ

s+ (Y ′−Y ′
s ), and D

γ
t−(X −Xt) are

well-defined from 1−γ < 2β, 1−2γ < β, and γ < β, respectively. In addition, from
γ < β, Dγ

t−(D
γ
t−X) is well-defined on [0, t] because Dγ

t−X is β-Hölder continuous on
[0, t] and Dγ

t−X(t) = 0 holds by definition. For a proof of the Hölder continuity of
Dγ

t−X, see, e.g., Lemma 6.3 in [11]. Furthermore, in the setting of Definition 2.9,
there exists a positive constant C, depending only on β and γ, such that

|I(X,X)(Y, Y
′)s,t − Ys(Xt −Xs)− Y ′

sXs,t|
≤ C{∥RY ∥2β;[s,t]∥X∥β;[s,t] + ∥Y ′∥β;[s,t](∥X∥2β;[s,t] + ∥X∥2β;[s,t])}(t− s)3β

for (s, t) ∈ △. This easily follows from (2.1), (2.2), and Lemma 3.6 in [15]. We
omit the proof of the preceding inequality because it is not required in this paper.
However, a similar inequality (2.14) is used in the proof of Proposition 2.15.

Next, we prove the additivity of I(X,X)(Y, Y
′)s,t (Theorem 2.16). This result fol-

lows from Proposition 2.15. To prove Proposition 2.15, we introduce the following
lemmas and propositions. For proofs of Lemma 2.10 and Proposition 2.11, we
refer to those of Lemmas 3.5 and 3.7 in [15], respectively.

Lemma 2.10. Let (X,X) ∈ Ωβ(E). Fix (s, t) ∈ △ with s < t. Then, for
x, y ∈ [s, t] with x < y,

Xx,y = (−1)1−γ

∫ t

s

D1−γ
s+ 1(x,y](u)(Xu −Xx)⊗Dγ

t−(X −Xt)(u) du

+ (−1)1−2γ

∫ t

s

D1−2γ
s+ 1(x,y](u)D

γ
t−(D

γ
t−X)(u) du.

Let X ∈ Cβ
1 (E) and (Y, Y ′) ∈ Qβ

X(F ). We define Φ ∈ C(△, F ) by

Φs,t := Ys + Y ′
s (Xt −Xs) (2.8)

for (s, t) ∈ △. It is clear that Φt,t − Φs,t = RY
s,t holds for (s, t) ∈ △. Therefore,

from RY ∈ C2β
2 (F ), Dα

a+Φ·,u(u) and Dα
a+(Φ·,u1(x,y])(u) introduced in Section 2.2
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are well-defined for α ∈ (0, 2β). We note that Dα
a+Φ·,u(u) is consistent with the

compensated fractional derivative introduced in [11]; namely, the equality

Dα
a+Φ·,u(u) =

1

Γ(1− α)

(
Yu

(u− a)α
+ α

∫ u

a

RY
v,u

(u− v)α+1
dv

)
(2.9)

holds for u ∈ (a, T ]. Using the above notation, we state Proposition 2.11, which
can be regarded as a rough integral version of Proposition 2.3.

Proposition 2.11. Let (X,X) ∈ Ωβ(E) and (Y, Y ′) ∈ Qβ
X(L(E,F )). Then, for

(s, t) ∈ △,

I(X,X)(Y, Y
′)s,t = (−1)1−γ

∫ t

s

D1−γ
s+ Φ·,u(u)D

γ
t−(X −Xt)(u) du

+ (−1)1−2γ

∫ t

s

D1−2γ
s+ Y ′(u)Dγ

t−(D
γ
t−X)(u) du.

Lemma 2.12, Propositions 2.13, 2.14, and 2.15 can be regarded as rough integral
versions of Lemma 2.4, Propositions 2.5, 2.6, and 2.7, respectively.

Lemma 2.12. Let X ∈ Cβ
1 (E), (Y, Y

′) ∈ Qβ
X(F ) and α ∈ (0, 2β). Fix s ∈ (0, T ]

and x, y ∈ [0, s] with x < y. Then, for u ∈ (x, s],

Dα
x+(Φ·,u1(y,s])(u) = Dα

y+Φ·,u(u)1(y,s](u).

Proof. From the definition of Dα
x+(Φ·,u1(y,s])(u),

Dα
x+(Φ·,u1(y,s])(u)

=
1

Γ(1− α)

(
Φu,u1(y,s](u)

(u− x)α
+ α

∫ u

x

Φu,u1(y,s](u)− Φv,u1(y,s](v)

(u− v)α+1
dv

)
for u ∈ (x, s]. Hence, for u ∈ (y, s], we have

Γ(1− α)Dα
x+(Φ·,u1(y,s])(u)

=
Φu,u

(u− x)α
+ α

∫ y

x

Φu,u

(u− v)α+1
dv + α

∫ u

y

Φu,u − Φv,u

(u− v)α+1
dv

=
Φu,u

(u− y)α
+ α

∫ u

y

Φu,u − Φv,u

(u− v)α+1
dv = Γ(1− α)Dα

y+Φ·,u(u).

Clearly, for u ∈ (x, y], Dα
x+(Φ·,u1(y,s])(u) = 0. Thus, the proof is complete. □

Proposition 2.13. Let (X,X) ∈ Ωβ(E) and (Y, Y ′) ∈ Qβ
X(L(E,F )). Fix s ∈

(0, T ]. Then, for x, y ∈ [0, s] with x < y,

I(X,X)(Y, Y
′)x,s − I(X,X)(Y, Y

′)y,s − Yx(Xy −Xx)− Y ′
xXx,y

= (−1)1−γ

∫ s

x

D1−γ
x+ ((Φ·,u − Φx,u)1(x,y])(u)D

γ
s−(X −Xs)(u) du

+ (−1)1−2γ

∫ s

x

D1−2γ
x+ ((Y ′ − Y ′

x)1(x,y])(u)D
γ
s−(D

γ
s−X)(u) du.
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Proof. By Proposition 2.11, Lemmas 2.12, and 2.4, we have

I(X,X)(Y, Y
′)x,s − I(X,X)(Y, Y

′)y,s

= I(X,X)(Y, Y
′)x,s − (−1)1−γ

∫ s

x

D1−γ
y+ Φ·,u(u)1(y,s](u)D

γ
s−(X −Xs)(u) du

− (−1)1−2γ

∫ s

x

D1−2γ
y+ Y ′(u)1(y,s](u)D

γ
s−(D

γ
s−X)(u) du

= (−1)1−γ

∫ s

x

(D1−γ
x+ Φ·,u(u)−D1−γ

x+ (Φ·,u1(y,s])(u))D
γ
s−(X −Xs)(u) du

+ (−1)1−2γ

∫ s

x

(D1−2γ
x+ Y ′(u)−D1−2γ

x+ (Y ′1(y,s])(u))D
γ
s−(D

γ
s−X)(u) du

= (−1)1−γ

∫ s

x

D1−γ
x+ (Φ·,u1(x,y])(u)D

γ
s−(X −Xs)(u) du

+ (−1)1−2γ

∫ s

x

D1−2γ
x+ (Y ′1(x,y])(u)D

γ
s−(D

γ
s−X)(u) du. (2.10)

By Lemmas 2.2 and 2.10, we have

Yx(Xy −Xx) + Y ′
xXx,y = (−1)1−γ

∫ s

x

D1−γ
x+ (Φx,u1(x,y])(u)D

γ
s−(X −Xs)(u) du

+ (−1)1−2γ

∫ s

x

D1−2γ
x+ (Y ′

x1(x,y])(u)D
γ
s−(D

γ
s−X)(u) du.

(2.11)

Combining (2.10) and (2.11) yields the desired equality. □

Proposition 2.14. Let X ∈ Cβ
1 (E) and (Y, Y ′) ∈ Qβ

X(F ). Fix s ∈ (0, T ]. Then,
there exists a positive constant C2 that depends only on β and γ such that for
x, y ∈ [0, s] with x < y,∫ s

x

|D1−γ
x+ ((Φ·,u − Φx,u)1(x,y])(u)| du

≤ C2(∥RY ∥2β;[x,y] + ∥Y ′∥β;[x,y]∥X∥β;[x,s])(y − x)2β+γ.

Proof. We set α := 1− γ and note that β < α < 2β holds. From the definition of
Dα

x+((Φ·,u − Φx,u)1(x,y])(u),

Dα
x+((Φ·,u − Φx,u)1(x,y])(u)

=
1

Γ(1− α)

(
(Φu,u − Φx,u)1(x,y](u)

(u− x)α

+ α

∫ u

x

(Φu,u − Φx,u)1(x,y](u)− (Φv,u − Φx,u)1(x,y](v)

(u− v)α+1
dv

)
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for u ∈ (x, s]. Hence, for u ∈ (x, y], we have

Dα
x+((Φ·,u − Φx,u)1(x,y])(u) =

1

Γ(1− α)

(
Φu,u − Φx,u

(u− x)α
+ α

∫ u

x

Φu,u − Φv,u

(u− v)α+1
dv

)
= Dα

x+R
Y (u).

Thus, from (2.1),∫ y

x

|Dα
x+((Φ·,u − Φx,u)1(x,y])(u)| du

=

∫ y

x

|Dα
x+R

Y (u)| du

≤ 1

Γ(1− α)

2β

2β − α
∥RY ∥2β;[x,y]

∫ y

x

(u− x)2β−α du

=
1

Γ(1− α)

2β

2β − α
∥RY ∥2β;[x,y](2β − α + 1)−1(y − x)2β−α+1. (2.12)

Additionally, for u ∈ (y, s], we have

Dα
x+((Φ·,u − Φx,u)1(x,y])(u) =

−α
Γ(1− α)

∫ y

x

Φv,u − Φx,u

(u− v)α+1
dv

=
−α

Γ(1− α)

∫ y

x

RY
x,v + (Y ′

v − Y ′
x)(Xu −Xv)

(u− v)α+1
dv.

Thus, a straightforward computation yields∫ s

y

|Dα
x+((Φ·,u − Φx,u)1(x,y])(u)| du

≤ α

Γ(1− α)
∥RY ∥2β;[x,y]

∫ s

y

∫ y

x

(v − x)2β(u− v)−α−1 dv du

+
α

Γ(1− α)
∥Y ′∥β;[x,y]∥X∥β;[x,s]

∫ s

y

∫ y

x

(v − x)β(u− v)β−α−1 dv du

≤ α

Γ(1− α)
∥RY ∥2β;[x,y](y − x)2β

× α−1(1− α)−1{(s− y)1−α − (s− x)1−α + (y − x)1−α}

+
α

Γ(1− α)
∥Y ′∥β;[x,y]∥X∥β;[x,s](y − x)β

× (α− β)−1(1− α + β)−1{(s− y)1−α+β − (s− x)1−α+β + (y − x)1−α+β}

≤ 1

Γ(1− α)
∥RY ∥2β;[x,y](1− α)−1(y − x)2β−α+1

+
α

Γ(1− α)
∥Y ′∥β;[x,y]∥X∥β;[x,s](α− β)−1(1− α + β)−1(y − x)2β−α+1. (2.13)
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Therefore, from (2.12) and (2.13), we have∫ s

x

|Dα
x+((Φ·,u − Φx,u)1(x,y])(u)| du

=

∫ y

x

|Dα
x+((Φ·,u − Φx,u)1(x,y])(u)| du+

∫ s

y

|Dα
x+((Φ·,u − Φx,u)1(x,y])(u)| du

≤ 1

Γ(1− α)

(
2β

2β − α
(2β − α + 1)−1 + (1− α)−1 + α(α− β)−1(1− α + β)−1

)
× (∥RY ∥2β;[x,y] + ∥Y ′∥β;[x,y]∥X∥β;[x,s])(y − x)2β−α+1.

This completes the proof. □

Proposition 2.15. Let (X,X) ∈ Ωβ(E) and (Y, Y ′) ∈ Qβ
X(L(E,F )). Fix s, t ∈

(0, T ] with s ≤ t and set h(x) := I(X,X)(Y, Y
′)x,t − I(X,X)(Y, Y

′)x,s for x ∈ [0, s].
Then, h is a constant function on [0, s].

Proof. Suppose s < t because h(x) = 0 obviously holds for x ∈ [0, s] when s = t.
Then, for x, y ∈ [0, s] with x < y,

h(y)− h(x)

= (I(X,X)(Y, Y
′)y,t − I(X,X)(Y, Y

′)y,s)− (I(X,X)(Y, Y
′)x,t − I(X,X)(Y, Y

′)x,s)

= (I(X,X)(Y, Y
′)x,s − I(X,X)(Y, Y

′)y,s)− (I(X,X)(Y, Y
′)x,t − I(X,X)(Y, Y

′)y,t)

= (I(X,X)(Y, Y
′)x,s − I(X,X)(Y, Y

′)y,s − Yx(Xy −Xx)− Y ′
xXx,y)

− (I(X,X)(Y, Y
′)x,t − I(X,X)(Y, Y

′)y,t − Yx(Xy −Xx)− Y ′
xXx,y).

By Propositions 2.13, 2.14, and 2.6, we have

|I(X,X)(Y, Y
′)x,b − I(X,X)(Y, Y

′)y,b − Yx(Xy −Xx)− Y ′
xXx,y|

≤
∫ b

x

|D1−γ
x+ ((Φ·,u − Φx,u)1(x,y])(u)(−1)1−γDγ

b−(X −Xb)(u)| du

+

∫ b

x

|D1−2γ
x+ ((Y ′ − Y ′

x)1(x,y])(u)(−1)1−2γDγ
b−(D

γ
b−X)(u)| du

≤ C2(∥RY ∥2β;[x,y] + ∥Y ′∥β;[x,y]∥X∥β;[x,b])(y − x)2β+γ∥Dγ
b−(X −Xb)∥∞;[x,b]

+ C1∥Y ′∥β;[x,y](y − x)β+2γ∥Dγ
b−(D

γ
b−X)∥∞;[x,b] (2.14)

for b ∈ [s, t]. Thus, by the triangle inequality and (2.14) with b = s, t, we have

|h(y)− h(x)| ≤ {C2(∥RY ∥2β;[0,s] + ∥Y ′∥β;[0,s]∥X∥β;[0,t])sβ−γCX
s,t

+ C1∥Y ′∥β;[0,s]CX
s,t}(y − x)β+2γ,

where we write CX
s,t := ∥Dγ

s−(X − Xs)∥∞;[0,s] + ∥Dγ
t−(X − Xt)∥∞;[0,t] and C

X
s,t :=

∥Dγ
s−(D

γ
s−X)∥∞;[0,s] + ∥Dγ

t−(D
γ
t−X)∥∞;[0,t]. Therefore, it follows from β + 2γ > 1

that h is a constant function on [0, s]. □

We can now prove the additivity of I(X,X)(Y, Y
′)s,t.
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Theorem 2.16. Let (X,X) ∈ Ωβ(E) and (Y, Y ′) ∈ Qβ
X(L(E,F )). Then, the

equality I(X,X)(Y, Y
′)r,s + I(X,X)(Y, Y

′)s,t = I(X,X)(Y, Y
′)r,t holds for 0 ≤ r ≤ s ≤

t ≤ T .

Proof. Suppose s > 0 because the equality obviously holds when s = 0. Then, it
follows from Proposition 2.15 that

I(X,X)(Y, Y
′)r,t − I(X,X)(Y, Y

′)r,s

= h(r) = h(s) = I(X,X)(Y, Y
′)s,t − I(X,X)(Y, Y

′)s,s = I(X,X)(Y, Y
′)s,t.

Thus, the proof is complete. □
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