線型代数学 B 演習 2

- 1. $\begin{pmatrix} -1 & -4 & 8 \\ 1 & 3 & -5 \\ 0 & 0 & 3 \end{pmatrix}$ は対角化可能か? 更に対角化可能ならば、この行列を 対角化する №3 の基底を一組求めよ。
- 2. $a_1, a_2, a_3 \in \mathbb{R}^3$ を $a_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, a_2 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, a_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ とする。このと き Schmidt の直交化法を用いて (a_1,a_2,a_3) から \mathbb{R}^3 の標準的な内積に関す る正規直交基底をつくれ。
- **3**. $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $a_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $a_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ とする。Schmidt の直交化法を用いて (a_1,a_2,a_3) から \mathbb{R}^3 の標準的な内積に 関する正規直交基底 (b_1,b_2,b_3) をつくれ。さらに (e_1,e_2,e_3) から (b_1,b_2,b_3) への基底変換の行列を求めよ。
- 4. $f,g \in T_2(\mathbb{R})$ に対して、 $(f,g) = \int_0^1 f(x)g(x)dx$ と定義する。 (1) (\cdot,\cdot) は $T_2(\mathbb{R})$ の内積であることを示せ。
- (2) $T_2(\mathbb{R})$ の基底 $(1, x, x^2)$ から Schmidt の直交化法を用いて $T_2(\mathbb{R})$ の正規 直交基底をつくれ。
- 5. U を有限次元 K-vector space, (\cdot,\cdot) を U の内積とする。 $e_1,\cdots,e_m \in U$ が互いに直交するとき、 (e_1,\cdots,e_m) が正規直交基底であるための必要十分条件は「任意の $u\in U$ に対して $\sum_{i=1}^n |(e_i,u)|^2=|u|^2$ 」であることを示せ。