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Abstract

The local Nash inequality is introduced as a natural extension of the
classical Nash inequality yielding space-homogeneous upper heat kernel
estimate. The local Nash inequality contains local information of the heat
kernel and is a necessary condition for the space-inhomogeneous heat ker-
nel estimate involving volume of balls like the one obtained by Li-Yau[20]
for a complete Riemannian manifold with non-negative Ricci curvature.
Under the volume doubling property, the local Nash inequality combined
with the exit time estimate is shown to be equivalent to a sub-Gaussian
off-diagonal upper estimate of heat kernel allowing space-inhomogeneity

1 Introduction

In [21], Nash studied an asymptotic behavior of the fundamental solution of a
parabolic partial differential equation. In a modern fashion, his result can be in-
terpreted in the following way: let (X, d) be a locally compact metric space and
let µ be a Radon measure on (X, d). Also let −L be a generator of a strong con-
tinuous symmetric Markov semigroup {Tt}t>0 on L2(X,µ) and let p(t, x, y) be
the fundamental solution of ∂u/∂t = Lu, i.e., (Ttu)(x) =

∫
X p(t, x, y)u(y)µ(dy).

p(t, x, y) is often called the heat kernel associated with L. If the Nash inequality

E(u, u)||u||4/θ
1 ≥ c||u||2+4/θ

2 , (1.1)

where E(u, u) = −(u, Lu) and || · ||p is the Lp-norm, holds for any u ∈ Dom(E)∩
L1, then

sup
x,y∈X

p(t, x, y) ≤ c′t−θ/2. (1.2)

for any t > 0. In [5], the converse direction has been shown to be true as
well. Nash’s idea has been pursued by many authors, see [25, 6] for example,
to replace the right-hand side of (1.2) by more general class of functions. Note
that those upper estimates are homogeneous (i.e. uniform) with respect to the
space X.

On the other hand, Li-Yau[20] showed that if X is a complete Riemannian
manifold with non-negative Ricci curvature, d is the geodesic distance and µ is
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the Riemannian volume, then

c1

V (
√

t, x)
exp

(− d(x, y)2

c2t

) ≤ p(t, x, y) ≤ c3

V (
√

t, x)
exp

(− d(x, y)2

c4t

)
, (1.3)

where V (r, x) is the volume of Br(x) = {y|d(x, y) < r}. For Riemannian mani-
folds, (1.3) is proven to be equivalent to the Poincaŕe inequality and the volume
doubling property: V (2r, x) ≤ CV (r, x) for any r > 0 and any x ∈ X, where C
is independent of r and x. See [10] and [22]. Even as estimates of on-diagonal
part p(t, x, x), (1.3) has the great advantage in comparison with (1.2), that is,
(1.3) allows inhomogeneity with respect to the space X.

Recently, it has been shown in [3, 13] that certain heat kernels on fractals
possesses strong space-inhomogeneity. Typical example is a time change of the
Brownian motion on [0, 1] with respect to a self-similar measure µ. If µ is not
the Lebesgue measure, then limt→0− log p(t, x, x)/ log t is quite sensitive to x
and has multifractal structure. See Section 5 for details. Note that in the case
of a Riemannian manifold, inhomogeneity as t → 0 is much milder than such a
situation because V (

√
t, x) behaves like tn/2 as t→ 0.

The main purpose of this paper is to introduce a natural extension of the
Nash inequality, called the local Nash inequality, which yield inhomogeneous
(upper) heat kernel estimate as in (1.3) and can be applied to highly inhomo-
geneous cases like the ones on fractals. We say that the local Nash inequality
holds if and only if there exists positive constants A and B such that

E(u, u) + A
||u||21

rβ infy∈supp(u) V (r, y)
≥ B

||u||22
rβ

(1.4)

for any r > 0 and any u ∈ Dom(E) ∩ L1. As is seen in Section 3, if µ is Ahlfors
regular with respect to the distance d, i.e.,

b1r
α ≤ V (r, x) ≤ b2r

α (1.5)

for any r > 0, where α is independent of x, then the local Nash inequality is
equivalent to the classical Nash inequality (1.1). Before explaining what it is
capable of, we review recent works on inhomogeneous estimate of heat kernels.

For random walks on infinite graphs, Grigori’yan-Telcs[12] has shown that
the sub-Gaussian heat kernel estimate

c1

V (t1/β , x)
exp

(− (d(x, y)β

c2t

) 1
β−1

) ≤ p(t, x, y)

≤ c3

V (t1/β , x)
exp

(− (d(x, y)β

c4t

) 1
β−1

)
, (1.6)

where d(x, y) is the minimal number of steps between x and y, is equivalent
to the volume doubling property + the Harnack inequality + the exit time
estimate:

a1r
β ≤ Ex(τBr(x)) ≤ a2r

β , (1.7)
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where τBr(x) is the exit time from Br(x) and Ex is the expectation with respect
to the process ({Xt}t>0, {Px}x∈X) associated with the heat kernel. They intro-
duced a new method by proving a kind of maximum principle for polyharmonic
functions as a substitute of Nash inequality in homogeneous estimates. This
method has been used in [23, 24] to generalize results in [12].

The sub-Gaussian estimate which introduces the exponent β in (1.6) origi-
nates in the study of diffusion processes on self-similar sets. Barlow-Perkins [4]
proved that the heat kernel associated with the Brownian motion on the Sier-
pinski gasket satisfies a space homogeneous version of (1.6), where V (r, x) = rα,
α is the Hausdorff dimension and β is the walk dimension. The same estimate
has been found true for Nested fractals in [19], affine nested fractals in [8] and
Sierpinski carpets in [2].

Note that the distances d are geodesic distances in both cases of (1.3) and
(1.6). In general, we can not expect upper and lower off-diagonal estimates (1.6)
for diffusions on metric spaces without geodesic distances. In fact, Hambly-
Kumagai[14] found diffusion processes on self-similar sets with the volume dou-
bling property, the Harnack inequality and the exit time estimate which do not
satisfy the off-diagonal lower estimate in (1.6). To include such examples, we
will focus on on-diagonal upper estimate

p(t, x, x) ≤ c

V (t1/β , x)
, (1.8)

on-diagonal lower estimate

c

V (t1/β , x)
≤ p(t, x, x), (1.9)

and off-diagonal upper estimate

p(t, x, y) ≤ c3

V (t1/β , x)
exp

(− (d(x, y)β

c4t

) 1
β−1

)
. (1.10)

The main point of this paper is to show the following two facts:
(I) The on-diagonal upper estimate (1.8) implies the local Nash inequality
(1.4).
(II) Under the volume doubling property, the local Nash inequality (1.4) and
the exit time estimate (1.7) is equivalent to the off-diagonal upper estimate
(1.10).
Moreover, under the volume doubling property, the on-diagonal lower estimate
(1.9) is derived from the exit time estimate (1.7) by a modification of existing
methods in [1, 3, 8, 11]. Hence as for on-diagonal estimates, we have a complete
picture under the volume doubling condition.

Unlike the classical case, the local Nash inequality alone does not seem to give
the upper on-diagonal estimate. It leads us to an on-diagonal estimate of heat
kernel with Dirichlet 0-boundary condition on the boundary of a ball. More
precisely, the local Nash inequality and the volume doubling property suffice
an estimate, pr,x(rβ , x, x) ≤ cV (r, x)−1, where pr,x(t, z, y) is the heat kernel
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associated with the process killed at the boundary of Br(x). See Lemma 4.3
for details. We need the exit time estimate to fill the gap between the local
Dirichlet kernel pr,x and the global kernel p. At this point, we do not know that
this is technical problem or not.

This method can be applied to the highly inhomogeneous heat kernels on
fractals, for example, the Sierpinski gasket and the (higher-dimensional) Sier-
pinski carpet. We will do this in subsequent paper [16]. In this paper, we will
present a special example, a time change of the Brownian motion on [0, 1] with
respect to a self-similar measure. If the self-similar measure has the volume dou-
bling property with respect to the Euclidean distance, then there exist β > 0
and a distance d on [0, 1] under which the exit time estimate and the local Nash
inequality holds. Moreover, in this case, d is a geodesic distance and we will
show lower and upper off-diagonal estimate (1.6). See Section 5 for details.

The organization of this paper is as follows. In Section 2, we state the main
results including (I) and (II) above. In Section 3, we will study the case where
V (r, x) does not depend on x and show that the local Nash inequality is the
natural extension of the classical one. In Section 4, we will give proofs to the
main results. Section 5 is devoted to an example which we mentioned above.

The author wish to express his gratitude to Professors T. Kumagai and M.
Hino for stimulating discussions and fruitful comments.

2 Main results

In this section, we will state the main results of this paper. We start with
clarifying our setting. In this paper, (X, d) is a locally compact and connected
metric space. µ is a Radon measure on (X, d) satisfying that µ(O) > 0 for any
non-empty open set O ⊆ X. (E ,F) is a local regular Dirichlet form on L2(X,µ)
and {Tt}t>0 is the strongly continuous semigroup associated with the Dirichlet
form (E ,F) on L2(X,µ). We also assume that the semigroup {Tt}t>0 is ultra-
contractive, i.e. Tt can be extended to an bounded operator from L2(X,µ) to
L∞(X,µ). Then, Tt has an symmetric integral kernel p(t, x, y) for any t > 0 that
belongs to L∞(X2, µ× µ). See [7, Lemma 2.1.2] for example. We call p(t, x, y)
the heat kernel associated with {Tt}t>0. Also we use ({Xt}t>0, {Px}x∈X) to
denote the diffusion process on (X, d) associated with the local regular Dirichlet
form (E ,F) on L2(X,µ). Ex(·) is the expectation with respect to Px.

Notation. We write Br(x) = {y|y ∈ X, d(x, y) < r}. and V (r, x) = µ(Br(x)).
We also use R∗+ = (0,+∞) ∪ {+∞}. (0, r∗] means (0,+∞) when r∗ = +∞.

First we show an inequality regarding Dirichlet forms.

Theorem 2.1. Let u ∈ F ∩ L1(X,µ). Then, for any t > 0,

E(u, u) + t−1||u||21 ess.sup
x,y∈supp(u)

p(t, x, y) ≥ t−1||u||22, (2.1)
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where ess.sup is the essential supremum and || · ||p is the Lp-norm with respect
to the measure µ. In particular,

E(u, u) + t−1||u||21||Tt||1→∞ ≥ t−1||u||22 (2.2)

for any u ∈ F ∩ L1(X,µ), where || · ||p→q is the operator norm of an bounded
operator from Lp(X,µ) to Lq(X,µ).

This inequality (2.1) is a connection between the local Nash inequality de-
fined below and heat kernel estimates.

To show Theorem 2.1, we need the next lemma which is verified easily by
using the spectral representation of {Tt}t>0and its generator.

Lemma 2.2. For any t > 0 and any u ∈ L2(X,µ), define

Ẽt(u) = t−1
(||u||22 − ∫

X×X
p(t, x, y)u(x)u(y)µ(dx)µ(dy)

)
. (2.3)

Then Ẽt(u) is monotonically decreasing and u ∈ F if and only if limt↓0 Ẽt(u) <

+∞. Moreover, if u ∈ F , then limt↓0 Ẽt(u) = E(u, u).

Proof of Theorem 2.1. Since∫
X×X

p(t, x, y)u(x)u(y)µ(dx)µ(dy) ≤ ess.sup
x,y∈supp(u)

p(t, x, y)||u||21.

Lemma 2.2 implies

E(u, u) ≥ Ẽt(u) ≥ t−1(||u||22 − ess.sup
x,y∈supp(u)

p(t, x, y)||u||21).

Now we define the local Nash inequality.

Definition 2.3 (Local Nash inequality). Let β > 0, r1 ∈ R∗+ and r2 ∈ R∗+
and let h : (0, r1] ×X → (0,+∞). We say that the local Nash inequality with
indices (h,β, r1, r2) holds if and only if there exists positive constants A and B
such that

E(u, u) + A
||u||21

rβ infy∈supp(u) h(r, y)
≥ B

||u||22
rβ

(2.4)

for any r ∈ (0, r1] and any u ∈ F ∩ L1(X,µ) with diam(supp(u)) ≤ r2.

In particular, if h(r, x) = H(r) for some H : (0, r1]→ (0,+∞), then (2.4) is

E(u, u) + A
||u||21

rβH(r)
≥ B

||u||22
rβ

. (2.5)

We call this the homogeneous Nash inequality. In Section 3, the homoge-
neous Nash inequality is shown to be equivalent to the heat kernel estimate
p(t, x, y) ≤ cH(t1/β)−1 and, if H(r) = rα, it is also equivalent to the classical
Nash Inequality.

Immediately by the above theorem, an upper estimate of heat kernel implies
the local Nash inequity as follows.
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Corollary 2.4. Let t∗ ∈ R∗+ and let h : (0, t∗] × X → (0,+∞) If there exists
c > 0 such that

p(t, x, x) ≤ c
1

h(t1/β , x)
(2.6)

for any t ∈ (0, t∗] and any x ∈ X, then the local Nash inequality with indices
(h,β, r∗,+∞) holds, where r∗ = (t∗)1/β.

Proof. Since

p(t, x, y) =
∫

X
p(t/2, x, z)p(t/2, y, z)µ(dz),

the Schwartz inequality implies that p(t, x, y)2 ≤ p(t, x, x)p(t, y, y). Hence by
(2.1) and (2.6), we have the local Nash inequality.

Next we present results in the opposite direction. Namely the local Nash in-
equality together with the volume doubling property and the exit time estimate
implies an inhomogeneous heat kernel estimate.

Definition 2.5. Let r∗ ∈ R∗+. µ is said to have the volume doubling property
with respect to the distance d on (0, r∗] if and only if there exists c > 1 and
γ ∈ (0, 1) such that V (r, x) ≤ cV (γr, x) for any x ∈ X and any r ∈ (0, r∗].

As a generalization of V (r, x) where µ has the volume doubling property, we
define the notion of a doubling gauge as follows.

Definition 2.6. Let r∗ ∈ R∗+. A function h : (0, r∗]×X → (0,+∞) is called a
doubling gauge on (0, r∗] if and only if the following four conditions are satisfied:
(H1) For any x ∈ X, h(r, x) is monotonically increasing with respect to r.
(H2) There exists c > 1 and γ ∈ (0, 1) such that h(r, x) ≤ ch(γr, x) for any
(r, x) ∈ (0, r∗]×X.
(H3) There exists M > 0 such that h(r, x) ≤ Mh(r, y) for any r ∈ (0, r∗] and
any x, y ∈ X with d(x, y) ≤ r.
(H4) There exists r′ ∈ (0, r∗] such that infx∈X h(r′, x) > 0.

Lemma 2.7. If µ has the volume doubling property on (0, r∗] and there exists
r′ ∈ (0, r∗] such that infx∈XV (r′, x) > 0, then V (r, x) is a doubling gauge on
(0, r∗/2]. In particular, if (X, d) is bounded and µ has the volume doubling
property on (0,diam(X)], then V (r, x) is a doubling gauge on (0,+∞).

Proof. To prove the first part of the statement, we need to show (H3). Let
r ∈ (0, r∗/2] and let d(x, y) ≤ r. Then Br(y) ⊆ B2r(x). By the volume doubling
property, V (2r, x) ≤ MV (r, x) for any r ∈ (0, r∗/2] and any x ∈ X, where M
is independent of r and x. Hence V (r, y) ≤ MV (r, x). This shows (H3). Next
assume that (X, d) is bounded. Note that if the volume doubling property holds
on (0,diam(X)], then it holds on (0,+∞) as well. Hence we have (H3) for any
r > 0. (H4) is trivial because Br(x) = Br(y) = X if r ≥ diam(X).
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Definition 2.8. Let r∗ ∈ R∗+. We say the exit time estimate with indices (β, r∗)
holds if there exist positive constants a1 and a2 such that

a1r
β ≤ Ex(τBr(x)) ≤ a2r

β (2.7)

for any r ∈ (0, r∗] and any x ∈ X, where τA is the exit time from A ⊂ X defined
by τA = inf{t|Xt /∈ A}.
Remark. If (X, d) is bounded, then r∗ can not be +∞. Note that τBr(x) = +∞
for r > diam(X).

The local Nash inequality together with the exit time estimate suffices for
an off-diagonal upper heat kernel estimate as follows.

Theorem 2.9. Let β > 0. Let r1 and r2 belong to R∗+ and let h be a doubling
gauge on (0, r1]. Suppose that p(t, x, y) is jointly continuous on (0,+∞)×X×X.
Also assume the following two conditions:
(A1) The local Nash inequality with indices (h,β, r1,+∞) holds.
(A2) The exit time estimate with indices (β, r2) holds
Then, β > 1 and there exist positive constants c1, c2, r∗ and t∗ such that

p(t, x, y) ≤ c1

h(t1/β , x)
exp

(− c2

(d(x, y)β

t

) 1
β−1

)
(2.8)

for any x, y ∈ X with d(x, y) ≤ r∗ and any t ∈ (0, t∗]. Moreover, if r1 = +∞,
then t∗ = +∞ and if r2 = +∞ or (X, d) is bounded, then r∗ = +∞.

We give a proof of this theorem in Section 4.
Remark. (1) The conditions (A1) and (H4) can be replaces by
(B1) The local Nash inequality with indices (h,β, r1, r3) holds for some r3 > 0
and
(B2) There exist positive constants c > 0 and λ > 0 such that supx∈X p(t, x, x) ≤
ct−λ for any t ∈ (0, 1).
(2) If (X, d) is bounded then (2.8) with a finite r∗ implies (2.8) with r∗ = +∞.
Furthermore, if h is a doubling gauge on (0,diam(X)], then t∗ = +∞.

Next result gives a converse of the above theorem in case h(r, x) = V (r, x).
It shows that the upper heat kernel estimate (2.8) is equivalent to (A1) + (A2).
Note that by Corollary 2.4, (2.8) implies the local Nash inequality.

Theorem 2.10. Assume that (E ,F) is conservative, i.e. 1 ∈ F and E(1, 1) = 0,
and that µ has the volume doubling property on (0,+∞).Let β > 1. If there exist
positive constants c1, c2 and t∗ ∈ R∗+ such that

p(t, x, y) ≤ c1

V (t1/β , x)
exp

(− c2

(d(x, y)β

t

) 1
β−1

)
(2.9)

for any x, y ∈ X and any t ∈ (0, t∗], then the exit time estimate with indices
(β, r∗) holds for some r∗ ∈ R∗+. Moreover, if t∗ = +∞ and diam(X) = +∞,
then r∗ = +∞.
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We will prove this theorem in Section 4.
If (X, d) is bounded, then the equivalence between the local Nash inequality

+ the exit time estimate and (2.9) can be stated in the following way.

Corollary 2.11. Suppose that (X, d) is bounded. Assuem that (E ,F) is conser-
vative and that µ has the volume doubling property on (0,diam(X)]. Let β > 1.
Then the following conditions (C1) and (C2) are equivalent.
(C1) The local Nash inequality with indices (V,β, r0,+∞) holds for some r0 ∈
R∗+ and the exit time estimate with indices (β, r1) holds for some r1 > 0.
(C2) There exist positive constants c1 and c2 such that (2.9) holds for any
x, y ∈ X and any t > 0.

Proof. By Lemma 2.7, V (r, x) is a doubling gauge. Hence by Theorem 2.9, (C1)
implies (C1). Also by Corollary 2.4 and Theorem 2.10, (C2) implies (C1).

Finally we present results on the lower estimate of the heat kernel. To
obtain the on-diagonal estimate, what we need is the exit time estimate and the
volume doubling property. For off-diagonal estimate, we require the following
properties.

Definition 2.12. (1) The distance d on X is said to have the midpoint prop-
erty if and only if there exists z ∈ X such that d(x, z) = d(z, y) = d(x, y)/2 for
any x, y ∈ X.
(2) Let t∗ ∈ R∗+. We say that near diagonal estimate on (0, t∗] holds if there
exist positive constants c and ε such that

c

V (t1/β , x)
≤ p(t, x, y) (2.10)

for any t ∈ (0, t∗] and any x, y ∈ X with d(x, y) ≤ εt1/β .

If the distance d has the midpoint property, there exists a geodesic between
any two points x and y: there exists a continuous function g : [0, d(x, y)] → X
such that g(0) = x, g(1) = y and d(g(t), g(s)) = |t− s| for any t, s ∈ [0, d(x, y)].
See [1, Lemma 3.1]. A distance with the midpoint property is often called a
geodesic distance.

If µ is Ahlfors regular with respect to d, i.e. (1.5) holds, then there is a es-
tablished technique to obtain on and off-diagonal lower estimate of heat kernels.
See [1, 3, 8, 11] for example. Making necessary adjustments to the techniques
in those papers, we can obtain the following theorem.

Theorem 2.13. Let r∗ ∈ R∗+. Suppse that (E ,F) is conservative. Assume
the exit time estimate with indices (β, r∗ and that µ has the volume doubling
property on (0, r∗]. Then β > 1 and there exist positive constants c and t∗ such
that c

V (t1/β , x)
≤ p(t, x, x) (2.11)
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for any x ∈ X and any t ∈ (0, t∗]. Moreover if r∗ = +∞ or (X, d) is bounded,
then t∗ = +∞. Furthermore, if we assume, in addition, the midpoint property
of d and the near diagonal lower estimate on (0, t∗], then there exist positive
constants c1 and c2 such that

c1

V (t1/β , x)
exp

(− c2

(d(x, y)β

t

) 1
β−1

) ≤ p(t, x, y) (2.12)

for any x, y ∈ X and any t ∈ (0, t∗].

By Theorems 2.10 and 2.13, it follows that the off-diagonal upper estimate
(2.9) implies the diagonal lower estimate (2.11) under the hypothesis of Theo-
rem 2.10.

3 Homogeneous case

In this section, we consider homogeneous cases to illustrate that the local Nash
Inequality is a natural extension of the classical Nash inequality.

Through this section, Y is a locally compact metric space and ν is a Radon
measure on Y which satisfies that ν(O) > 0 for any non-empty open set O ⊂ Y .
(E ,F) is a Dirichlet form on L2(Y, ν) and {Tt}t>0 be the associated semigroup
on L2(Y, ν).

The next lemma is obtained essentially by the classical argument from the
Nash inequality to the heat kernel estimate.

Lemma 3.1. Let A,B,α,β and R be positive numbers. If

E(u, u) +
A||u||21
rα+β

≥ B||u||22
rβ

(3.1)

for any u ∈ F ∩ L1(Y, ν) and any r ∈ (0, R], then Tt(L1(Y, ν)) ⊆ L∞(Y, ν) and

||TηRβ ||1→∞ ≤ AB−1R−α max{c1, B
−α/βc2η

−α/β} (3.2)

for any η > 0, where c1 and c2 are positive constants which only depends on α
and β.

Proof. Renormalizing the parameters as r̃ = rβ and α̃ = α/β, we may as-
sume that β = 1 without loss of generality. Set a = A||u||21 and b = B||u||22.
Define f(x) = bx − ax1+α and let M = maxx∈[1/R,+∞) f(x). Let x∗ = (1 +
α)−1/α(a/b)1/α. Then M = f(1/R) if x∗ ≤ 1/R and M = γb1+1/αa−1/α if
x∗ ≥ 1/R, where γ = (1 + α)−1/α − (1 + α)−1−1/α. This implies either

E(u, u)A1/α||u||2/α
1 ≥ γB1+1/α||u||2+2/α

2 or RαB||u||22 ≤ A||u||21. (3.3)

Now let u ∈ L2(Y, ν) ∩ L1(Y, ν) with ||u||1 = 1 and define g(t) = ||Ttu||22. Since
Ttu ∈ L1(Y, ν) and ||Ttu||1 ≤ ||u||1, we see that ||Ttu||1 ≤ 1. Also g′(t) =
−2E(Ttu, Ttu). Hence by (3.3),

(g(t)−1/a)′ ≥ 2γα−1A−1/αB1+1/α or g(t) ≤ AB−1(1 + α)R−α.
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Solving the differential inequality, we obtain

g(ηR) ≤ AB−1R−α max{1 + α, (α/2γ)αB−αη−α}.
Therefore, ||TηR||1→2 is bounded by the square root of the right hand side of the
above inequity. By using the duality, ||Tt||2→∞ = ||Tt||1→2. Since ||Tt||1→∞ ≤
||Tt/2||1→2||Tt/2||2→∞, we obtain the desired inequality.

As in the classical case, the homogeneous Nash inequalities are equivalent
to certain estimate of heat kernels.

Theorem 3.2. Let β > 0 and let H : (0, r∗] → (0,+∞) for some r∗ ∈ R∗+.
Assume that H is monotonically increasing and satisfies the doubling condition
(H2) with h(r, x) = H(r). Then the following two conditions are equivalent.
(1) There exists c > 0 such that ||Tt||1→∞ ≤ cH(t1/β)−1 for any t ∈ (0, (r∗)β ].
(2) The homogeneous Nash inequality with indices (H, r∗) holds, i.e. (2.5) is
satisfied for any r ∈ (0, r∗] and any u ∈ F ∩ L1(Y, ν).

Furthermore, if H(r) = rα for some α > 0, the following condition (3) is
also equivalent to (1) and (2).
(3) There exist positive constants c and C such that

(cE(u, u) + δ||u||22)||u||2β/α
1 ≥ C||u||2+2β/α

2 (3.4)

for any u ∈ F ∩ L1(Y, ν), where δ = 1 if r∗ < +∞ and δ = 0 if r∗ = +∞.

Note that (3.4) is the classical Nash inequality mentioned in the introduction.
In [25, 6], different type of extension of the classical Nash inequality is proven

to be equivalent to the homogeneous upper estimate of a heat kernel. In short,
their result is that

θ(||u||22) ≤ E(u, u) (3.5)

for any u ∈ F ∩ L1(Y, ν) with ||u||1 = 1, where θ satisfies −m′(t) = θ(m(t))
is equivalent to ||Tt||1→∞ ≤ m(t). Our result shows that (3.5) is equivalent to
the homogeneous Nash inequality with H(t1/β)−1 = m(t) if H has the volume
doubling property. Note that Coulhon’s result in [6] can be applied even when
H does not possess the volume doubling property.

Proof. (1) ⇒ (2): Letting t = rβ in (2.2), we immediately see (3).
(2) ⇒ (1): Since H has the doubling property, there exist positive constants
λ and c0 such that H(r) ≥ c0(r/R)λH(R) for any R ∈ (0, r∗], any r ∈ (0, R].
(See Lemma 4.1.) Therefore, for any R ∈ (0, r∗],

E(u, u) +
ARλ||u||21

c0H(r)rβ+λ
≥ B||u||22

rβ

Letting η = 1 in Lemma 3.1, we have ||TRβ ||1→∞ ≤ cH(R)−1, where c is
independent of R.
(1) ⇔ (3): Since (3.4) is the Nash inequality, this is the classical result. See
[5] and [17, Appendix B.3] for example.
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4 Proof of main results

In this section, we will give proofs of the results in Section 2.
First we give a equivalent condition for the volume doubling property.

Lemma 4.1. Let h be a doubling gauge on (0, r∗]. Then there exist positive
constants λ and c0 such that h(r, x) ≥ c0(r/R)λh(R, x) for any R ∈ (0, r∗], any
r ∈ (0, R] and any x ∈ X. Moreover, there exists C > 0 such that h(r, x) ≥
C(r/r∗)λ for any r ∈ (0, r∗].

Proof. By (H2), for any n ≥ 0, h(R, x) ≤ cnh(γnR, x). Therefore, if γnR ≥ r ≥
γn+1R, we have h(R, x) ≤ cnh(r, x). This immediately imply the lemma.

Next lemma gives a homogeneous bound of the heat kernel.

Lemma 4.2. Let h be a doubling gauge. Under the condition (A1), there exist
positive constants γ1 and γ2 such that ||Tt||1→∞ ≤ max{γ1, γ2t−λ/β} for any
t > 0, where λ is the constant appeared in Lemma 4.1.

Proof. Lemma 4.1 along with the local Nash inequality implies (3.1) with α = λ.
Hence by Lemma 3.1, we have the desired estimate.

We now try to extract local behavior of the heat kernel from the local Nash
inequality. Let U be an open set. Define FU = {u|u ∈ F , supp(u) ⊆ U} and
EU = E|FU×FU . Also µU is the restriction of µ on U . Then by [9, Theorem 4.4.3],
(EU ,FU ) is a local regular Dirichlet form and PU

x (XU
t ∈ A) = Px(Xt ∈ A, τU ≥

t), where ({XU
t }t>0, {PU

x }x∈U ) is the diffusion process associated with (EU ,FU )
on L2(U, µU ). The semigroup associated with (EU ,FU ) is denoted by {TU

t }t>0.
In case U = Br(x), we write T r,x

t in place of TU
t and use pr,x(t, y, z) to denote

the associated heat kernel.

Lemma 4.3. Let h be a doubling gauge on (0, r∗]. If the local Nash inequality
with indices (h,β, r∗, r∗) holds, then there exist positive constants b1 and b2 such
that

||TR,x
ηRβ ||1→∞ ≤ 1

h(R, x)
max{b1, b2η

−λ/β} (4.1)

for any R ∈ (0, r∗], any η > 0 and any x ∈ X.

Proof. By Lemma 4.1, h(r, y) ≤ c0(r/R)λh(R, y). The property (H3) implies
that h(r, y) ≤ c0M(r/R)λh(R, x) for any y ∈ BR(x). Hence by the local Nash
inequality,

E(u, u) +
c0MRλ||u||21
h(R, x)rβ+λ

≥ c′||u||22
rβ

.

for any r ∈ (0, R] and any u ∈ FBR(x). Applying Lemma 3.1 to (EBR(x),FBR(x)),
we obtain (4.1).

We obtain the next lemma by following the discussions from Lemma 3.16 to
the proof of Theorem 3.11 in [1].

11



Lemma 4.4. Assume the exit time estimate with indices (β, r0). Then β > 1
and there exists positive constants c, c′ and r∗ such that

Px(τ(r, x) ≤ t) ≤ c exp
(− c′

(rβ

t

) 1
β−1

)
(4.2)

for any x ∈ X, any t > 0 and any r ∈ (0, r∗], where τ(r, x) = τBr(x). Moreover
if r0 = +∞ or (X, d) is bounded, then r∗ = +∞.

The following fact is essentially shown in the proof of Theorem 3.4 of [3].

Lemma 4.5. If p(t, x, y) is jointly continuous, then

p(t, x, x) ≤ ||TR,x
t ||1→∞ + 2 sup

y∈Br(x)
Py(τ(x,R) ≤ 2/t) sup

z∈DR(x)
p(t/2, z, z) (4.3)

for any R > 0, any r ∈ (0, R] and any x ∈ X, where DR(x) = {y|d(x, y) ≤ R}.
Proof. Set τ = τ(R, x) and B = Br(x). For r ≤ R,∫

B

∫
B

p(t, y, z)µ(dy)µ(dz)

=
∫

B

∫
B

pR,x(t, y, z)µ(dy)µ(dz) +
∫

B
Py(Xt ∈ B, τ < t)µ(dy). (4.4)

Since ({Xt}t>0, {Px}x∈X) is symmetric with respect to µ,∫
B

Py(Xt ∈ B, t/2 < τ < t)µ(dy)

= Pµ(X0 ∈ B,Xt ∈ B, t/2 < τ < t)
≤ Pµ(X0 ∈ B,Xt ∈ B,Xs ∈ ∂BR(x) for some s ∈ [t/2, t))
= Pµ(Xt ∈ B,X0 ∈ B,Xs ∈ ∂BR(x) for some s ∈ (0, t/2])

=
∫

B
Py(Xt ∈ B, τ ≤ t/2)µ(dy)

(4.5)

Moreover,

Py(Xt ∈ B, τ ≤ t/2) = Ey(1τ≤t/2PXτ (Xt−τ ∈ B))

= Ey(1τ≤t/2

∫
B

p(t− τ, y,Xτ )µ(dy))

≤ sup
y∈B

Py(τ ≤ t/2) sup
y∈B,z∈∂BR(x)

t/2≤s≤t

p(s, y, z)µ(B).

Note that p(s, y, z)2 ≤ p(s, y, y)p(s, z, z). Also since p(t, x, x) = ||pt/2,x||22, where
pt,x(y) = p(t, x, y), p(t, x, x) is monotonically decreasing. Therefore,

Py(Xt ∈ B, τ ≤ t/2) ≤ sup
y∈B

Py(τ ≤ t/2) sup
z∈DR(x)

p(t/2, z, z)µ(B).
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Combining this with (4.4) and (4.5), we obtain

1
µ(B)2

∫
B

∫
B

p(t, y, z)µ(dy)µ(dz)

≤ ||TR,x
t ||1→∞ + 2 sup

y∈B
Py(τ ≤ t/2) sup

z∈DR(x)
p(t/2, z, z).

Letting r → 0, we obtain (4.3).

Proof of Theorem 2.9. First we show an diagonal estimate. Under the assump-
tions (A1) and (A2), Lemmas 4.3 and 4.4 holds with the same r∗. If nec-
essary, we may replace r∗ by smaller value to make r∗ω ≤ r1, where ω =
21/β/(21/β − 1). Now fix δ > 0 and define ρ(δ) = max{b1, b2δλ/β} and C(δ) =
3c exp (−c′(2δ)1/(β−1)). If Rβ = tδ and R ∈ (0, r∗], then Lemma 4.5 implies
that, for any x ∈ X, there exists x1 ∈ DR(x) such that

p(t, x, x) ≤ ρ(δ)
h(R, x)

+ C(δ)p(t/2, x1, x1).

Define tn = t/2n and Rn = (tnδ)1/β . Then there exists a sequence {xn}n≥0

such that xn+1 ∈ DRn(xn) and

p(tn, xn, xn) ≤ ρ(δ)
h(Rn, xn)

+ C(δ)p(tn+1, xn+1, xn+1)

for any n ≥ 0. Therefore,

p(t, x, x) ≤ ρ(δ)
n−1∑
i=0

C(δ)i

h(Ri, xi)
+ C(δ)np(tn, xn, xn)

for any n ≥ 0. Since xn ∈ BRω(x) for any n, Lemma 4.1 along with (H3) implies

h(Rn, xn) ≥ c0

( Rn

Rω

)λ
h(Rω, xn) ≥ c02−nλ/β

Mωλ
h(Rω, x) ≥ (c∗)−1G−nh(R, x),

where c∗ = Mωλ/c0 and G = 2λ/β . Combining this with Lemma 4.2, we see
that there exists b∗ > 0 such that

p(t, x, x) ≤ ρ(δ)c∗
h(R, x)

n−1∑
i=0

(C(δ)G)i + b∗(C(δ)G)n

for any n ≥ 0. Since C(δ) → 0 as δ → +∞, we may choose δ ≥ 1 so that
C(δ)G < 1. Then, there exists a∗ such that

p(t, x, x) ≤ a∗
h((δt)1/β , x)

≤ a∗
h(t1/β , x)

(4.6)

for any x ∈ X and any t ∈ (0, rβ∗ /δ].
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Next we show off-diagonal estimate. There is a well-established way of get-
ting off-diagonal upper estimate from diagonal upper estimate. Here, we will
adapt the discussion in [1]. Suppose that x, y ∈ X with d(x, y) ≤ r∗. Write
R = d(x, y). Define Ax = {z|d(x, z) ≤ d(y, z)} and Ay = {z|d(x, z) ≥ d(y, z)}.
Set B1 = Br(x) and B2 = Br(y). Then∫

B1

∫
B2

p(t, z, w)µ(dz)µ(dw) ≤∫
B1

(Pz(Xt ∈ B2, Xt/2 ∈ Ax) + Pz(Xt ∈ B2, Xt/2 ∈ Ay))µ(dz).

If r < R/6, BR/3(z) ∩Ay = ∅ for z ∈ B1. Hence

Pz(Xt ∈ B2, Xt/2 ∈ Ay) ≤ Pz(Xt ∈ B2, τ < t/2)

≤ Ez(1τ<t/2

∫
B2

p(t− τ, Xτ , w)µ(dw))

≤ Pz(τ ≤ t/2) sup
v∈DR/2(x)∪B2

p(t/2, v, v)µ(B2)

≤ C ′(Rβ/t) sup
v∈DR/2(x)∪B2

p(t/2, v, v)µ(B2),

where τ = τ(R/3, z) and C ′(s) = C(2s/3β). Moreover, since the process is
µ-symmetric,∫

B1

Pz(Xt ∈ B2, Xt/2 ∈ Ax)µ(dz) =
∫

B2

Pw(Xt ∈ B1, Xt/2 ∈ Ax)µ(dw).

Making use of those inequalities and letting r → 0, we see that

p(t, x, y) ≤ 2C ′(Rβ/t) sup
z∈DR/2(x)∪DR/2(y)

p(t/2, z, z). (4.7)

Let z ∈ DR/2(x) ∪ DR/2(y). Then d(x, z) ≤ 3R/2. If (t/2)1/β ≥ 3R/2, then
Lemma 4.1 and (H3) imply

h((t/2)1/β , z) ≥M−1h((t/2)1/β , x) ≥ c0M
−12−λ/βh(t1/β , x).

If (t/2)1/β < 3R/2, then

h((t/2)1/β , z) ≥ c02−λ/β(2/3)λ
(Rβ

t

)−λ/β
h(3R/2, z)

≥ c02−λ/β(2/3)λM−1
(Rβ

t

)−λ/β
h(3R/2, x)

≥ c02−λ/β(2/3)λM−1
(Rβ

t

)−λ/β
h((t/2)1/β , x)

≥ (c0)22−2λ/β(2/3)λM−1
(Rβ

t

)−λ/β
h(t1/β , x)
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Hence, there exists B > 0 such that

1
h((t/2)1/β , z)

≤ B max
{
1,

(Rβ

t

)λ/β} 1
h(t1/β , x)

.

Therefore, by (4.6) and (4.7),

p(t, x, y) ≤ 2a∗B max
{
1,

(Rβ

t

)λ/β} 1
h(t1/β , x)

C ′(Rβ/t).

Since there exists c′′ and c′′′ such that

max{1, δλ/β}C ′(δ) ≤ c′′ exp (−c′′′δ1/(β−1))

for any δ > 0, we obtain (2.8)

Next we prove Theorem 2.10 by adapting the arguments in the proof of [1,
Lemma 3.9].

Lemma 4.6. Suppose that (2.9) holds for any t ∈ (0, t∗] and any x, y ∈ X.
(1) There exists c and c′ such that

Px(d(x,Xt) > r) ≤ c exp
(− c′

(rβ

t

) 1
β−1

)
(4.8)

for any x ∈ X, any t ∈ (0, t∗] and any r > 0.
(2) There exist positive constants c and c′ such that (4.2) holds for any x ∈ X,
any t ∈ (0, t∗] and any r > 0.

Proof. (1) Choose θ > 1 and α > 1 such that V (θr, x) ≤ αV (r, x) for any x ∈ X
and any r > 0. Let θ = αδ. Then

Px(d(x,Xt) > r) =
+∞∑
n=0

∫
Bθn+1r(x)\Bθnr(x)

p(t, x, y)µ(dy)

≤ c1

+∞∑
n=0

αn+1 V (r, x)
V (t1/β , x)

exp
(− c2

( (θnr)β

t

) 1
β−1

)
= c1α

V (r, x)
V (t1/β , x)

+∞∑
n=0

αn exp
(− c2

(rβ

t

) 1
β−1 αn βδ

β−1
)

≤ c1
α

α− 1
V (r, x)

V (t1/β , x)

∫ +∞

1
exp

(− c2

( rβ

θβt

) 1
β−1 x

βδ
β−1

)
dx

Suppose rβ ≥ t. Then by Lemma 4.1, V (r, x)/V (t1/β , x) ≤ c3(rβ/t)ρ. There-
fore, by [1, Lemma 3.7], there exist c4 > 0 and c5 > 0 such that

Px(d(x,Xt) > r) ≤ c4

(rβ

t

)ρ− 1
β−1 exp

(− c5

(rβ

t

) 1
β−1

)
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Choosing suitable constants c and c′, we immediately have (4.8) when rβ ≥ t.
Note that we may choose c and c′ so that 1 ≤ ce−c′ . Hence (4.8) holds for
t > rβ as well.
(2) By the discussion in the proof of [1, Lemma 3.9], we see that

Px(τ(x, r) < t) ≤ 2 sup
s<t

sup
y∈X

Py(d(y,Xs) > r/2).

Now (1) immediately implies (2).

Lemma 4.7. If µ has the volume doubling property on (0, r∗], then there exists
ρ ∈ (0, 1) such that V (r/2, x) ≤ ρV (r, x) for any r ≤ min{r∗,diam(X)/3} and
any x ∈ X.

Proof. Let r ≤ min{r∗,diam(X)/2} and let x ∈ X. Then there exists z ∈ X
such that d(x, z) ≥ r. Since (X, d) is connected, we may choose y ∈ X with
d(x, y) = 3r/4. Note that Br/2(x) ∩ Br/4(y) = ∅ and Br/2(x) ∪ Br/4(x) ⊂
Br(x). Now Since Br/2(x) ⊆ B5r/4(y), the volume doubling property implies
V (r/2, x) ≤ V (5r/4, y) ≤ cV (r/4, y), where c > 0 is independent of r, x and y.
Hence V (r, x) ≥ (1 + c−1)V (r/2, x).

Proof of Theorem 2.10. Let c∗ ≥ 1. Set r∗ = (c∗)−1 min{(t∗)1/β ,diam(X)).
Let r ∈ (0, r∗]. Then, by (H3),

Py(τ(x, r) > (c∗r)β) ≤ Py(X(c∗r)β ∈ Br(x)) ≤
∫

Br(x)
p((c∗r)β , y, z)µ(dz)

≤ c1

∫
Br(x)

1
V (c∗r, z)

µ(dz) ≤ c1

∫
Br(x)

M

V (c∗r, x)
µ(dz) = c1M

V (r, x)
V (c∗r, x)

By Lemma 4.7, we may choose c∗ so that the last value of the above inequality
is less than 1/2. The Markov property of the process implies that

Py(τ(x, r) > k(c∗r)β) ≤ 2−k.

Hence, if R = (c∗r)β ,

Ex(τ(x, r)) ≤
∑
k≥0

Py((k + 1)R ≥ τ(x, r) > kR)(k + 1)R ≤ 4cβ
∗r

β

for any r ∈ (0, r∗].
To obtain the lower bound, choose a > 0 satisfying c exp (−c′′a1/(β−1)) =

1/2. If r ≤ (at∗)1/b, then Lemma 4.6 shows that Px(τ(x, r) ≤ rβ/a) ≤ 1/2.
Since (E ,F) is convervative, Px(Xt ∈ X) = 1. Therefore,

Ex(τ(x, r)) ≥ Px(τ(x, r) > rβ/a)rβ/a ≥ rβ

2a
.
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Finally we prove Theorem 2.13. As we mentioned, the proof here depends
on a modification of known techniques developed for the homogeneous case. See
[1, 3, 8, 11] for example.

Proof of Theorem 2.13. First we give a proof of diagonal estimate. By the exit
time estimate, we have Lemma 4.4. Set δ = rβ/t, where r ∈ (0, r∗]. Then by
(4.2), if δ is sufficiently large, then Px(τ(r, x) ≤ t/2) ≤ 1/2. Since (E ,F) is
conservative,

1/2 ≤ 1− Px(τ(r, x) ≤ t/2) ≤ Px(Xt/2 ∈ Br(x))

=
∫

Br(x)
p(t/2, x, y)µ(dy) ≤

√
µ(Br(x))

√
p(t, x, x).

Using the volume doubling property, we see that
c

V (t1/β , x)
≤ p(t, x, x) (4.9)

for any t ∈ (0, t∗], where t∗ = (r∗)β/δ. To obtain off-diagonal estimate, we use
the classical chaining argument. (See [1] for example.) Note that

p(t, x, y) =
∫

Xn−1
p(

t

n
, x, z1)p(

t

n
, z1, z2)· · ·p(

t

n
, zn−1, y)µ(dz1)· · ·µ(dzn−1).

Now fix x and y. We may assume that ε ≤ 3 without loss of generality. Write
R = d(x, y). If R ≤ εt1/β , then the near diagonal estimate implies (2.12).
Therefore, we suppose that R > εt1/β . Since (3R/ε)β/t ≥ 1, there exists n ∈ N
such that (3

ε

)β Rβ

t
≤ nβ−1 ≤ 2β−1

(3
ε

)β Rβ

t
. (4.10)

Using the midpoint property, we may choose a sequence {xi}n
i=0 such that x0 =

x, xn = y and d(xi, xi+1) = R/n for any i = 0, 1, . . . , n − 1. Define Bi =
BR/n(xi) for i = 1, . . . , n − 1. If zi ∈ Bi and zi+1 ∈ Bi+1, then d(zi, zi+1) ≤
3R/n. Since 3R/n ≤ ε(t/n)1/β and R/n ≤ (t/n)1/β , the near diagonal estimate
and (H3) yields

p(t, zi, zi+1) ≥ c

V ((t/n)1/β , zi)
≥ c

MV ((t/n)1/β , xi)
.

Hence

p(t, x, y)

≥
∫

B1×...×Bn−1

p(
t

n
, x, z1)p(

t

n
, z1, z2)· · ·p(

t

n
, zn−1, y)µ(dz1)· · ·µ(dzn−1)

≥ (c/M)n 1
V ((t/n)1/β , x)

n−1∏
i=1

V (R/n, xi)
V ((t/n)1/β , xi)

≥ (c/M)n 1
V (t1/β , x)

n−1∏
i=1

V (R/n, xi)
V ((t/n)1/β , xi)
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By Lemma 4.1 and (4.10),

V (R/n, xi)/V ((t/n)1/β , xi) ≥ co

( Rβ

tnβ−1

)λ/β ≥ c02−λ(β−1)/β(ε/3)λ.

Therefore there exists L > 1 such that

p(t, x, y) ≥ L−n

V (t1/β , x)
.

Now the desired estimate follows immediately from (4.10).

5 Example

In this section, we will apply our main results to a time change of the Brownian
motion on [0, 1] reflecting at the boundary with respect to a self-similar measure.
For simplicity, we will only deal with self-similar measures with three weight
(µ1, µ2, µ2). See subsequent paper [16] for general cases.

Let K = [0, 1]. Define Fi(x) = (x − ai)/3 + ai for i = 1, 2, 3, where a1 =
0, a2 = 1/2 and a3 = 1. Then K = F1(K) ∪ F2(K) ∪ F3(K). Define Σ =
{1, 2, 3}N, Wm = {1, 2, 3}m and W∗ = ∪m≥0, where W0 = {∅}. For w ∈ W∗,
|w| is the length of |w|, i.e.w ∈ W|w|. We define Fw = Fw1 ◦ . . . ◦ Fwm for
w = w1 . . . wm ∈ W∗. Also Kw = Fw(K). It is well known that there exists
a continuous surjection π : Σ → K such that π(ω) = ∩m≥0Kω1...ωm for any
ω = ω1ω2 . . .. Note that π(2(1)∞) = π(1(3)∞) = 1/3 and π(3(1)∞) = π(2(3)∞),
where (w)∞ = www . . . for w ∈W∗.

Proposition 5.1. If π(ω) = π(η) for ω, η ∈ Σ with ω 1= η, then there exists
w ∈W∗ such that {ω, η} is {w2(1)∞, w1(3)∞} or {w3(1)∞, w2(3)∞}.

Now we define E(u, v) =
∫ 1
0 u′(x)v′(x)dx for u, v ∈ C1([0, 1]). Let E1(u, v) =

E(u, v) +
∫ 1
0 u(x)v(x)dx. F is the completion of C1([0, 1]) with respect to the

inner product E1. Then F ⊂ C([0, 1]) and, in fact,

|u(x)− u(y)|2 ≤ E(u, u)|x− y| (5.1)

Also (E ,F) has a self-similarity: for any u ∈ F , u ◦ Fi ∈ F for i = 1, 2, 3 and

E(u, u) =
3∑

i=1

3E(u ◦ Fi, u ◦ Fi).

(E ,F) is a local regular Dirichlet form on L2(K, dx) and the associated diffusion
process is the Brownian motion on [0, 1].

Proposition 5.2. Let µ be a self-similar measure on K with weight (µ1, µ2, µ3) ∈
(0, 1)3: µ1 + µ2 + µ3 = 1, µ is a Borel regular measure on K and µ(Kw) = µw

for any w ∈ W∗, where µw = µw1 . . . µwm for w = w1 . . . wm. Then (E ,F) is a
local regular Dirichlet form on L2(K,µ).
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The diffusion process associated with (E ,F) on L2(K,µ) is a time change of
the Brownian motion on [0, 1].

Next we define a distance associated with (E ,F) on L2(K,µ). Let dS be the
unique positive number which satisfies

(µ1/3)dS/2 + (µ2/3)dS/2 + (µ3/3)dS/2 = 1.

dS is called the spectral exponent and gives an asymptotic order of the distri-
bution of eigenvalues of the Laplacian associated with (E ,F) on L2(K,µ). See
[18] for details. Define pi = (µi/3)dS/2 for i = 1, 2, 3. For x, y ∈ K with x ≤ y,
set dm(x, y) =

∑
w∈Wm(x,y) pw, where Wm(x, y) = {w|w ∈ Wm,Kw ⊆ [x, y]}.

Define d(x, y) = limm≥∞ dm(x, y). Then, d(x, y) is a distance on K, which
possesses the midpoint property.

Theorem 5.3. Let p(t, x, y) be the heat kernel associated with the Dirichlet form
(E ,F) on L2(K,µ). If µ1 = µ3, then there exist positive constants c1, c2, c3 and
c4 such that

c1

V (t1/β , x)
exp

(− c2

(d(x, y)β

t

) 1
β−1

) ≤
p(t, x, y) ≤ c3

V (t1/β , x)
exp

(− c4

(d(x, y)β

t

) 1
β−1

)
(5.2)

for any x, y ∈ K and any t ∈ (0, 1], where β = 2/dS and V (r, x) = µ(Br(x)).

Unless µ1 = µ2 = µ3, the local dimension of µ, dL(x) = limr→0 log V (r, x)/ log r
is quite sensitive to x and has multifractal structure. More precisely, define
Aα = {x|x ∈ [0, 1], dL(x) = α} and let f(α) be the Hausdorff dimension of
Aα with respect to the distance d. Then f(α) is non-trivial continuous convex
function. See [13] for details.

The rest of this section is devoted to the proof of Theorem 5.3.

Lemma 5.4. Suppose µ1 = µ3. Define

Λs = {w|w ∈W∗, pw1...wm−1 > s ≥ pw}.
for s ∈ (0, 1]. Then there exists M > 0 such that |w| − |v| ≤ M and µ(Kw) ≤
Mµ(Kv) for any w, v ∈ Λs with Kw ∩Kv 1= ∅ and any s ∈ (0, 1].

Proof. If Kw∩Kv 1= ∅ for w, v ∈ Λs and w 1= v, then, by Proposition 5.1, we may
suppose w = ω1 . . .ωm and v = η1 . . . ηn, where ω = ai(1)∞ and η = aj(3)∞
for some a ∈ W∗ and some (i, j) = (2, 1), (3, 2). Let C = min{p1, p2, p3}. Then
Cpv ≤ pw ≤ C−1pv. Since p1 = p3, the boundedness of pw/pv implies the
boundedness of |w|− |v|. Note that pw = (µw/3|w|)dS/2 and pv = (µv/3|v|)dS/2.
Hence the boundedness of |w|− |v| implies the boundedness of µw/µv.

For x ∈ K, define Λs,x = {w|w ∈ Λs, x ∈ Kw}, Ks(x) = ∪w∈Λs,xKw,
Λ1

s,x = {w|w ∈ Λs,Kw ∩Kv 1= ∅ for some v ∈ Λs,x} and Us(x) = ∪w∈Λ1
s,x

Kw.
Then,

BCs(x) ⊆ Us(x) ⊆ B3s(x) (5.3)
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for any x ∈ K and any s ∈ (0, 1]. Note that #Λs,x ≤ 2 and #Λ1
s,x ≤ 4, where #

is the number of elements. Hence by Lemma 5.4, there exist positive constants
A1 and A2 such that

A1µw ≤ µ(Us(x)) ≤ A2µw (5.4)

for any x ∈ K, s ∈ (0, 1] and any w ∈ Λs,x.

Proof of Theorem 5.3. To use Theorems 2.9 and 2.13, we need to show the vol-
ume doubling property, the local Nash inequality, the exit time estimate and
the near diagonal lower estimate.
Volume doubling property: Choose max{p1, p2, p3} < α < 1. Let x = π(ω1ω2 . . .).
Then w = ω1 . . .ωm ∈ Λs,x for some m. We see that w′ = ω1 . . .ωm+1 ∈ Λαs,x.
Hence by (5.4), µ(Us(x)) ≥ µw ≥ µw′/B ≥ (A2B)−1µ(Uαs(x)), where B =
max{µ1, µ2}. Using (5.3), we verify the volume doubling property.
Local Nash inequality: By integrating (5.1) with respect to µ(dx) and µ(dy),
there exist c > 0 such that

E(u, u) ≥ c

∫
K

(u(x)− ū)2µ(dx), (5.5)

for any u ∈ F , where ū =
∫

K u(x)µ(dx). Define Λs(u) = {w|w ∈ Λs,Kw ∩
supp(u) 1= ∅} for any u ∈ F . Set uw = u ◦ Fw Then, by the self-similarity of
(E ,F),

E(u, u) =
∑

w∈Λs(u)

3|w|E(uw, uw) ≥ c
∑

w∈Λs(u)

3|w|
∫

K
(uw − uw)2µ(dx)

= c
∑

w∈Λs(u)

(pw)−β(
∫

Kw

u(x)2µ(dx)− (µw)−1(
∫

Kw

u(x)µ(dx))2)

≥ c||u||22
sβ

− c||u||21
sβ infw∈Λs(u) µw

(5.6)

Using (5.3), (5.4) and the volume doubling property, we also obtain that there
exists a > 0 such that infw∈Λs(u) µw ≥ a infx∈supp(u) V (s, x). Thus (5.6) implies
the local Nash inequality.
Exit time estimate: By [15, Appendix B],

Ex(τUs(x)) = R(x, ∂Us(x))
∫

K
ϕx,s(y)µ(dy),

where R(x, ∂Us(x)) is the effective resistance between x and ∂Us(x) and ϕx,s

is a piecewise linear function satisfying ϕx,s(x) = 1 and supp(ϕx,s) = Us(x). If
Us(x) = [x(s), y(s)], then R(x, ∂Us(x)) = |x− x(s)||y(s)− x|/|y(s)− x(s)|. Set
Γ = {(x, s, w)|x ∈ K, s ∈ (0, 1], w ∈ Λs,x}. By Lemma 5.4, there exist positive
constants b1 and b2 such that b13−|w| ≤ |x− x(s)|, |y − y(s)| ≤ b23−|w| for any
(x, s, w) ∈ Γ. Hence

0 < inf
(x,s,w)∈Γ

R(x, ∂Us(x))3|w| ≤ sup
(x,s,w)∈Γ

R(x, ∂Us(x))3|w| < +∞
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Also by Lemma 5.4, inf(x,s,w)∈Γ(miny∈Kw ϕs,x(y)) > 0. Therefore, there exists
b5 and b6 such that b5µw ≤

∫
K ϕx,s(y)µ(dy) ≤ b6µw for any (x, s, w) ∈ Γ. As

a consequence, s−bEx(τUs(x)) is uniformly bonded from above and below with
respect to (x, s) ∈ K × (0, 1]. Using (5.3), we deduce (2.7).
Near diagonal estimate: Note that we already have diagonal lower estimate
cV (t1/β , x)−1 ≤ p(t, x, x). By the discussions in the proofs of [8, Lemma 6.4]
and [14, Lemma 5.2], |p(t, x, y)− p(t, x, z)|2 ≤ |y − z|p(t, x, x)t−1. Therefore,

p(t, x, y) ≥ p(t, x, x)− |p(t, x, y)− p(t, x, x)|

≥ p(t, x, x)(1− c
|x− y|1/2V (t1/β , x)1/2

t1/2
). (5.7)

Let x = π(ω1ω2 . . .). Define ω(k) = ω1 . . .ωk for any k ∈ N. Let R = t1/β .
Then ω(m) ∈ ΛR,x for some m. By the volume doubling property and (5.4),
there exists a1 > 0 such that V (R, x) ≤ a1µω(m). Also, there exists a2 > 0
such that t = Rβ ≥ µω(m)/3m. Set α0 = min{p1, p2, p3}. Then, for any n ≥ 1,
ω(m + k) ∈ Λ(a0)nR,x for some k ≥ n. Therefore there exists a3 > 0 such that
|x − y| ≤ a33−(m+n) for any y ∈ U(α0)nR(x). Combining those inequalities, we
see

|x− y|V (t1/β , x)
t

≤ a1a3(a2)−13−n

for any y ∈ U(α0)nR(x). Therefore, by (5.7), if ε is sufficiently small, p(t, x, y) ≥
p(t, x, x)/2 for any y ∈ Bεt1/β (x). This immediately imply the near diagonal
lower estimate.
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