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Abstract

Successive division of a compact metric space, called a partition, and
weight functions of pieces of a division are the main interest of this paper.
Successive division means; let X be a compact metric space of interest.
Divide X into finite number of compact subsets Xi,..., Xxy. Next each
compact subset X; in the division is again divided into X;1, Xi2, ..., Xin,.
Then X;; is divided into finite number of subsets and repeat this again and
again infinitely many times. Such a successive division appears naturally
in the construction of self-similar sets, Markov partition of hyperbolic
dynamical systems, dyadic cubes associated with a doubling metric space
and so on. A weight function assigns a value between 0 and 1 to each
piece of the division. For example, for given metric, the correspondence of
pieces to their (normalized) diameters is an example of a weight function.
The main purpose of this paper is to study relation between a weight
function and a geometry of the original set X. In the course of our study,
the notions like bi-Lipschitz equivalence, Ahlfors regularity, the volume
doubling property and quasisymmetry will be shown to be equivalent to
certain properties of weight functions.

1 Introduction

Successive division of a space has played important roles in many area of math-
ematics. One of the simplest examples is the binary division of the unit interval
[0,1] as is shown in Figure 1, i.e. let Ky = [0,1]. Then divide K, in halves as
Ko =1[0,4] and K; = [3,1]. Next, Ky and K; are divided in halves again and
yield K;; for each (4,7) € {0,1}%. Successively,

Ki = Kz OUKil..‘iml (11)

1-:tm 1e-tm

for any m > 0 and any 41 .. .4, € {0,1}™. In this well-known example, we pay
attention to the following two properties.
The first one is the role of the (infinite) binary tree

T, = {¢,0,1,00,01,10, 11,000,001, 010,011,...} = U {0,1}™,

m>0

where {0,1}% = {¢}. The vertex ¢ is called the root or the reference point and
Ty is called the tree with the root (or the reference point) ¢. Note that the
correspondence i ...%, — K; ;, determines a map from the binary tree to
the collection of compact subsets of [0, 1] with the property (1.1).
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Figure 1: A partition of the unit interval [0, 1] and the associated tree

Secondly, note that K;, D K i, 2 Kijisis 2 ... by (1.1) and

ﬂ K, .4, is a single point (1.2)
m>1
for any infinite sequence iqis.... (Of course, this is the binary expansion and

hence the single point is Ele ;—Tn) In other words, there is a natural map
o : {0, 1} — [0, 1] given by

Such a successive division of a compact metric space, which may not be as
simple as the last one, appears various situation. One of the typical examples
is a self-similar set in fractal geometry. A self-similar set is a union of finite
number of contracted copies of itself. Then each contracted copy is again a union
of contracted copies and so forth. Another example is the Markov partition
associated with hyperbolic dynamical systems. See [1] for details. Also the
division of a metric measure space having the volume doubling property by
dyadic cubes can be thought of as another example of such a division of a
space. See Christ[5] for example.

Let X be the compact metric space in question. The common properties of
the above examples are;

(i) There exists a tree T' (i.e. a connected graph without loops) with the root
¢.

(ii) For any vertex p of T, there is a corresponding nonempty compact subset
of X denoted by X, and X = Xy.

(iii) Every vertex p of T except ¢ has unique predecessor 7(p) € T and

X, = U x (1.3)
pe{p’|m(p’)=q}
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Figure 2: A partition and the associated graphs (up to the 2nd stage)

(iv) The totality of edges of T is {(7(q),q)|q € T\{o}}.
(v) For any infinite sequence (po,p1,ps,...) of vertices of X satisfying py = ¢
and w(p;41) = p; for any @ > 1,

ﬂ Xp, is a single point. (1.4)
i>1

See Figure 2 for an illustration of the idea. Note that the properties (1.3) and
(1.4) corresponds to (1.1) and (1.2) respectively. In this paper such {X,}per is
called a partition of X parametrized by the tree T. (We will give the precise
definition in Section 4.)

For a metric d which produces the original topology of X and a Radon
measure g on X, the diameter of X, with repsect to d, diam(X,,d), and the
measure of X, u(X,), are associated natural weights of X, for p € T. In
both cases, if pq(p) = diam(X,,d)/diam(X,d) and p,(p) = p(Xp)/w(X) for
any p € T, then the function px : T — (0, 1] for # = d, u satisfies

p#(m(p)) = p#(p) (1.5)
for any p € T\{¢} and
Aim py(pi) =0 (1.6)

if m(p;+1) = p; for any ¢ > 1. (To have the second property (1.6) in case of
# = u, we must assume that the measure p is non-atomic, i.e. p({z}) =0 for
any ¢ € X.)

As we have seen above, we ordinarily begin with a metric space with some
structure like self-similarity, dynamical system or a measure with the volume
doubling property, construct a partition in association with the structure and
obtain a weight function from a metric or a measure. In this paper, we are
interested in the opposite way. Namely, given a partition of a compact metriz-
able space parametrized by a tree T', we define the notion of weight functions



as the collection of functions from T to (0, 1] satisfying the same properties as
(1.5) and (1.6) of px. Then our main object of interest is the space of weight
functions which includes those coming form metrics and measures. Naively we
believe that a partition and a weight function essentially determine “geometry
and/or analysis” of the original set no matter where the weight function comes
from. It may come from a metric, a measure or else. Keeping this intuition in
mind, we are going to study the structure of the collection of weight functions
from the following two viewpoints.

The first question is when is a weight function naturally associated with a
(power of) metric? The phrase “naturally associated” is rather vague. The most
strict usage would mean that there exist a metric d and « such that p(p) =
diam(Xp,d)®. This is, however, too restrictive. As a reasonable alternative,
we will define the “visual pre-metric” 8%, from the weight function p, where
M > 1 is a parameter, in Section 5. If a metric d is bi-Lipschitz equivalent to
the visual pre-metric d%,, we consider that the weight function p is “naturally
associated with” (formally, we use the terminology “adapted to” instead of
“naturally associated with” in the following sections) the metric d. The notion
of visual metric has appeared as natural metrics on the boundaries of Gromov-
hyperbolic spaces. See [7] for example. The notion of visual pre-metric is a
kind of generalization of visual metric. We will give more detailed accounts
in Section 5. Anyway, in Theorem 6.11, we are going to give conditions for a
weight function to be adapted to a power of a metric.

The second question is about the relationship of various relations between
weight functions, metrics and measures. For examples, Ahlfors regularity and
the volume property are relations between measures and metrics. A measure
1 is Ahlfors a-regular with respect to a metric d for some a > 0 if and only if
there exist ¢q, co > 0 such that

c1r® < pu(Ba(w,r)) < car,

where By(x,7) = {yly € X,d(z,y) <r}, for any r € (0,diam(X,d)] and x € X.
See Definition 9.3 for the precise definition of the volume doubling property. On
the other hand, bi-Lipschitz equivalence and quasisymmetry are (equivalence)
relations between two metrics. (The precise definitions of bi-Lipschitz equiv-
alence and quasisymmetry are given in Definitions 7.9 and 12.1 respectively.)
About those relations, two of our claims in this paper are

bi-Lipschitz = Ahlfors regularity = being adapted (1.7)
and
the volume doubling property = quasisymmetry. (1.8)

in the framework of weight functions. To illustrate the first claim more explicitly,
let us introduce the notion of bi-Lipschitz equivalence of weight functions. Two
weight functions p; and po are said to be bi-Lipschitz equivalent if and only if
there exist ¢q,co > 0 such that

c1p1(p) < p2(p) < cap1(p)



for any p € T. Now the first claim can be explained as follows: consider
two weight functions p; and po, if both p; and ps come from metrics d; and
ds respectively, then bi-Lipschitz equivalence of p; and po is the bi-Lipschitz
equivalence of metrics d; and ds, if p; comes from a metric d and py comes
from a measure p, then it is Ahlfors regularity of p with respect to d, and if
p1 comes from a metric d, then p; and py are bi-Lipschitz equivalent if and
only if ps is adapted to the metric d. One can find the precise statement in
Theorem 2.11 in the case of partitions of S?. The second claim is rationalized
in the same manner. See Theorem 2.12 for the exact statement in the case of
S? for example.

One of the ideas behind this study is to approximate a space by a series
of graphs. It is well-known that such an idea has already been explored. For
example, if a compact metric space is doubling and uniformly perfect, Bourdon
and Pajot [4] have constructed a infinite graph whose hyperbolic boundary is
homeomorphic to the original compact metric space. Their method is first con-
struct a series of coverings of the space, which is a counterpart of our partition,
and construct a graph from the series. In [13], Carrasco Piaggio has utilized this
series of coverings to study Ahlfors regular conformal dimension of the space.
His notion of “relative radius” essentially corresponds to our weight function,
although the objectives of his study and ours are not the same. In our case,
a counterpart of Bourdin-Pajot’s graph can be obtained by adding “horizontal
edges” to the tree T associated with a partition. “Horizontal edges” represent
the intersections of X, and X, in the same level of the division. Specifically,
the collection of horizontal edges is given by

B = {(p,q)|Ip,q € T,p # q,p and g have the same graph distance from ¢,
X, N Xy # 0}

See Figure 2. Adding B" to the original edges of the tree T, we obtain a new
graph T7" which will be called the resolution graph. Since we do not assume
doubling property of the space in general, 7+" many not be Gromov-hyperbolic
but if this is the case, the original space is homeomorphic to the hyperbolic
boundary of T". See the discussion after Proposition 4.8 for details. In other
words, the original space is the hyperbolic filling of T*". (See [3] for the notion
of hyperbolic fillings.) In this point of view, our study in this paper may be
thought of as a theory of weighted hyperbolic fillings.

The organization of this paper is as follows. In Section 2, we give a summary
of the main results of this paper in the case of the 2 dimensional sphere as a
showcase of the full theory. In Section 3, we give basic definitions and notations
on trees. Section 4 is devoted to the introduction of partitions and related
notions. In Section 5, we define the notion of weight function and the associated
“visual pre-metric”. We study our first question mentioned above, namely, when
a weight function is naturally associated with a (power of) metric in Section 6.
Section 7 is devoted to justifying the statement (1.7). In Sections 8, 9, 11 and
12, we will study the rationalized version of (1.8) as mathematical statement.
In particular, in Section 9, we introduce the key notion of being “gentle”. In



Section 10, we apply our general theory to certain class of subsets of the square
and obtain concrete (counter) examples. Finally in Section 14, we present the
whereabouts of definitions, notations and conditions appearing in this paper for
reader’s sake.

2 Summary of the main results; the case of 2-
dim. sphere

In this section, we summarize our main results in this paper in the case of 2-
dimensional sphere S? (or the Riemann sphere in other words), which is denoted
by X in what follows. We think that X is equipped with the standard geodesic
metric dg on the sphere. Set

U = {A|A C X, closed, int(A) # (), DA is homeomorphic to the circle S*.}

First we divide X as a union of finite number of subsets X1, ..., Xy, belonging
to U. We assume that X; N X; = 0X; N0X; if i # j. Next we divide each X;
as a union of finite number of its subsets X1, Xio,...,X;n, € U in the same

manner as before. We repeat this process, i.e. for any ¢; ..., Xiy. 4, €U,

Xil...ik = U Xil«nik,j (21)

J=1,....Nij . .iy,

and if 41. .. # j1.. .jk, then
Xl’Lk N Xj1~~-jk = aX'LlUc N anlu-jk' (2'2)
Note that (2.1) is a counterpart of (1.3). Next define
T, = {21 . Zk‘lj S {17 - 7N74.1...'L-]'71} for any j =1,..., k — 1}

for any k= 0,1, ..., where T} is a one point set {¢}. Let T' = Ug>¢Ty. Then T
is naturally though of as a (non-directed) tree where the edges are in the form
of (i1...1g, 1. . ixik+1). We regard the correspondence w € T to X, € U as a
map from T to U, which is denoted by X. Namely, X(w) = X,, for any w € T
Note that X(¢) = X. Define

Y ={iyig...|i1...ix € Ty for any k > 0},

which is the “boundary” of the infinite tree T
Furthermore we assume that for any i1i5... € 2

(N Xii
k=1,2,...

is a single point, which is denoted by o (iyiz...). Note that o is a map from ¥
to X. This assumption corresponds to (1.4) and hence the map X is a partition



of X parametrized by the tree T'. Since X = Uyer, X for any k& > 0, this map
o is surjective.

In [2, Chapter 5], the authors have constructed “cell decomposition” asso-
ciated with an expanding Thurston map. This “cell decomposition” is, in fact,
an example of a partition formulated above.

Throughout this section, for simplicity, we assume the following conditions
(SF) and (TH), where (SF) is called strong finiteness in Definition 4.4 and (TH)
is the condition (TH1) appearing in Theorem 8.3:

(SF)

(o™ (@) < +o0, (2.3)
where #(A) is the number of elements in a set A.
(TH) There exists m > 1 such that for any w = i;...4, € T, there exists
V="11-Ininti---Intm € T such that X, C int(X,).

The main purpose of this paper is to describe geometry and measures of X
from given weight assigned to each piece X, of the partition X.

Definition 2.1. A map g: T — (0,1] is called a weight function if and only if
it satisfies the following conditions (G1), (G2) and (G3).

(G1) g(¢) =1
(G2) g(iy...ik) > g(i1.. ixigs1) for any 4q...0x € T and 4. . .igig1 € T
(G3)

lim sup g(w) = 0.

m—=0,eT,

Moreover, in this section, we assume that following conditions (SpE) and (SbE),
which represents “super-exponential” and “sub-exponential” respectively:
(SpE) There exists A € (0, 1) such that

g(il. . .ikikJrl) > ’yg(il. . Zk)

for any iy...ip € T and 4. . .ixigr1 € T.
(SbE) There exist p € N and 7 € (0,1) such that

g(il. . .ikik+1. . .ik+p) S ’}/g(il. . ’Lk)

for any i1...9, € T and @y.. igigy1. . igq4p €T
Set

G.(T)={glg : T € (0,1] is a weight function satisfying (SpE) and (SbE).}.
Metrics and measures on X naturally have associated weight functions.

Definition 2.2. Set

D(X) = {d|d is a metric on X which produces the original topology of X,
and diam(X,d) = 1}



and

M(X) = {u|p is a Borel regular probability measure on X, p({z}) =0
for any € T and p(O) > 0 for any non-empty open set O C X'}
For any d € D(X), define g4 : T — (0,1] by ga(é1...ix) = diam(X;, 4, ,d) and
for any 1 € M(X), define g, : T — (0,1] by g,(w) = u(X,,) for any w € T.
From Proposition 5.5, we have the following fact.

Proposition 2.3. If d € D(X) and p € M(X), then gq and g, are weight
functions.

So a metric d € D(X) has associated weight function gg. How about the
converse direction, i.e. is there a metric whose associated weight function is
given weight function g? To make this question more rigorous and flexible,
we define the notion of “visual pre-metric” §%,(-,-) associated with a weight
function g.

Definition 2.4. Let g € G.(T). Define
Ag = {i1. . .ik|i1. LA € T,g(il. . ~ik—1) >85> g(il. . Zk)}

for any s € (0,1] and

89, (z,y) = inf{s|there exist w(1),...,w(M + 1) € AJ such that
€ Kyay,y € Kyugry and Xy N Xy(j41) # 0 forany j=1,..., M}

for any z,y € X. A weight function is called uniformly finite if and only if

sup  #{vjwe A, X, NX, #0}) < 4oo.
s€(0,1],weA?

Although 8%, (x,y) > 0, §%,(x,y) = 0 if and only if z = y and §%,(z,y) =
89,(y,x), the quantity %, does not satisfy the triangle inequality in general.
The visual pre-metric 6%,(z,y) is a counterpart of the visual metric defined in
[2]. See Section 5 for details.

If the pre-metric 6%, (-, -) is bi-Lipschitz equivalent to a metric d, we consider
d as the metric which is naturally associated with the weight function g.

Definition 2.5. Let M > 1
(1) A metric d € D(X) is said to be M-adapted to a weight function g € G.(X)
if and only if there exist c1,co > 0 such that

crd(z,y) < 6%, (x,y) < cod(z,y)

for any z,y € X.

(2) A metric d is said to be M-adapted if and only if it is adapted to g4 and
said to be adapted if it is M-adapted for some M > 1.

(3) Define

Dae(X) ={d|d € D(X), ga € Ge(T) and d is adapted.}
Me(X) = {p|p € M(X), g4 € Ge(T)}



The value M really matters. See Example 10.9 for an example.
The following definition is used to describe an equivalent condition for the
existence of an adapted metric in Theorem 2.7.

Definition 2.6. Let g € G.(T). For w,v € T, (w,v) said to be M-separated in
A9 if and only if whenever w(1),...,w(k) € A and X, N Xyq) # 0, Xy N
Xy # 0 and Xy N Xyy(ip1) # 0 for any i = 1,...,k — 1, it follows that k > M.

The following theorem is a spacial case of Theorem 6.11.

Theorem 2.7. Let g € G.(X) and let M > 1. There exists a metric d € D(X)
which is M-adapted to g* for some a > 0 if and only if the following condition
(EV)m is satisfied;

(EV)m There exists v € (0,1) such that if (w,v) is M-separated in AY, then it
is (M + 1)-separated in AJ,.

If there exists r € (0,1) such that g(iy ...4,) = r™ for any 1. . .i,, € T, then
the metric d which is 1-adapted to g® is (bi-Lipschitz equivalent to) the visual
metric in [2, Chapter 8]. More precisely, let m¢c(x,y) be the number defined
in [2, Section 8.1]. Under the condition (EV);, there exist ¢1,c2 > 0 such that

109 (z,y) < M@V < 69 (2,y)

for any z,y € X. Indeed, a counterpart of (EV); has been shown in the proof
of [2, Lemma 8.6] as a step to prove the existence of a visual metric. In this
sense, a metric adapted to a weight function is a generalization of the notion of
visual metric.

Next, we define two equivalent relations I~ and o on the collection of

exponential weight functions. Those equivalent relations will be revealed to
have different aliases according to classes of weight functions.

Definition 2.8. For g, h € G.(T), g and h are said to be bi-Lipschitz equivalent
if and only if there exists c1, co > 0 such that

crg(w) < h(w) < cag(w).

for any w € T. We write g o h if g and h are bi-Lipschitz equivalent.

For g,h € G.(T), h is said to be gentle to ¢ if and only there exists v > 0 such
that if w,v € A and X, N X, # 0, then h(w) < vh(v). We write g & hif his

gentle to g.
It is immediate to see that o is an equivalence relation. On the other hand,

that fact that o is an equivalence relation is not quite obvious and going to be

shown in Theorem 11.2.

Proposition 2.9. The relations ~ and o are equivalent relations in Ge(T).

M. ifg ~ h, th ~ h.
oreover, if g o b theng ~



Some of the properties of a weight function is invariant under the equivalence
relation o 28 follows.

Proposition 2.10. (1) Being uniformly finite is invariant under the equiva-
lence relation o i.e. if g € Ge(T) is uniformly finite, h € G.(T) and g & h,

then h is uniformly finite.
(2) The condition (EV)y appearing in Theorem 2.7 is invariant under the
equivalence relation o

The statements (1) and (2) of the above theorem are the special cases of
Theorem 11.7 and Theorem 11.9 respectively.

The next theorem shows that bi-Lipschitz equivalence of weight functions
has several aliases according as types of involved weight functions

Theorem 2.11. (1) Ford,p € Da(X), g4 9 if and only if d and g are

bi-Lipschitz equivalent as metrics.
(2) For p,v e M(X), g, ~ 9 if and only if there exist c1,co > 0 such that

cip(A) < v(A) < cou(A)

for any Borel set A C X.

(3) For g€ Ge(X) andd € Dy (X), g o~ 9d if and only if d is M -adapted to
g for some M > 1.

(4) Ford € Dy (X) and p € M(X), (ga)* ~ 9u and gq is uniformly finite if

and only if p is Ahlfors a-reqular with respect to d for some a > 0, i.e. there
exist c¢1,co > 0 such that

c1r® < u(By(z,r)) < cor®
foranyr >0 and x € X.

The statements (1), (2), (3) and (4) of the above theorem follows from
Corollary 7.10, Theorem 7.4, Corollary 7.11 and Theorem 7.21 respectively.

The gentle equivalence relation is called “quasisymmetry” between metrics
and ”volume doubling” property in case of metrics versus measures.

Theorem 2.12. (1) Let d € Dy (X) and p € M(X). Then g, € G(T),
9d o, In and gq is uniformly finite if and only if p has the volume doubling

property with respect to d, i.e. there exists C > 0 such that
u(Ba(z,2r)) < Cu(Ba(z,r))
foranyr >0 and x € X.

(2) Ford € Da(X) and p € D(X), d is quasisymmetric with respect to p if
and only if p € Da(X) and g4 & 9

10



The statement (1) of the above theorem follows from Proposition 9.5 and
Theorem 9.8-(2). Note that the assumption of g4 being thick is satisfied since
the condition (TH) implies every exponential weight function is thick by Theo-
rem 8.3. The statement (2) is immediate from Corollary 12.7.

In [2, Section 17], they have shown that the visual metric is quasisymmetric
to the chordal metric which is bi-Lipschitz equivalent to the standard geodesic
metric dg on S? in the case of certain class of expanding Thurston maps. In
view of their proof, they have essentially shown a counterpart of the condition
given in Theorem 2.12-(2).

3 Tree with a reference point

In this section, we review basic notions and notations on a tree with a reference
point.

Definition 3.1. Let T be a countably infinite set and let A : T x T — {0,1}
which satisfies A(w,v) = A(v, w) and A(w,w) = 0 for any w,v € T. We call the
pair (7, .A) a (non-directed) graph with the vertices T' and the adjacent matrix
A.

(1) Define V(w) = {v|A(w,v) = 1} and call it the neighborhood of w. (T, .A)
is said to be locally finite if V' (w) is a finite set for any w € T

(2) For wo,...,w, € T, (wp,w1,...,wy,) is called a path between wy and w,
if A(w;,wij41) =1 for any i =0,1,...n—1. A path (wg,ws,...,w,) is called
simple if and only if w; # w; for any ¢, with 0 <4 < j <n and (i,5) # (0,n).
(3) (T,A) is called a (non-directed) tree if and only if there exists a unique
simple path between w and v for any w,v € T with w # v. For a tree (T, .A), the
unique simple path between two vertices w and v is called the geodesic between
w and v and denoted by wv. We write v € wv if wo = (wp, w1, ...,w,) and
u = w; for some 1.

In this paper, we always fix a point in a tree as the root of the tree and call
the point the reference point.

Definition 3.2. Let (7,.A) be a tree and let ¢ € T. The triple (T, A, ¢) is
called a tree with a reference point ¢.
(1) Define 7:T — T by

{wnl if w# ¢ and ¢y = (wo, W1, ..., Wp_1,Wy),
m(w) =

10) ifw=4¢
and set S(w) = V(w)\{r(w)}. o
(2) Forw € T, we define |w| = n if and only if pw = (wg, w1, ..., w,). Moreover,

we set (T, = {w|w € T, |w| = m}.

(4) An infinite sequence of vertices (wg,ws,...) is called an infinite geodesic
ray originated from wy if and only if (wo, ..., w,) = Wew, for any n > 0. Two
infinite geodesic rays (wo,ws,...) and (vg,v1,...) are equivalent if and only if

11



there exists k € Z such that w,, = v, for sufficiently large n. An equivalent
class of infinite geodesic rays is called an end of T. We use X to denote the
collection of ends of T'.

(5) Define X% as the collection of infinite geodesic rays originated from w € T.
For any v € T, ¥ is defined as the collection of elements of ¥ passing through
v, namely

Y ={(w,wr,..)|(w,wy,...) € ¥ w, = v for some n > 1}

Remark. Strictly, the notations like 7 and | - | should be written as 7(74#) and
|- |(7,.4,) Tespectively. In fact, if we will need to specify the tree in question, we
are going to use such explicit notations.

One of the typical exapmple of a tree is the infinite binary tree. In the next
example, we present a class of trees where #(S(w)) is independent of w € T.

Example 3.3. Let N > 2 be an integer. Let TV = {1,...,N}™ for m > 0.
(We let TéN) = {¢}, where ¢ represents an empty sequence.) We customar-
ily write (i1,...,0m) € Ty(nN) as i1 ...4m. Define TW) = UmZOTan). Define
7 TW) — TW) by 7(iy .. igpy1) = i1 .. .5 for m > 0 and 7(¢) = ¢. Further-
more, define

AWN) —
we 0 otherwise.

{1 if w # v, and either 7(w) = v or 7(v) = w,

Then (T™W), AN) | ¢) is a locally finite tree with a reference point ¢. In partic-
ular, (T®, A®)| $) is called the infinite binary tree. In this case, S(iy ...im) =
{il Ce im’im+1|im+1 S {1, ey N}}

It is easy to see that for any infinite geodesic ray (wg,ws,...), there exists
a geodesic ray originated from ¢ that is equivalent to (wg,ws,...). In fact,
adding a geodesic ¢wg to (wg, ws,...) and removing a loop, one can obtain the
infinite geodesic ray having required property. This fact shows the following
proposition.

Proposition 3.4. There exists a natural bijective map from X to X9,

Through this map, we always identify the collection of ends ¥ and the col-
lection of infinite geodesic rays originated from ¢, £¢.

Hereafter in this paper, we always assume that (7', .A) is a locally finite tree
and fix a reference point ¢ € T. Accordingly, we omit ¢ in the notations and
use ¥, and ¥, in place of £ and 3¢ respectively.

Example 3.5. Let N > 2 be an integer. In the case of (T™), AN ¢) de-
fined in Example 3.3, the collection of the ends ¥ is (V) = {1,... N}V =
{i14283...,]i; € {1,...,N} for any m € N}. With the natural product topol-
ogy, 2) is a Cantor set, i.e. perfect and totally disconnected.
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Definition 3.6. Let (T, A, ¢) be a locally finite tree with a reference point ¢.
(1) For w = (wp,w1,...) € X, we define [w],, by [w]m = w,y, for any m > 0.

Moreover, let w € T If ¢pw = (wo, w1, ..., Ww)y|), then for any 0 < m < |w|, we
define [w]y, = wy,. For w € T, we define

Ty = {vlv € T, |v| > |w|, and [v] ) = w}

(2) For w,v € T, we define the confluence of w and v, w A v, by

W AUV = Wmax{i|i=0,...,|w|,[w];=[v]; }

(3) For w,7 € X, if w # 7, we define the confluence of w and 7, w A 7, by
WAT = [Wlmax ml[w]m=lr]m}
(4) For w,7 € X, we define p,(w,7) > 0 by

2wl if w7,
pu(w,T) =

0 fw=r.

It is easy to see that p is a metric on ¥ and {X,],, }m>0 is a fundamental
system of neighborhood of w € ¥. Moreover, {3,},cr is a countable base of
open sets. About this base of open sets, we have the following property.

Lemma 3.7. Let (T, A, ¢) be a locally finite tree with a reference point ¢. Then
for any w,v € T, £, NE, =0 if and only if jw Av| < |w| and |w Av| < |v].
Furthermore, ¥, N Xy, # 0 if and only if ¥, C Xy or B, C Xy,

Proof. If |w Av| = |w|, then w = w A v and hence w € ¢v. Therefore 3, C %,
So, ¥, N X, # 0. Conversely, if w € ¥, N 3, then there exist m,n > 0 such
that w = [w],, and v = [W],,. It follows that

w if m <n,
wAv= .
v if m <n.

Hence we see that |w A v| = |w| or |w A v| = |u]. O

With the help to the above proposition, we may easily verify the following
well-known fact. The proof is standard and left to the readers.

Proposition 3.8. If (T, A, ¢) is a locally finite tree with a reference point ¢.
Then pi(-,-) is a metric on ¥ and (X, p) is compact and totally disconnected.
Moreover, if #(S(w)) > 2 for any w € T, then (X, p) is perfect.

By the above proposition, if #(S(w)) > 2 for any w € T, then ¥ is (homeo-
morphic to) the Cantor set.
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4 Partition

In this section, we exactly formulate the notion of a partition introduced in
Section 1. A partition is a map from a tree to the collection of nonempty
compact subsets of a compact metrizable space and required to preserve natural
hierarchical structure of the tree. Consequently, a partition induces a surjective
map from the Cantor set, i.e. the collection of ends of the tree, to the compact
metrizable space.

Throughout this section, 7 = (T, A, ¢) is a locally finite tree with a reference
point ¢.

Definition 4.1 (Partition). Let (X, Q) be a compact metrizable space, where
O is the collection of open sets, and let C(X, Q) be the collection of nonempty
compact subsets of X. If no confusion can occur, we write C(X) in place of
C(X,0).

(1) Amap K : T — C(X,0), where we customarily denote K (w) by K, for
simplicity, is called a partition of X parametrized by (T, A, ¢) if and only if it
satisfies the following conditions (P1) and (P2), which correspond to (1.3) and
(1.4) respectively.

(P1) K4 =X and for any w € T,

K, = U K,.
veS(w)

and K,, # K, for any v € S(w).

(P2) For any w € ¥, Nyy>0K[y),, is a single point.

(2) Let K : T — C(X,O) be a partition of X parametrized by (T, A, ¢). Define
O, and B,, for w € T' by

Ow = w\ ( U Kv) P
VE(T)|w) \{w}
By =Ky N ( U Kv>.

’UE(T)‘“,‘ \{w}

If O, # 0 for any w € T, then the partition K is called minimal.

(3) Let K : T — C(X,O) be a partition of X. Then (w(1),...,w(m)) € Ug>oT"
is called a K-chain (or chain for short if no confusion can occur) if and only
if Ky N Ky@g1) # 0 forany i = 1,...,m — 1. A K-chain (w(1),...,w(m))
is called a K-chain in A C T if w(i) € A for any ¢ = 1,...,m. For subsets
A, B C X, A K-chain (w(1),...,w(m)) is called a K-chain between A and B if
and only if ANK,,1) # 0 and BN K, () # 0. We use CH (A, B) to denote the
collection of K-chains between x and y. Moreover, we denote the collections of
K-chains in A between A and B by CH2 (A, B).

Remark. Since K,, # K, for any v € S(w) by the condition (P1), it follows that
#(S(w)) > 2 for any w € T and (X, O) has no isolated point.
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As is shown in Theorem 4.6, a partition can be modified so as to be minimal
by restricting it to a suitable subtree.

The next lemma is an assortment of direct consequences from the definition
of the partition.

Lemma 4.2. Let K : T — C(X,0) be a partition of X parametrized by
(T, A, 0).

(1) For anyw €T, O, is an open set. O, C O,, for any v € S(w).

(2) Ou,NO,=0ifw,veT and X, NE, = 0.

(3) If¥,N%, =0, then K,y N K, = By, N B,.

Proof. (1) Note that by (P1), X = Uye(r),, Kw. Hence

Ow = w\(UUG(T)‘w‘\{w}KU) = X\(UUE(T)\M\{“’}K'”)'

The rest of the statement is immediate from the property (P2).

(2) By Lemma 3.7, if u = w A v, then |u| < |w| and |u| < |v|. Let v’ = [w]y4+1
and let v" = [v]y41. Then w',v" € S(u) and w’ # v'. Since Oy C Ky \ Ky, it
follows that O, N O, = 0. Using (1), we see O, N O, = 0.

(3) This follows immediately by (1). O

The condition (P2) provides a natural map from the ends of the tree ¥ to
the space X.

Proposition 4.3. Let K : T — C(X,0) be a partition of X parametrized by
(T, A4,6).

(1) Forw € X, define o(w) as the single point Ny>0K|,y,,. Then o : ¥ — X is
continuous and surjective. Moreover. o(3,,) = K,, for any w € T.

(2) The partition K : T — C(X,O) is minimal if and only if K, is the closure
of Oy for any w € T. Moreover, if K : T — C(X,0) is minimal then O,
coincides with the interior of K,,.

Proof. (1) Note that K., = Uyesw)Ky. Henceif z € K., there exists v € S(w)
such that z € K,. Using this fact inductively, we see that, for any z € X, there
exists w € ¥ such that x € K|, for any m > 0. Since € Np>0K],y,,, (P2)
shows that o(w) = z. Hence w is surjective. At the same time, it follows that
0(Xy) = Ky. Let U be an open set in X. For any w € 0~ *(U), K|,},, C U for
sufficiently large m. Then X, € o~ '(U). This shows that ¢~!(U) is an open
set and hence o is continuous.

(2) Let O, be the closure of O,,. If K,, = O,, for any w € T, then O,, # ()
for any w € T and hence K : T — C(X,0) is minimal. Conversely, assume
that K : T — C(X, ) is minimal. By Lemma 4.2, 6[w]m i) 6[W]m+1 for any
w € ¥ and any m > 0. Hence {o(w)} = Nm>0K],, = Mm>00),, € Oy,
for any n > 0. This yields that o(3,) C O,. Since 0(3,,) = K., this implies
Oy = K.

Now if K is minimal, since O,, is open by Lemma 4.2-(1), it follows that O,, is
the interior of K. O
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Definition 4.4. A partition K : T — C(X, O) parametrized by a tree (T, A, ¢)
is called strongly finite if and only if

sup #(U_l(x)) < +o0,
zeX

where ¢ : ¥ — X is the map defined in Proposition 4.3-(1).
Example 4.5. Let (Y,d) be a complete metric space and let {Fy,...,Fy} be

collection of contractions from (Y, d) to itself, i.e. F; : Y — Y and

wp AEEEE)

r£YeY d(.i?, Z/)
forany ¢ = 1,..., N. Then it is well-known that there exists a unique nonempty
compact set X such that
= |J F@X).
i=1,..,N

See [8, Section 1.1] for a proof of this fact for example. X is called the self-
similar set associated with {F}, ..., Fx}. Let (T™), AN) #) be the tree defined
in Example 3.3. For any 41 ...9, € T, set F;, ;,, = F;, o...0F; and define
Ky = Fu(X). Then K : TW) — C(X) is a partition of K parametrized by
(TN, AN) | 4). See [8, Section 1.2]. The associated map from ¥ = {1,..., N}
to K is sometimes called the coding map. To determine if K is minimal or not
is known to be rather delicate issue. See [8, Theorem 1.3.8] for example.

Removing unnecessary vertices of the tree, we can always modify the original
partition and obtain a minimal one.

Theorem 4.6. Let K : T — C(X,0) be a partition of X parametrized by
(T, A, ). There exist T' CT and K' : T' — C(X, Q) such that (T', Al7/ 1) is
atree, p € T', K|, C K, for any w € T" and K|/ is a minimal partition of X
parametrized by (T, A’ ¢).

Proof. We define a sequence {T(™},,>o of subsets of T and {K&m)}weﬂm)

inductively as follows. First let 7(® = T and K = K,, for any w € T©.
Suppose we have defined T("™). Define

Q(m)z{wweT(m),ng U Kv}.

VE(T) | NT ™) w#w
If QU™ =@, then set T+t = T(m) and KD = g for any w € T+,
Otherwise choose w(™ € Q(™ so that |w(™| attains the minimum of {|v| : v €
QU™}. Then define

TMHD = TOINT oy

and (
K(m+1) _ U’UeTwﬂ(T)w(m) ﬂT(m+1)K1)m) ]f ’U}(m) c TU”
Y KM otherwise.
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In this way, for any m > 0 and w € T("™),

KM= |J KM (4.4)
veS(w)NT(m)

Note that Q™+ ¢ QU\{w(™}. Since (T), is a finite set for all n > 0,
it follow that (T), N Q) = () and (T™), stays the same for sufficiently
large m. Hence |w(™)| — oo as m — oo and (T),, N TU™ does not depend
on m for sufficiently large m. Therefore, letting 77 = ﬂmle(m), we see that

(T", Al «7) is alocally finite tree, ¢ € T'. Moreover, note that KD ¢ glm)
for any w € T’. Hence if
K- ()

m>0
for any w € T, then K is nonempty. By (4.4), it follows that

K,= U K

veT'NS (w)

for any w € T'. Now, the map K’ : T" — C(X,O) given by K'(w) = K/, is a
minimal partition of X parametrized by (", Al <77, @). O

A partition K : T'— C(X, O) induces natural graph structure on 7. In the
rest of this section, we show that T' can be regarded as the hyperbolic filling of
X if the induced graph structure is hyperbolic. See [3], for example, about the
notion of hyperbolic fillings.

Definition 4.7. Let K : T — C(X, O) be a partition. Then define
B,}; = {(w,v)|w,v € (T)m, Ky N K, # 0}

and
B"= | B,

m>0

The symbol “h” in the notation B" and B" represents the word “horizontal”.
Moreover we define

B(w,v) =

1 if A(w,v) =1 or (w,v) € B",
0 otherwise.

The graph (T, B) is called the resolution graph of X associated with the partition
K:T — C(X,0). We use di7)(-,-) to denote the shortest path metric, i.e.
d(r,)(w,v) = min{n|there exists (w(1),...,w(n +1)) € (B)"
B(w(i),w(i+1))=1foranyi=1,...,n}
Note that if (¢, w(1),w(2),...) is an infinite geodesic ray in (T, B) associated

with d(r gy starting from ¢, then (¢, w(1),w(2),...) = (¢, [w]1, [w]2,...) for some
wE X.
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Proposition 4.8. Letw,7 € . Ifsup,,>1 d(r,g)([W]n, [T]n) < 400, then o(w) =
o(7).

By this proposition, if the resolution graph (T, B) is hyperbolic in the sense
of Gromov, then X is the hyperbolic boundary of (T, B). In other words, (T, )
is the hyperbolic filling of X.

In fact, in the case of self-similar sets introduced in Example 4.5, Lau and
Wang have shown that the resolution graph (7', B) is hyperbolic if the self-similar
set satisfies the open set condition in [12].

5 Weight function and associated ‘“visual pre-
metric”

Throughout this section, (T, A, ¢) is a locally finite tree with a reference point
¢, (X,0) is a compact metrizable topological space and K : T — C(X,0) is a
partition of X parametrized by (7T, A, ¢).

In this section, we introduce the notion of a weight function, which assigns
each vertex of the Tree T a “size” or “weight”. Then, through a partition,
we will induce a kind of “balls” and “distances” to a compact metric space
associated with the weight function.

Definition 5.1 (Weight function). A function g : T — (0, 1] is called a weight
function if and only if it satisfies the following conditions (G1), (G2) and (G3):
(G1) g(¢) =1

(G2) For any w e T, g(n(w)) > g(w)
(G3) im0 SUPye(T),, 9(w) = 0.
We denote the collection of all the weight functions by G(T'). Let g be a weight
function. We define

A ={wlw € T, g(r(w)) > s > g(w)}

for any s € (0,1]. {Af}sc(0,1) is called the scale associated with g. For s > 1,
we define A = {¢}.

Remark. To be exact, one should use G(T', A, ¢) rather than G(T) as the notation
for the collection of all the weight functions because the notion of weight function
apparently depends not only on the set T but also the structure of T as a tree.
We use, however, G(T') for simplicity as long as no confusion may occur.

Remark. In the case of the partitions associated with a self-similar set appearing
in Example 4.5, the counterpart of weight functions was called gauge functions
in [9]. Also {A%}o<s<1 was called the scale associated with the gauge function
g.

Given a weight function g, we consider g(w) as a virtual “size” or “diameter”
of ¥, for each w € T. The set AY is the collection of subsets £,,’s whose sizes
are approximately s.
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Proposition 5.2. Suppose that g : T — (0,1] satisfies (G1) and (G2). ¢ is a
weight function if and only if
lim g([w]m) =0 (5.5)

m—0o0
for any w € 3.

Proof. 1If g is a weight function, i.e. (G3) holds, then (5.5) is immediate.
Suppose that (G3) does not hold, i.e. there exists € > 0 such that

sup g(w) > ¢ (5.6)
wE(T)m

for any m > 0. Define Z = {wjw € T,g(w) > ¢} and Z,, = (T)m N Z. By
(5.6), Z,, # 0 for any m > 0. Since w(w) € Z for any w € Z, if Z,,,, =
" ="™(Z,), where 7F is the k-th iteration of 7 for k € N, for n > m, then
Zmn # 0 and Z,, , O Zpypt for any n > m. Set Z), = Mp>mZm,n. Since
(T)m is a finite set and so is Zy, ,, we see that Z* # 0 and n(Z},,,) = Z,
for any m > 0. Note that Z§ = {¢}. Inductively, we may construct a sequence
(¢, w(1),w(2),...) satisfying m(w(m + 1)) = w(m) and w(m) € Z}, for any
m > 0. Set w = (¢,w(l),w(2),...). Then w € ¥ and g([w]m) > € for any
m > 0. This contradicts to (5.5). O

Proposition 5.3. Let g : T — (0,1] be a weight function and let s € (0,1].

Then
U Zw=x (5.7)

and if w,v € AY and w # v, then
YN, =0.

Proof. For any w = (wo,ws,...) € X, {g(w;)}i=01,... is monotonically non-
increasing sequence converging to 0 as ¢ — oco. Hence there exists a unique
m > 0 such that g(wm—1) > s > g(wn,). Therefore, there exists a unique
m > 0 such that [w], € AY. Now (5.7) is immediate. Assume w,v € A9 and
Y, Ny # 0. Choose w = (wp,wr,...) € 3y, NX,,. Then there exist m,n > 0
such that [w]m, = wy, = w and [w], = w, = v. By the above fact, we have
m = n and hence w = v. O

Introducing a partition K : T — C(X, ), one can define weight functions
naturally associated with metrics and measures as follows.

Notation. Let d be a metric on X. We define the diameter of a subset A C X
with respect to d, diam(A, d) by diam(A, d) = sup{d(z,y)|z,y € A}. Moreover,
for z € X and r > 0, we set By(z,r) = {yly € X,d(z,y) < r}.
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Definition 5.4. (1) Define

D(X,0) = {d|d is a metric on X inducing the topology O and
diam(X,d) = 1}

For d € D(X, 0), define g4 : T — (0, 1] by gq(w) = diam (K, d) for any w € T
(2) Define

Mp(X,0) = {u|p is a Radon probability measure on (X, O)
satisfying p({z}) =0 for any = € X and u(K,) > 0 for any w € T'}

For p € Mp(X,0), define g, : T — (0,1] be g,(w) = pu(kK,) for any w € T

The condition diam(X,d) = 1 in the definition of D(X, ) is only for the
purpose of normalization. Note that since (X, Q) is compact, if a metric d on
X induces the topology O, then diam(X,d) < +oo.

Proposition 5.5. (1) For any d € D(X,0), gq is a weight function.
(2) For any p € Mp(X,0), g, is a weight function.

Proof. (1) The properties (G1) and (G2) are immediate from the definition of
gq- Suppose there exists w € 3 such that

Jin_galln) >0 65)
Let € be the above limit. Since gq4([w]n) = diam(K|,, ,d) > €, there exist
T, Ym € Ko, such that d(zm,,y,) > €. Note that Ky, 2 K,.,, and
hence xp,yn € K),, if n > m. Since X is compact, there exist subsequences
{zn, }i>1, {yn, }i>1 converging to x and y as i — oo respectively. It follows that
T,y € Nm>0K],, and d(z,y) > € > 0. This contradicts to (P2). Thus we have
shown (5.5). By Proposition 5.2, g4 is a weight function. (2) As in the case of
metrics, (G1) and (G2) are immediate. Let w € ¥. Then Npp>0Ky,, = {o(w)}.
Therefore, g, ([w]m) = p(Ky,,) = 0 as m — oo. Hence we verify (5.5). Thus
by Proposition 5.2, g, is a weight function. O

The weight function g4 and g, are called the weight functions associated
with d and u respectively. Although the maps d — g4 and u — g, are not
injective at all, we sometimes abuse notations and use d and p to denote g4 and
gu Tespectively.

Through a partition we introduce the notion of “balls” of a compact metric
space associated with a weight function.

Definition 5.6. Let g : T — (0, 1] be a weight function.
(1) Fors e (0,1,w e A9, M >0 and z € X, we define

Ay (w) = {v|v € AJ, there exists a K-chain (w(1),...,w(k)) in A
such that w(l) = w, w(k) =vand k < M + 1}

20



and

AS (@) = U AZ py (w).
wEA? and €K,

For x € X, s € (0,1] and M > 0, define

Ui (x,s) = U K.

wGAg,M(m)
We let U, (z,s) = X if s > 1.

The family {U3, (z, s) }s>0 is a fundamental system of neighborhood of z € X
as is shown in Proposition 5.7.
Note that

Alo(w) ={w} and AL, (w) = {vv € AL, Ky N Ky # 0}
for any w € AJ and

Al o(x) ={wlw € AJ,z € K,,} and Uf(z,s) = U Ky,

w:weAd xEK,,

for any x € T'. Moreover,
Ui (z,s) = {yly € X, there exists (w(1),...,w(M +1)) € CH?(:Z (z,y).}

Proposition 5.7. Let K be a partition of X parametrized by (T, A, ¢) and let
g:T — (0,1] be a weight function. For any s € (0,1] and any z € X, U§(z,s)
is a neighborhood of x. Furthermore, {U}(x,5)}sc(0,1] s a fundamental system
of meighborhood of x for any x € X.

Proof. Let d be a metric on X giving the original topology of (X, Q). Assume
that for any r > 0, there exists y € By(z,r) such that y ¢ UJ(x,s). Then
there exists a sequence {,},>1 C X such that z, — z and z,, ¢ U§(x,s) for
any n > 1. Since AY is a finite set, there exists w € A, which includes infinite
members of {x,},>1. By the closedness of K, it follows that z € K, and
z, € Ky, C U§(z,s). This contradiction shows that U (z, s) contains By(z,r)
for some 7 > 0.

Next note min,cps |w| — o0 as s | 0. This along with that fact that gq
is a weight function implies that max,cxs diam(Ky,d) — 0 as s | 0. Set
ps = max,ep9 diam(K,,d). Then diam(Uy,(z,s),d) < (M + 1)ps — 0 as
s | 0. This implies that Nsc(o,11U5;(x,s) = {x}. Thus we have shown that
{U3 (@, 5)}sec(0,1) 1s a fundamental system of neighborhoods of . O

We regard Uy, (z, s) as a virtual “ball’ of radius s and center z. In fact, there
exists a kind of “pre-metric” 67, : X x X — [0,00) such that §%,(z,y) > 0 if
and only if z # y, §%,(x,y) = §%,(y, x) and

Ui (2, s) = {05, (z,y) < s} (5.9)

As is seen in the next section, however, the pre-metric 6%, does not satisfy the
triangle inequality in general.
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Definition 5.8. Let M > 0. Define §%,(z,y) for z,y € X by
59, (,y) = int{s]s € (0, 1],y € Uz, 5)}.

The pre-metric §9, can be thought of as a counterpart of the “visual metric”
studied in [2]. Indeed, if there exists A € (0,1) such that g(w) = Al*! for any
w € T, then

89, (2,y) = Ao,

where
na (x,y) = max{n|there exists a chain (w(1),...,w(M +1)) € C’Hg)" (x,9)}.
Proposition 5.9. For any M >0 and any z,y € X,
8%, (z,y) = min{s|s € (0,1],y € U§,(x, s)}.
In particular, (5.9) holds for any M >0 and s € (0, 1].

Proof. The property (G3) implies that for any s, € (0, 1], there exists n > 0 such
that Us>s, A C UY _o(T)m. Hence {(w(l),...,w(M + 1))|w(i) € Us>s, A9} is

finite. Let s, = d9,(z,y). Then there exist a sequence {S;,}m>1 C [s,1]
and (wp,(1),...,wn(M + 1)) € (A2 )M such that limy,—oc Sm = s, and
(wm(1),...,wn(M + 1)) is a chain between = and y for any m > 1. Since

{(w),...,w(M+1))|w(i) € Us>s, A} is finite, there exists (w. (1), ..., w.(M+
1)) such that (w«(1),...,we(M + 1)) = (W (1),...,wn(M + 1)) for infinitely
many m. For such m, we have g(m(w.(2))) > sm > g(wi(4)) for any i =
1,...,M +1. This implies that w, (i) € AJ_for any i =1,..., M +1 and hence
y € U3;(z, s«). Thus we have shown (1).

O

6 Metrics adapted to weight function

In this section, we consider the first question mentioned in the introduction,
which is when a weight function is naturally associated with a metric. Our
answer will be given in Theorem 6.11.

The purpose of the next definition is to clarify when the virtual balls U3, (z, s)
induced by a weight function g can be though of as real “balls” derived from a
metric.

Definition 6.1. Let M > 0. A metric d € (X, ) is said to be M-adapted to
g if and only if there exist ay, @y > 0 such that

Ud(z,aqr) C By(z,r) C U (2, aar)

for any x € X and any r > 0. d is said to be adapted to g if and only if d is
M-adapted to g for some M > 0.
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Now the exact meaning of “when a weight function is naturally associated
with a metric” is when there is a metric d which is adapted to given weight
function g. The number M really makes a difference in the above definition.
Namely, in Example 10.9, we construct an example where a weight function
does not have any 1-adapted metric but has 2-adapted metric.

By (5.9), a metric d € D(X, O) is M-adapted to a weight function g if and
only if there exist ¢q, co > 0 such that

185, (z,y) < d(z,y) < 269, (x,y) (6.1)

for any x,y € X. By this equivalence, we may think of a metric adapted to a
weight function as a “visual metric” associated with the weight function.

If a metric d is M-adapted to given weight function g, then we think of the
virtual balls U, (x, s) as the real balls associated with the metric d.

There is another “pre-metric” associated with a weight function.

Definition 6.2. Let M > 0. Define DY, (z,y) for z,y € X by

k
D (e,y) = inf { 3 g(w(@)[1 <k < M +1,(w(1)..... w(k) € CHx(r,9)}

It is easy to see that D,(z,y) > 0, D$,(z,y) = 0 if and only if z = y and
DY, (xz,y) = DY,(y,x). The pre-metric DY, is equivalent to the other one, §%,
as follows.

Proposition 6.3. For any M >0 and any z,y € X,
8 (x,y) < DYy (z,y) < (M +1)8%, (2, y).

Proof. Set s, = 0%,(x,y). Due to Proposition 5.9, it follows that there exists
a chain (w(1),...,w(M + 1)) between x and y such that w(i) € AJ_for any
t=1,...,M + 1. Then

M+1

D () < Y g(w(i)) < (M +1)s,
i=1
Next set d, = DY,(x,y). For any € > 0, there exists a chain (w(1),...,w(M+1))
between x and y such that Zf\ﬁ_l g(w(i)) < d. + e. In particular, g(w(i)) <
dy +€eforany ¢ =1,...,M + 1. Hence for any ¢ = 1,..., M + 1, there exists
w, (i) € A . such that K, C Ky, ). Since (wi(1),...,w.(M + 1)) is a
chain between z and y, it follows that 69, (z,y) < di + €. Thus we have shown

Combining the above proposition with (6.1), we see that d is M-adapted to
g if and only if there exist C7,Cy > 0 such that

C1D3y(x,y) < d(2,y) < CaDYy(,y) (6.2)

for any z,y € X.
Next we present another condition which is equivalent to a metric being
adapted.
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Theorem 6.4. Let g : T — (0,1] be a weight function and let M > 0. If
d € D(X,0), then d is M-adapted to g if and only if the following conditions
(ADa) and (ADb)y hold:
(ADa) There exists ¢ > 0 such that diam(K,,,d) < cg(w) for any w € T.
(ADb)m For any x,y € X, there ezists (w(1),...,w(k)) € CHi(x,y) such that
1<k<M+1 and

Cd(z,y) 2 max g(w(i)),

where C' > 0 is independent of x and y.

Remark. In [2, Proposition 8.4], one find an analogous result in the case of
partitions associated with expanding Thurston maps. The condition (ADa) and
(ADb) s corresponds their conditions (ii) and (i) respectively.

Proof. First assuming that (ADa) and (ADb),, hold, we are going to show
(6.1). Let x,y € X. By (ADb)y, there exists a chain (w(1),...,w(k)) between
x and y such that 1 <k < M + 1 and Cd(z,y) > g(w(i)) for any i = 1,..., k.
By (G2), there exists v(i) such that ¥,;) 2 X, and v(i) € AZ Since

(v(1),...,v(k)) is a chain in AY
93 (2,y).

Next set ¢ = 6%,(z,y). Then there exists a chain (w(1),...,w(M + 1)) €
CHi(z,y) in A{. Choose x; € Ky;) N Kypy(i41) for every i =1,..., M. Then

Cd(z,y)

Cd(z.y) between x and y, it follows that Cd(z,y) >

M-1
d(z,y) < d(z,z1) + Z d(zi, 1) +d(xar, y)
=1

M+1
<CZ ) < (M + 1)t =c(M +1)6%,(x,y).

Thus we have (6.1).

Conversely, assume that (6.1) holds, namely, there exist ¢1,ce > 0 such that
crd(z,y) < 6%, (x,y) < cad(x,y) for any z,y € X. If 2,y € K, then w €
C?—LK(x,y) Let m = m1n{k:|g 7% (w)) > g(7F 1 (w)),k € N} and set s = g(w).
Then g(7*~1(w)) = s and 7~ (w) € AY. SInce 7*~!(w) € CHk(z,y), we have

This immediately yields (ADa).

Set s, = cod(z,y) for z,y € X. Since 6%,(z,y) < cad(x,y), there exists a
chain (w(1),...,w(M + 1)) in A between z and y. As g(w(i)) < s, for any
i=1,...,M +1, we have (ADb)y. O

Since (ADb),, implies (ADb), for any N > M, we have the following
corollary.

Corollary 6.5. Let g : T — (0,1] be a weight function. If d € D(X,0) is
M -adapted to g for some M > 0, then it is N-adapted to g for any N > M.
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Recall that a metric d € D(X, O) defines a weight function g4. So one may
ask if d is adapted to the weight function g4 or not. Indeed, we are going to give
an example of a metric d € D(X, O) which is not adapted to gg in Example 10.8.

Definition 6.6. Let d € D(X, ). d is said to be adapted if d is adapted to gq4.

Proposition 6.7. Let d € D(X,0). d is adapted if and only if there exists a
weight function g : T — (0,1] to which d is adapted. Moreover, suppose that d
1s adapted. If

k
D (z,y) = inf{z d(w(k)|k > 1, (w(1),...,w(k)) € CH(x,y)}

for any x,y € X, then there exist c, > 0 such that
C*Dd(x,y) S d(l'vy) S Dd(xay)
for any x,y € X.

Proof. Necessity direction is immediate. Assume that d is M-adapted to a
weight function g. By (ADb)y, for any z,y € X there exist k € {1,...,M + 1}
and (w(1),...,w(k)) € CHi(x,y) such that

1
> 1)) > — 1)).
Cd(z,y) > Z.:Iglfufkg(w@)) B izrrfftfkgd(w(l))

This proves (ADb)y in the case where the weight function g = g4. So we verify
that d is M-adapted to g45. Now, assuming that d is adapted to d, we see

01D§l\/f(x7 y) S d(ﬂj’, y)
by (6.2). Since D%, (z,y) is monotonically decreasing as M — oo, it follows that
1D (x,y) < d(z,y).

On the other hand, if (w(1),...,w(k)) € CHk(x,y), then the triangle inequality
yields

k
dwy) < 3 galwl).

Hence d(z,y) < D%(x,y). O

One of the main interest is the existence of a metric adapted to given weight
function g. In other word, when the pre-metric §9, is equivalent to a metric? In
the rest of this section, we are going to look into this problem. To start with,
we present a weak version of “triangle inequality” for the family {09, }ar>1.

Proposition 6.8.

6%11 +Mo+1 (r,2) < max{éﬁ/ll (z,y), 55\7/[2 (v, Z)}
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Proof. Set s, = max{dj, (x,y),03,(y,2)}. Then we see that there exist a chain
(w(l),...,w(Myp+1)) between z and y and a chain (v(1),...,v(Mz+1)) between
y and z such that w(i),v(j) € AJ_for any i and j. Since (w(1),...,w(M; +
1),v(1),...,v(Ms 4 1)) is a chain between x and z, we obtain the claim of the
proposition. O

By this proposition, if 6%,(z,y) < cdomry1(z,y) for any z,y € X, then

89, (x,y) is so-called quasimetric, i.e.
(@, y) < c(03(x, 2) + 03, (2,9)) (6.3)

for any z,y,z € X. The coming theorem shows that 6%, being a quasimetric is
equivalent to the existence of an adapted metric.

The following notion is used in one of the equivalent conditions for a weight
function to have an adapted metric.

Definition 6.9. For w,v € T, the pair (w,v) is said to be m-separated with
respect to A? if and only if whenever (w, w(1),...,w(k),v) is a chain and w(i) €
AY for any i =1,...,k, it follows that k > m.

Proposition 6.10. For any z,y € X and M > 1,
84, (z,y) = sup{s|(w,v) is M-separated if w,v € A, x € K, and y € K,}.

The following theorem gives several equivalent conditions under which a
weight function possesses an associated “visual” metric.

Theorem 6.11. Assume that K : T — C(X,0) is minimal. Let M > 1. The
following five conditions are equivalent:

(EV),, There exist a € (0,1] and d € D(X, O) such that d is M-adapted to g*.
(EV2),, 6%, is a quasimetric, i.e. there exists ¢ > 0 such that (6.3) holds for
any x,y,2 € X.

(EV3),, There exists v € (0,1) such that v"0%,(z,y) < 6%, (x,y) for any
r,y € X andn > 1.

(EV4),, There exists v € (0,1) such that v63,(x,y) < 03,1 (2,y) for any x,y €
X.

(EV5),, There exists v € (0,1) such that if (w,v) € Ad x AJ is M-separated
with respect to AJ, then (w,v) is (M + 1)-separated with respect to A.

Remark. By (5.9), (EV3),, is equivalent to (EV6),, and (EV4),, is equivalent
to (EVT),, defined below:

(EV6),, For any n > 1, there exists v, € (0,1) such that Uj,  (z,7ns) C
Uf (x,s) for any z € X and any s € (0,1].

(EVT),; There exists v € (0,1) such that Uj, ,(z,vs) C Uy (x,s) for any
z € X and any s € (0, 1].

We use the following lemma to prove this theorem.
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Lemma 6.12. If there exist v € (0,1) and M > 1 such that v6$,(z,y) <
Opis1(x,y) for any x,y € X, then

V05, (2, y) < 0y (2, 9)
for any x,y € X andn > 1.

Proof. We use inductive argument. Assume that

V69 (2, y) < 6% (z,y)

for any 2,y € X and I = 1,...,n. Suppose 6%, (x,y) < c¢"*'s. Then there
exists a chain (w(1),...,w(M +n+2))in A?,,, between z and y. Choose any
2 € Ky(mn+1) N Ku(am4nt2)- Then

6%, (@,2) < 83y (2,2) <77
Thus we obtain 6%, (z, z) < vs. Note that §(z,y) <~"*'s. By Proposition 6.8,

V0% (2, y) < 03y (2, y) < max{of, , (z, 2), 05 (2, 9)} < vs.
This implies 69, (z,y) < s. O

Proof of Theorem 6.11. (EV),, = (EV4),,: Since d is M-adapted to ¢g*, by
Corollary 6.5, d is M + 1-adapted to g% as well. By (6.1), we obtain (EV4),,.
(EV3),, & (EV4),,: This is immediate by Lemma 6.12.

(EV3),, = (EV2),,: Let n =M + 1. By Proposition 6.8, we have

02M+16§]\/[(x’y> < (5!2’71\/[_,’_1(.%‘,:1]) < max{d?\/{(xaz)vdﬁ/[(zvy)} < 5%/[(3:’2)"1'6]%[(27?”'

(EV2),, = (EV),,: By [6, Proposition 14.5], there exist ¢1, ¢z > 0, d € D(X, O)
and « € (0,1] such that ¢16%,(z,y)* < d(z,y) < c20%,(x,y)* for any z,y € X.
Note tht 6%, (z,y)* = (5%? (z,y). By (6.1), d is M-adapted to g*.

(EV4),, = (EV5),,: Assume that w,v € AJ. If w and v are not (M + 1)-
separated with respect to AJ;, then there exist w(1),...,w(M) € Ag, such

ys9
that (w,w(1),...,w(M),v) is a chain. Then we can choose w’ € T, N A2, and

v' € T, N Ad so that (w',w(l),...,w(M),v') is a chain. Let z € Oy z;nd let
y € Oy. Then 6, (z,y) < vs. Hence by (EV4),,, dx(z,y) < s. There exists
a chain (v(1),v(2),...,v(M + 1)) in A9 between x and y. Since x € Oy C O,
and y € O, C O, we see that v(0) = w and v(M + 1) = v. Hence w and v are
not M-separated with respect to AY.

(EV5),, = (EV4),,: Assume that 63, ,(z,y) < vs. Then there exists a chain
(w(1),...,w(M +2)) in AZ, between x and y. Let w (resp. v) be the unique
element in A9 satisfying w(1) € T, (resp. w(M + 2) € T,,). Then (w,v) is not
(M + 1)-separated. By (EV5),,, (w,v) is not M-separated. Hence there exists
a chain (w,v(1),...,v(M —1),v) in AY. This implies 6%,(z,y) < s. O
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7 Bi-Lipschitz equivalence

In this section, we define the notion of bi-Lipschitz equivalent of weight func-
tions. Originally the definition, Definition 7.1, only concerns the tree structure
(T, A, ¢) and has nothing to do with a partition of a space. Under proper
conditions, however, we will show that the bi-Lipschitz equivalence of weight
functions is identified with

e absolutely continuity with uniformly bounded Radon-Nikodym derivative
from below and above between measures in 7.1.

e usual bi-Lipschitz equivalence between metrics in 7.2.

e Ahlfors regularity of a measure with respect to a metric in 7.3.

As in the previous sections, (T, A4, @) is a locally finite tree with a reference
point ¢, (X,0) is a compact metrizable space and K : T — C(X,0) is a
partition of X parametrized by (7T, A, ¢).

Definition 7.1. Two weight functions g, h € G(T) are said to be bi-Lipschitz
equivalent if and only if there exist ¢y, co > 0 such that

c1g(w) < h(w) < eag(w)
for any w € T. We write g I~ h if and only if g and h are bi-Lipschitz equivalent.

By the definition, we immediately have the next fact.

Proposition 7.2. The relation ~ is an equivalent relation on G(T).

7.1 bi-Lipschitz equivalence of measures

As we mentioned above, the bi-Lipschitz equivalence between weight functions
can be identified with other properties according to classes of weight functions.
First we consider the case of weight functions associated with measures.

Definition 7.3. Let pu,v € Mp(X,0). We write u o if and only if there

exist ¢y, co > 0 such that
e1a(A) < v(A) < ean(4) (7.1)
for any Borel set A C X.

It is easy to see that > is an equivalence relation and p ~v if and only if

w and v are mutually absolutely continuous and the Radon-Nikodym derivative
dv s uniformly bounded from below and above.

dp

Theorem 7.4. Assume that the partition K : T — C(X, Q) is strongly finite.
Let p,v € Mp(X,0). Then g, ~ 9 if and only if u v Moreover, the

natural map Mp(X, P)/XJC — Q(X)/EL given by [gu]& is injective, where [][}VL

is the equivalence class under -
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Proof. By (7.1), we see that a1v(K,) < u(Ky) < asv(K,,) and hence g, > Gu-

Conversely, if
crp(Ky) < v(Ky) < cop(Ky)

for any w € T. Let U C X be an open set. Assume that U # X. For any
x € X, there exists w € T such that = € K,, C U. Moreover, if K,, C U, then
there exists m € {1,...,|w|} such that [w],, € TY(z) but [w],_1 ¢ TY(z).
Therefore, if

T(U) = {7JJ|’UJ € T7 K, C U7 KTr(w)\U 7& @},

then T(U) # 0 and U = Uyerw)Kw. Now, since K is strongly finite, there
exists N € N such that #(c~!(z)) < N for any x € X. Let y € U. If
w(l),...,w(m) € T(U) are mutually different and y € Ky, for any i =
1,...,m, then there exists w(i) € X, such that o(w(i)) = y for any i =
1,...,m. Hence #(c~1(y)) > m and therefore m < N. By Proposition 13.1,
we see that

W) < Y wEL) Y enlKy) < aNu)

weT(U) weT (U)
1 N
nU) < Z p(Kw) Z ;V(Kw) < C*V(U)
weT(U) weT(U) 1

Hence letting oy = ¢ /N and oz = ca N, we have
a1p(U) < v(U) < aou(U)

for any open set U C X. Since p and v are Radon measures, this yields (7.1). O

7.2 bi-Lipschitz equivalence of metrics

Under the tightness of weight functions defined below, we will translate bi-
Lipschitz equivalence of weight functions to the relations between “balls” and
“distances” associated with weight functions in Theorem 7.8.

Definition 7.5. A weight function g is called tight if and only if for any M > 0,
there exists ¢ > 0 such that

sup 0%, (z,y) > cg(w)
z,yeE Ky

for any w e T.
Proposition 7.6. Let g and h be weight functions. Assume that g ~ h. If g
is tight and g ~ h, then h is tight.

Proof. Since g >~ h, there exist 1,72 > 0 such that y1g(w) < h(w) < yog(w)
for any w € T. Therefore,

71D (. y) < Diy(x,y) < 12D, (2,y)
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for any z,y € X and M > 0. By Proposition 6.3, there exist c1,co > 0 such
that

61(5}()\4(.%, y) < 5?4(33’ y) < CQ(S%/I(xvy)
for any =,y € X and M > 0. Hence

sup Opr(z,y) > 1 sup 64,(z,y) > cg(w) > y(v2) " h(w)
z,y€EKyw z,y€ Ky

for any w € T'. Thus h is tight. O
Any weight function induced from a metric is tight.
Proposition 7.7. Let d € D(X,0). Then gq is tight.

Proof. Let z,y € K and let (w(1),...,w(M + 1)) € CH(z,y). Set xop = x and
Ty =y. Fori=1,..., M, choose x; € Ky N Ky(iq1).- Then

M+1 M+1
D ga@) = Y dlwia, ) > d(,y).
=1 =1

Hence using this and Proposition 6.3, we obtain
(M +1)8%,(x,y) > Dii(z,y) > d(z,y)

and therefore (M + 1)sup, ,cx, 0%7(x,y) > ga(w) for any w € T. Thus gq is
tight. O

Now we give geometric conditions which are equivalent to bi-Lipschitz equiv-
alence of tight weight functions. The essential point is that bi-Lipschitz con-
dition between weight function g and h are equivalent to that between §%,(-,)
and 6%,(-,-) in the usual sense as is seen in (BL2) and (BL3).

Theorem 7.8. Let g and h be weight functions. Assume that both g and h are
tight. Then the following conditions are equivalent:
(BL) ¢ ~ h.

(BL1) There exist My, My and ¢ > 0 such that
5%11 (z,y) < cég(x,y) and 55\}2 (x,y) < cdf(z,y)

for any x,y € X.
(BL2) There exist c1,c2 > 0 and M > 0 such that

016%(557 y) < 65\%($,y) < 025%1(%2/)

for any x,y € X.
(BL3) For any M >0, there exist c1,co2 > 0 such that

61(5}()\4(.%, y) < 5?4('1:’ y) < CQ(S%/I(xvy)

for any x,y € X.
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The proof of this theorem will be given after stating corollaries of it.

If weight functions are induced from adapted metrics, then bi-Lipschitz
equivalence of weight functions exactly corresponds the usual bi-Lipschitz equiv-
alence of metrics.

Definition 7.9. (1) Let d,p € D(X,0). d and p are said to be bi-Lipschitz
equivalent, d S for short, if and only if there exist ¢, ce > 0 such that
Cld(x7y) < p(l’, y) < CQd(.’IJ,y)

for any z,y € X.
(2) Define
Da(X,0) ={d|d € D(X,0),d is adapted.}

Corollary 7.10. Let d,p € Da(X,0). Then gq ~ 9 if and only if d o~ P In

particular, the correspondence of [d] .. with [ga]~ gives an well-defined injective
BL BL

map DA(X, O)/]/BVL — g(X)/g}J

The next corollary shows that an adapted metric is adapted to a weight
function if and only if they are bi-Lipschitz equivalent in the sense of weight
functions.

Corollary 7.11. Let d € D(X,0) and let g be a weight function. Then d is
adapted to g and g is tight if and only if gq ~9 and d € Da(X,0).

Now we start to prove Theorem 7.8 and its corollaries.

Lemma 7.12. Let h be a weight function. If K,\U}(xz,s) # 0, then s < h(w).

Proof. If m"(w) € A"o(x) for some n > 0, then Uf(z,s) 2 Krn(w) 2 Ku.
This contradicts to the assumption and hence " (w) ¢ A% (z) for any n > 0.

Therefore there exists v € T, N A o(x) such that |v| > |w|. Then we have
h(w) > h(w(v)) > s. O

Proposition 7.13. Let g and h are weight functions. Assume that g is tight.
Let M > 0. If there exists a > 0 such that

(X(S?W(x,y) S 6g(xay) (72)

for any x,y € X. Then there exists ¢ > 0 such that

cg(w) < h(w)
for any w e T.

Proof. Since g is tight, there exists 8 > 0 such that, for any w € T,

K \Uy (@, Bg(w)) # 0
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for some z € K,,. On the other hand, by (7.2), there exists v > 0 such that
Ui, (x,s) 2 Ul(z,vs) for any z € X and s > 0. Therefore,

KUy (z, Byg(w)) # 0.
By Lemma 7.12, we have Syg(w) < h(w). O

Lemma 7.14. Let g and h be weight functions. Assume that g is tight. Then
the following conditions are equivalent:

(A) There exists ¢ > 0 such that g(w) < ch(w) for any w e T.

(B) For any M,N >0 with N > M, there exists ¢ > 0 such that

0% (x,y) < e83y (2, y)

for any x,y € X.
(C) There exist M,N >0 and ¢ > 0 such that N > M and

0% (x.y) < cdgy(z,y)
for any x,y € X.

Proof. (A) implies
DY, (2,) < cDly(a.y) (73)

for any =,y € X and M > 0. By Proposition 6.3, we see
03 (@, y) < (M + 1)} (2, y)

for any x,y € X. Since 6% (z,y) < 6%,(z,y) if N > M, we have (B). Obviously
(B) implies (C). Now assume (C). Then we have 6% (z,y) < cd(z,y). Hence
Proposition 7.13 yields (A). O

Proof of Theorem 7.8. Lemma 7.14 immediately implies the desired statement.
O

Proof of Corollary 7.10. Since d and p are adapted, by (6.1), there exist M > 1
and ¢ > 0 such that

c83(2,y) < d(x,y) < 83(x,y), (7.4)
C(S&(x,y) S p(xay) S 5§1($,y) (75)

for any z,y € X. Assume g4 5 9 Since gq and g, are tight, we have (BL3)

by Theorem 7.8. Hence by (7.4) and (7.5), d(-,-) and p(-,-) are bi-Lipschitz
equivalent as metrics. The converse direction is immediate. O

Proof of Corollary 7.11. 1f d is M-adapted to g for some M > 1, then by (ADa),
there exists ¢ > 0 such that d,, < cg(w) for any w € K,,. Moreover, (6.1) implies

d(z,y) > c20%,(,y)
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for any =,y € X, where ¢y is independent of z and y. Hence the tightness of g
shows that there exists ¢’ > 0 such that

dy > cosup 89, (z,y) > ' g(w)
T,y

Thus we have shown that gg4 59 Moreover, by Proposition 6.7, d is adapted.
Conversely, assume that d is M-adapted and g4 59 Then Theorem 7.8 implies

(BL3) with h = g4. At the same time, since d is M-adapted, we have (6.2) with
g = gq- Combining these two, we deduce (6.2). Hence d is M-adapted to g. O

7.3 Bi-Lipschitz equivalence between measures and met-
rics

Finally in this section, we consider what happens if the weight function associ-
ated with a measure is bi-Lipschitz equivalent to the weight function associated
with a metric.

To state our theorem, we need the following notions.

Definition 7.15. (1) A weight function g : T'— (0, 1] is said to be uniformly
finite if sup{#(A{ ;(w))|s € (0,1],w € A} < +o0.

(2) A function f : T — (0,00) is called sub-exponential if and only if there
exists m > 0 and ¢; € (0,1) such that f(v) < ¢;f(w) for any w € T and any
v € Ty, with |v| > Jw| +m. [ is called super-exponential if and only if there
exists ¢o € (0,1) such that f(v) > cof(w) for any w € T and v € S(w). f is
called exponential if it is sub-exponential and super-exponential.

The following proposition and the lemma are immediate consequences of the
above definitions.

Proposition 7.16. Let h be a weight function. Then h is super-exponential if
and only if there exists ¢ > 1 such that ch(w) > s > h(w) whenever w € A",

Proof. Assume that h is super-exponential. Then there exists ¢ < 1 such that
h(w) > coh(m(w)) for any w € T. If w € A", then h(w(w)) > s > h(w). This
implies (co)"th(w) > s > h(w).

Conversely, assume that ch(w) > s > h(w) for any w and s with w € A",
If h(m(w)) > ch(w), then w € Al for t € (ch(w), h(m(w)). This contradicts to
the assumption that ch(w) >t > h(w). Hence h(m(w)) < ch(w) for any w € T.
Thus h is super-exponential. O

Lemma 7.17. If a weight function g : T — (0,1] is uniformly finite, then

sup{#(As,m(2))|z € X, s € (0,1]} < +o0

for any M > 0.
Proof. Let C' = sup{#(As1(w))|s € (0,1],w € As}. Then #(As m(z)) < C +
C?+ ...+ CMFL O
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Definition 7.18. Let > 0. A radon measure g on X is said to be Ahlfors
a-regular with respect to d € D(X, O) if and only if there exist C1,C2 > 0 such
that

Cyr® < u(Bg(z,r)) < Cor® (7.6)

for any r € [0, diam(X, d)].

Definition 7.19. Let g : T'— (0, 1] be a weight function. We say that K has
thick interior with respect to g, or g is thick for short, if and only if there exists
M > 1 and « > 0 such that K,, O U§,(x, as) for some xz € K,, if s € (0,1] and
w e Ad.

The value of the integer M > 1 is not crucial in the above definition. In
Proposition 8.1, we will show if the condition of the above definition holds for
a particular M > 1, then it holds for all M > 1.

The thickness is invariant under the bi-Lipschitz equivalence of weight func-
tions as follows.

Proposition 7.20. Let g and h be weight functions. If g is thick and g ~ h,
then h is thick.

Since we need further results on thickness of weight functions, we postpone
a proof of this proposition until the next section.
Now we give the main theorem of this sub-section.

Theorem 7.21. Let d € Dy (X,0) and let p € Mp(X,0). Assume that
K is minimal and d is super-exponential and thick. Then (gq)* ~ Y and

d is uniformly finite if and only if p is Ahlfors a-regular with respect to d.
Moreover, if either/both of the these two conditions is/are satisfied, then u and
d are exponential.

By the same reason as Proposition 7.20, a proof of this theorem will be given
at the end of Section 9.

8 Thickness of weight functions

In this section, we study conditions for a weight function being thick and rela-
tion between the notions “thick” and “tight”. For instance in Theorem 8.3 we
present topological condition (TH1) ensuring that all super-exponential weight
functions are thick. In particular, this is the case for partitions of S? discussed
in Section 2 because partitions satisfying (2.2) are minimal and the condition
(TH) in Section 2 yields the condition (TH1). Moreover in this case, all super-
exponential weight functions are tight as well by Corollary 8.5.

Proposition 8.1. g is thick if and only if for any M > 0, there exists § > 0
such that, for any w € T, K,, 2 U3, (z, Bg(m(w))) for some x € K,,.
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Proof. Assume that g is thick. By induction, we are going to show the following
claim (C)ps holds for any M > 1:
(C)ar There exists aps > 0 such that, for any s € (0,1] and any w € AY, one
find z € K,, satistying K,, D Ups(x, ans).

Since g is thick, (C')ar holds for some M > 1. Since U{(z,s) C U§,(x,s)
if M > 1, (C); holds as well. Now, suppose that (C)as holds. Let w € A
and choose x as in (C')p;. Then there exists v € A, . such that v € T, and
x € K,. Applying (C)p again, we find y € K, such that K, D U3, (y, (aar)?s).
Since M > 1, it follows that Uy, ., (y, (aar)?s) € Uy (x, anrs) © Ky Therefore,
letting bas11 = (bar)?, we have obtained (C)ps41. Thus we have shown (C) s
for any M > 1.

Next, fix M > 1 and write @« = aps. Note that w € A¢ if and only if
glw) < s < g(m(w)). Fix € € (0,1). Assume that g(m(w)) > g(w), then there
exists s, such that g(w) < s, < g(m(w)) and s, > eg(m(w)). Hence obtain

Ky, 2 Ui (x, as.) 2 Ui (z, aeg(m(w))).
)

If g(w) = g(m(w)), then there exists v € T, such that g(v) < g(7(v)) = g(w) =
g(ﬂ(?}g)) Choosing s, so that g(v) < s, < g(7(v)) = g(7(w)) and eg(m(w)) < s,
we obtain

Ky 2 Ky, DU (z,as,) D Uy (2, aeg(m(w))).

Letting 8 = ae, we obtain the desired statement.

Conversely, assume for any M > 0, there exists 8 > 0 such that, for any w € T,
Ky 2 U (z, Bg(m(w))) for some x € K,,. If w € A, then g(w) < s < g(n(w)).
Therefore K,, D Uy, (z, 8s). This implies that g is thick. O

Proposition 8.2. Assume that K is minimal. Let g : T — (0,1] be a weight
function. Then g is thick if and only if, for any M > 0, there exists v > 0 such
that, for any w € T, Oy 2 Ui, (z,vg(m(w))) for some z € O,,.

Proof. Assume that ¢ is thick. By Proposition 8.1, for any M > 0, we may
choose o > 0 so that for any w € T, there exists x € K,, such that K, D
Ui (z, ag(m(w))). Set sy = g(m(w)). Let y € Ui (x,@5,)\Oy. There exists
v € (T}, such that y € K, and w # v. Then we find v, € T, NAJ, satisfying
y € K,,. Since K, N U, (z,as,) # 0, we have

Ky, CUJ (2, a8y) € Ky,

Therefore, K,, C Uyrer, juw|=|v.|Kw- This implies that = (). This con-
tradicts to the fact that K is minimal. So, UX/I(:E,asw)\ = () and hence
Ui (@, asy) C Oy

The converse direction is immediate. O

Using the above proposition, we give a proof of Proposition 7.20.

Proof of Proposition 7.20. By Proposition 8.1, there exists 8 > 0 such that for
any w € T, K,, 2 U3, (z,Bg(m(w))) for some z € K,. On the other hand,
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since there existey, o > 0 such that c1h(w) < g(w) < coh(w) for any w € T. It
follows that D%, (z,y) < coD% (x,y) for any z,y € X. Proposition 6.3 implies
that there exists a > 0 such that ad9,(z,y) < 6% (x,y) for any z,y € X. Hence
Ul (z,as) C Ui (x,s) for any 2 € X and any s € (0,1]. Combining them, we
see that

Ky 2 Uy (2, Bg(n(w))) 2 Upy(z, afg(n(w))) 2 U (z, afeoh(m(w))).
Thus by Proposition 8.1, A is thick. O

Theorem 8.3. Assume that K is minimal. Define h, : T — (0,1] by h.(w) =
21l for any w € T. Then the following conditions are equivalent:

(TH1) There exists m > 1 such that, for any w € T, there exists v, € Ty, such
that K,, C Oy and |vi] < |w| +m.

(TH2) Every super-exponential weight function is thick.

(TH3) There exists a sub-exponential weight function which is thick.

(TH4) The weight function h, is thick.

Proof. (TH1) = (TH2): Assume (TH1). Let g be a super-exponential weight
function. Then there exists A € (0,1) such that g(w) > g(7(w)) for any w € T
Let w € AJ. For any v € Ty, N (T')jw|4m, it follows that

g(v) = X" Flg(n(w)) > A" s

So choose z € O,,. Then Aymi1,1(z) C {w'|w" € (1), Kw N Ky, # 0} C
(T)}v,) N T,. Hence
Uy (z,\"*s) C K,

Thus we have shown that ¢ is thick.

(TH2) = (TH4): Apparently h, is an exponential weight function. Hence
by (TH2), it is thick.

(TH4) = (TH4): Since h, is exponential and thick, we havre (TH3).

(TH3) = (TH1): Assume that g is a sub-exponential weight function which
is thick. Proposition 8.2 shows that there exists v € (0,1) and M > 1 such
that for any w € T, O, 2 Uy, (z,vg(m(w))). Choose v, € Agg(ﬂ(w))’o(x). Then
Ko, C Ui(z,v9(m(w))) € Oy and g(m(vs)) > vg(r(w)) > vg(w). Since g is
sub-exponential, there exists & > 1 and n € (0,1) such that g(u) < ng(v) if
v € T, and |u| > |w| + k. Choose I so that ' < v and set m = kI + 1. Since
g(m(vs)) > n'g(w), we see that |w(v.)| < |w|+m — 1. Therefore, |v.| < |w|+m
and hence we have (TH1). O

Theorem 8.4. Assume that K : T — C(X,0) is minimal, that there exists
A € (0,1) such that if By, = 0, then #(T, N Aig(w)) > 2 and that g is thick.
Then g is tight.

Proof. By Proposition 8.2, there exists v such that, for any v € T, O, 2
U (x,vg(m(v))) for some z € K,. First suppose that B, # (. Then there
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exists ¢ € K,, such that O,, 2 Uy, (z,vg(m(w))). For any y € B,, it follows
that 6%,(z,y) > vg(m(w)). Thus

sup  0%,(z,y) > vg(m(w)).
z,yE Ky
Next if B, = ), then there exists u # v € T, N A‘)]\g(w). If B, # 0, then the
above discussion implies

sup 03,(z,y) > sup 63 (w,y) > yg(m(v)) = yAg(w).
z,YE Ky z,yce K,
If B, = 0, then 6%,(z,y) > Ag(w) for any (z,y) € K, x K,. Thus for any
w € T, we conclude that

sup 0%, (z,y) > yAg(w).
z,ye Ky

The above theorem immediately implies the following corollary.

Corollary 8.5. Assume that (X,0) is connected and K is minimal. If g is
thick, then g is tight.

9 Volume doubling property

In this section, we introduce the notion of a relation called “gentle” and written
as ~ between weight functions. This relation is not an equivalence relation

in general. In Section 11, however, it will be show to be an equivalence rela-
tion among exponential weight functions. As was the case of the bi-Lipschitz
equivalence, the gentleness will be identified with other properties in classes of
weight functions. In particular, we are going to show that the volume doubling
property of a measure with respect to a metric is equivalent to the gentleness
of the associated weight functions.

As in the previous sections, (T,.A, ¢) is a locally finite tree with a reference
point ¢, (X,0) is a compact metrizable space and K : T — C(X,0) is a
partition of X parametrized by (T, A, ¢).

The notion of gentleness of a weight function to another weight function is
defined as follows.

Remark. In the case of the natural partition of a self-similar set in Example 4.5,
the main results of this section, Theorems 9.6, 9.8 have been obtained in [9)].

Definition 9.1. Let g : T — (0,1] be a weight function. A function f : T —
(0, 00) is said to be gentle with respect to g if and only if there exists ¢g > 0 such
that f(v) < cgf(w) whenever w,v € AY and K,, N K,, # () for some s € (0, 1].
We write f o9 if and only if f is gentle with respect to g.
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Alternatively, we have a simpler version of the definition of gentleness under
a mild restriction.

Proposition 9.2. Let g : T — (0,1] be an exponential weight function. Let
f:T — (0,00). Assume that f(w) < f(w(w)) for any w € T and f is super-
exponential. Then f is gentle with respect to g if and only if there exists ¢ > 0
such that f(v) < cf(w) whenever g(v) < g(w) and K, N K,, # 0.

Proof. By the assumption, there exist ¢i,ca > 0 and m > 1 such that f(v) >
caf(w), g(v) > cag(w) and g(u) < c1g(w) for any w € T, v € S(w) and u € Ty,
with |u| > |Jw| + m.

First suppose that f is gentle with respect to g. Then there exists ¢ > 0 such
that f(v') < cf (w') whenever w',v" € A? and K,y N K, # () for some s € (0,1].
Assume that g(v) < g(w) and K, N K,, # (. There exists u € Ty, such that
KN, #0and g(x(w)) > g(v) > g(u). Moreover, g(r([ulm)) < g([uln) — 9(u)
for some m € [0, |v|]. Then [u],,v € AZ(U) and hence f(v) < f([u]m) < cf(u) <
cf (w).

Conversely, assume that f(v') < cf(w') whenever g(v') < g(w’) and K, N
Ky # 0. Let w,v € A? with K, N K, # 0. If g(v) < g(w), then f(v) < cf(w).
Suppose g(v) > g(w). Since g is super-exponential,

s> g(w) > cag(m(w)) > cos > cag(v),

Set N = min{n|cy > ¢?}. Choose u € T, so that K, N K, # 0 and |u| =
|v| + Nm. Then g(w) > c2g(v) > (e1)Vg(v) > g(u). This implies f(u) < cf(w).
Since f(u) > (c2)VN™f(v), we have f(v) < ¢(c2) ~N™ f(w). Therefore, f is gentle
with respect to g. O

The following is the standard version of the definition of the volume doubling
property.
Definition 9.3. Let u be a radon measure on (X,0) and let d € D(X,0). u

is said to have the volume doubling property with respect to the metric d if and
only if there exists C' > 0 such that

u(Ba(z,2r)) < Cu(Ba(z, 7))
for any x € X and any r > 0.

Note that X has no isolated point by the condition (P1). Due to this fact,
if a Radon measure p has the volume doubling property with respect to some
d € D(X,O) or M-volume doubling property with respect to a weight function
defined below, then the normalized version of p, p/u(X), belongs to Mp(X, O).
Taking this fact into account, we are mainly interested in (normalized version
of) a Radon measure in Mp(X,O).

Next we define the notion of volume doubling property of a measure with
respect to a weight function g as well by means of balls “Uj,(x,s)”.
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Definition 9.4. Let p € Mg (X, O) and let g be a weight function. For M > 1,
we say p has M-volume doubling property with respect to g if and only if there
exist v > (0,1) and B > 1 such that u(U{,(x,s)) < Bu(U§(x,vs)) for any
x € X and any s € (0, 1].

It is rather annoying that the notion of “volume doubling property” of a
measures versus a weight function depends on the value M > 1 while that of
a measure versus a metric does not. Under certain conditions including the
exponentially and the thickness, however, we will show that if u has M-volume
doubling property for some M > 1, then it has M-volume doubling property
for all M > 1 in Theorem 9.8.

Naturally, if the weight function is associated with a metric, the volume
doubling with respect to the metric and the volume doubling property with
respect to the associated weight function is virtually the same as is seen in the
next proposition.

Proposition 9.5. Let d € D(X,0), let p € Mg(X,0) and let g be a weight
function. Assume that d is adapted to g. Then p has the volume doubling
property with respect to d if and only if there exists M, > 1 such that p has
M -volume doubling property with respect to g for any M > M,.

Proof. Since d is adapted to g, for sufficiently large M, there exist ay,as > 0
such that
Ui (@, cn5) C By(z,s) C Uy, (x, as)

for any x € X and any s € (0,1]. Suppose that p has the volume doubling
property with respect to d. Then there exists A > 1 such that

p(Ba(z,2™r)) < A" u(Ba(z,7))
for any x € X and any r > 0 Hence
(UL, (2, 00277)) € X" (U (2, a07))-

Choosing m so that «12™ > ai, we see that p has M-volume doubling property
with respect to g if M is sufficiently large. Converse direction is more or less
similar. O

By the above proposition, as far as we confine ourselves to adapted metrics, it
is enough to consider the volume doubling property of a measure with respect to
a weight function. Thus we are going to investigate relations between a measure
1 having the volume doubling property with respect to a weight function g and
other conditions like

e g is exponential,
e g is uniformly finite,

e i is super-exponential
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e 4 is gentle with respect to g.

To begin with, we show that the last four conditions imply the volume doubling
property of p with respect to g.

Theorem 9.6. Let g : T — (0,1] be a weight function and let p € Mp(X,O).
Assume that g is exponential, that g is uniformly finite, that p is gentle with
respect to g and that p is super-exponential. Then p has M-volume doubling
property with respect to g for any M > 1.

Remark. In the case of the natural partition of a self-similar set in Example 4.5,
the above theorem has been obtained in [9].

Hereafter in this section, we are going to omit g in notations if no confusion
may occur. For example, we write Ay, Ag p(w), As pr(w) and Up(z, s) in place
of A9, AY , (w),AY ,,(x) and Uy, (z,s) respectively.

The fbllowing lemma is a step to prove the above theorem.

Lemma 9.7. Let g : T — (0,1] be a weight function and let p € Mp(X,O).
For s € (0,1], A > 1 and ¢ > 0, define

®(S7>‘a k,c) = {U|U € ASa/L(Ku) < CU(KU) for any u € AAs,k((U)AS)}7

where (v)xs is the unique element of {[V]|0 < n < |v|]} N Axs. Assume that
g is uniformly finite and that there exists N > 1,A > 1 and ¢ > 0 such that
As N(w)NO(s, N\, 2N + 1,¢) # 0 for any s € (0,1] and any w € Ay;. Then p has
the N-volume doubling property with respect to g.

<
A

Proof. Let w € Ago(x) and let v € Ag n(w)NO(s, \,2N+1,¢). If u € Ays n (),
then w € Axsan+1((v)as). Moreover, since v € As n (), we see that

W(K,) < cu(K,) < cn(Uy(, s)).

Therefore,

pUn(z,A8) < D plI) < #(Msv (@) eu(Un (z, 5)).

u€Axs, N ()

Since g is uniformly finite, Lemma 7.17 shows that #(Axs n(z)) is uniformly
bounded with respect to z € X and s € (0,1]. O

Proof of Theorem 9.6. Fix A > 1. By Proposition 7.16, there exists ¢ > 1
such that cg(w) > s > g(w) if w € A;. Since g is sub-exponential, there
exist ¢; € (0,1) and m > 1 such that ¢;g(w) > g(v) whenever v € Ty, and
|[v] > |w| +m. Assume that w € A;. Set w, = (w)xs. Then As > g(w,). If
|w| > Jwi| + nm, then (c1)"g(w.) > g(w) and hence (¢1)"As > g(w) > g(w)/ec.
This shows that (¢1)"Ac > 1. Set | = min{n|n > 0, (¢1)"Ac < 1}. Then we see
that |w| < |ws| + Im.

On the other hand, since p is super-exponential, there exists co > 0, such that
1(Ky) > capp(Kr(y) for any u € T. This implies that pu(Ky,, ) < (c2) ™ u(Ky).
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Since p is gentle, there exists ¢, > 0 such that M(Kw(l)) < c*,u(Kw(g)) whenever
w(1),w(2)As and K1) N Ky # 0 for some s € (0,1]. Therefore for any
(IS A)\S,M(w*)a

p(Ky) < (e)™p(Kuw,) < (c)™(c2) ™™ u(Kw).
Thus we have shown that
Ay = O(s, A, M, () (e2) ™)

for any s € (0, 1]. Now by Lemma 9.7, & has M-volume doubling property with
respect to g for any M > 1. O

In order to study the converse direction of Theorem 9.6, we need the thick-
ness of K with respect to the weight function in question.

Theorem 9.8. Let g : T — (0,1] be a weight function and let p € Mp(X,O).
Assume that g is thick.

(1) Suppose that g is exponential and uniformly finite. Then the following
conditions are equivalent:

(VD1) u has M-volume doubling property with respect to g for some M > 1.
(VD2) u has M-volume doubling property with respect to g for any M > 1.
(VD3) u is gentle with respect to g and p is super-exponential.

(2) Suppose that K is minimal and g is super-ezponential. Then (VD1), (VD2)
and the following condition (VD4) are equivalent:

(VD4) g is sub-exponential and uniformly finite, u is gentle with respect to g
and [ 1s super-exponential.

Moreover, if any of the above conditions (VD1), (VD2) and (VD4) hold, then p
is exponential and

sup #(S(w)) < +oo.
weT

In general, the statement of Theorem 9.8 is false if ¢ is not thick. In fact, in
Example 10.10, we will present an example without thickness where d is adapted
to g, g is exponential and uniformly finite, p has the volume doubling property
with respect to g but p is neither gentle to g nor super-exponential.

As for a proof of Theorem 9.8, it is enough to show the following theorem.

Theorem 9.9. Let g : T — (0,1] be a weight function and let p € Mp(X,O).
Assume that i has M -volume doubling property with respect to g for some M >

(1) If g is thick, then p is gentle with respect to g.

(2) If g is thick and g is super-exponential, then p is super-exponential.
(3) If g is thick and K is minimal, then g is uniformly finite.

(4) If g is thick, K is minimal, and p is super-exponential, then

sup #(S(w)) < +oo.
weT

and p is sub-exponential.
(5) If g is uniformly finite, p is gentle with respect to g, p is sub-exponential,
then g is sub-exponential.
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To prove Theorem 9.9, we need several lemmas.

Lemma 9.10. Let g : T — (0,1] be a weight function. Assume that K is
minimal and g is thick. Let p € Mp(X,0). If u has M-volume doubling
property with respect to g for some M > 1, then there exists ¢ > 0 such that
1(Ow) > cp(Ky) for any w € T.

Proof. By Proposition 8.2, there exists v > 0 such that O, 2 Uj,(z,vs) for
some z € K, if v € As. Let w € T. Choose u € Ty, such that u € Ay(,)/2. Then

1(0y) > (0y) > (U, (z,vg(w)/2)).

Since p has M-volume doubling property with respect to g, there exists ¢ > 0
such that

w(U3(y,yr/2)) = en(U3, (y, 7))
for any y € X and any r > 0. Since Ups(z, g(w)) 2 K, it follows that

,U(Ow) > M(U]%/I(xvfyg(w)/Q)) > CM(UM(JJ,Q(UJ))) > C,UJ(Kw)'
O

Lemma 9.11. Let g : T — (0,1] be a weight function. Assume that p €
Mp(X,0) is gentle with respect to g and that g is uniformly finite. Then there
exists ¢ > 0 such that

cu(Ku) > p(Un(,5))

if we Ag o).

Proof. Since p is gentle with respect to g, there exists ¢; > 0 such that p(K,) <
cap(Ky) if we Ay and v € Ag1(w). Hence if v € Ag pr41(w), it follows that
w(Ky) < (e1)MTu(K,,). Since Ag pr(x) C Ag a1 (w),

WUn(.s) < Y ulk,)

vEAs M (x)

< Y ()M u(Ky) = ()M (N (7)) ul(K).

vEA ()
By Lemma 7.17, we obtain the desired statement. O

Proof of Theorem 9.9. (1) Since g is thick, there exists 5 € (0,1) such that,
for any s € (0,1] and any w € A;, K,y 2 Up(x,Bs) for some z € K,,. By
M-volume doubling property of p, there exists ¢ > 0 such that u(Ups(z, 8s)) >
c(Uni(z, s)) for any s € (0,1] and any € X. Hence

p(Kw) = (U (z, Bs)) = cp(Un(, 5))- (9.1)

If v € As and K, N K, # 0, then Ups(z,5) 2 K,. (9.1) shows that u(K,) >
cu(K,). Hence p is gentle with respect to g.

42



(2) Letv e T\{¢}. Choose u € T, so that u € Ay(,)/2. Applying (9.1) to u and
using the volume doubling property repeatedly, we see that there exists z € K,
such that

WKo) > () > p(Un (@, Bg(v)/2)) = " p(Un(x, 81 "g(v)/2))  (9.2)

for any n > 0. Since g is super-exponential, there exists n > 0, which is
independent of v, such that 81="g(v)/2 > g(n(v)). By (9.2), we obtain u(K,) >
" (K (w)). Thus p is super-exponential.

(3) Let w € A;. Then {Oy}yen, ,(w) is mutually disjoint by Lemma 4.2-(2).
By (9.1) and Lemma 9.10,

nKL) = en(Un(z,s) Ze D p(0n) 2 > plK)
vEA; 1 (w) vEAs 1 (w)

(The constants ¢’s in (9.1) and Lemma 9.10 may be different but by choosing
the smaller one, we may use the same c.) As p is gentle with respect to g by (1),
there exists ¢, > 0, which is independent of w and s, such that u(XK,) > c.u(Ky)
for any v € Ag 1(w). Therefore,

W(Kw) > ¢ Z w(Ky) > CQC*#(ASJ(“}))M(KUJ)
vEAs 1 (w)

Hence #(As,1(w)) < ¢7?(c)~! and g is uniformly finite.
(4) By Lemma 9.10, for any w € T, we have

W(Kw) > N(Uves(w)ov) = Z w(Oy) = c Z (Ky).

vES(w) veS(w)

Since 4 is super-exponential, there exists ¢/ > 0 such that u(K,) > ¢/ u(K,) if
w €T and v € S(w). Hence

pKy) > e Y p(Ky) > o #(S(w)p(Ky).
veS(w)

Thus #(S(w)) < (ec’)~1, which is independent of w. Note that #(S(w)) > 2
for any w € T. By the above arguments,

w(Oy) = cp(Ky) = cip(Kw) = cipt(Ow) (9-3)

for any w € T and any v € S(w), where ¢, = ¢c’. Let v, € S(w). If u(0,,) =
(1 - G)M(Ow), then

1(Oy) = Z 1(Oy) = (1 = a)u(Ow) + Z #(Oy).

vES(w) vES(w),vA£Vs

This implies ap(Oy) > u(0,) for any v € S(w)\{v.}. By (9.3), a > c.. There-
fore, ;1(Oy) < (1 — x)p(Oy) for any v € S(w). This implies

cp(Ky) < p(Op) < (1= )" 1(Ow) < (1= )" p(Ku)
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if v e T, and |v| = |w| + m. Choosing m so that (1 — c,)™ < ¢, we see that u
is sub-exponential.
(5) As p is sub-exponential, there exists @ € (0,1) and m > 0 such that
w(Ky) < ap(Ky) if uw € T, and |u] > Jw| +m. Since p has M-volume doubling
property with respect to g, there exist A,c¢ € (0,1) such that pu(Ups(x,As)) >
c(Unr(z,s)) for any € X and any s > 0. Let 5 € (A, 1). Assume that g is
not sub-exponential. Then for any n > 0, there exist w € T" and u € Ty, such
that |u| > |w|+nm and g(u) > Bg(w). In case g(w) = g(m(w)), we may replace
w by v = [w],, for some m € {0,1,...,|w|} satisfying g(7(v)) > g(v) = g(w) or
g(v) = g(w) = 1. Consequently we may assume w € Ag(,,. Set s = g(w). Since
B > A, there exists u, € Ty, N Agy. Let € K,,,. Then by the volume doubling
property,

(U (2, As)) = cp(Uni(,5)) 2 cp(Ku).
By Lemma 9.11, there exists ¢, > 0 which is independent of n,w and w such
that

e p(Ku.) 2 p(Un(, As)).

Since p is sub-exponential,
a” e pi(Ky) 2> cxp(Ky,) > p(Un (2, X)) > cu(Kyp).
This implies a™c, > ¢ for any n > 0 which is a contradiction. O

At the end of this section, we give a proof of Theorem 7.21 by using Theo-
rem 9.9.

Proof of Theorem 7.21. If is enough to show the case where a = 1. Assume
that gg4 o 9u and d is uniformly finite. Since d is adapted, there exists M > 1

and a1, as > 0 such that
UJ(\i4(xv O‘IT) c Bd(xa T) - Uﬁ[(l’, O‘?T)

for any x € X and any r > 0.
Assume that gq4 5 9u- Then there exists ¢1, ¢y > 0 such that

cldw S Haw S C2dw

for any w € T. For any 2 € X, choose w € T such that » € K,, and w € A

agr?

then since d is super-exponential, there exists A\ which is independent of x, r and
w such that

w(Bg(z,r)) > /L(UIC\I/I(IE,OllT)) > u(Ky) > c1dy > c1Mdr(y) > crionr.
On the other hand, since d is uniformly finite, Lemma 7.17 implies
p(Ba(w,r)) < p(Ufy(,00r)) <C >~ p(Ky)
wEAizT’M(J:)

< Cey Z dy < Ccz#(A‘i%M)agr < Cyr

wEAizT,’M (z)
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Figure 3: The square ) and its subset X

Conversely, assume (7.6). For any w € T and any = € K,
Ky CUS (2,dy) C Ba(z,dy/c1).
Hence
W(Ky) < p(Ba(x,dy/c1)) < Cady/cr.
By Proposition 8.1, there exists z € K, such that

K, 2 U]%([(Zaﬂdﬂ'(w)) 2 Bd(Z,ﬁdﬂ—(w)/Cg).
By (7.6),
M(KU)) > M(Bd('z)ﬁd‘ir(w)/CQ)) > Cleﬂ(w)/C2 > Clﬂdw/cl

Thus we have shown that g4 & 9u- Furthermore, since d is M-adapted for some

M > 1, p has M-volume doubling property with respect to the weight function
gd- Applying Theorem 9.9-(3), we see that g4 is uniformly finite. In the same
way, by Theorem 9.9, both g4 and g,, are exponential. O

10 Example: subsets of the square

In this section, we give illustrative examples of the results in the previous sec-
tions. For simplicity, our examples are the subsets of the square [0, 1]2, which is
denoted by @, and trees parametrizing partitions are sub-trees of (T(¥), A ¢)
defined in Example 3.3. Note that [0,1]? is divided into 9-squares with the
length of the sides %. As in Example 4.5, the tree (T, A®) ¢) is naturally
appears as the tree parametrizing the natural partition associated with this
self-similar division. Namely, let p; = (0,0),p2 = (1/2,0),p3 = (1,0),p4 =
(1, 1/2)’1)5 = (17 1)ap6 = (1/27 ]-)ap7 = (O» 1)7p8 = (07 1/2) and py = (1/2’ 1/2)
Set W ={1,...,9}. Define F; : Q — Q by

Fi(e) = 5o~ p) +p
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for any ¢ € W. Then Fj is a similitude for any ¢ € W and

Q= U Fi(Q).

ieW

See Figure 3. In this section, we write (W, A.,¢) = (T, A9 ¢). Then
(Wi, As, @) is a locally finite tree with a reference point ¢. It follows that
|w|(w, 4.,y = m if and only if w € W, and aWedeof) (1) = wy ... Wyn_1
for any w = wy...w,, € W,,. For simplicity, we use |w| and 7 in place of
|w|(w,,A.,¢) and 7(WeAe:®) respectively hereafter. Define g : W, — (0,1] by
g(w) = 31l for any w € W,. Then g is an exponential weight function.

As for the natural associated partition of @), define F,, = F,, o...0F,,  and
Quw = Fy(Q). for any w = wq ... w, € W,,. Set Q.(w) = Q, for any w € W,.
(If w = ¢, then Fy, is the identity map and Q4 = Q.) Then Q. : W, — C(Q, O) is
a partition of ) parametrized by (W, A, ¢), where O is the natural topology
induced by the Euclidean metric. In fact, Np>0Q),, for any w € X, where
¥ = WW, is a single point. Define 0 : £ — @ by {o(w)} = Npm>0Quy,, -

It is easy to see that the partition @), is minimal, g is uniformly finite, g is
thick with respect to the partition Q., and the (restriction of) Euclidean metric
dg on @ is 1l-adapted to g.

In order to have more interesting examples, we consider certain class of
subsets of @ whose partition is parametrized by a subtree (T, A.|rxr, @) of
(W, As, ¢). Let {I,,}m>0 be a sequence of subsets of W, satisfying the following
conditions (SQ1), (SQ2) and (SQ3):

(SQ1) For any m > 0, I, € Wy, and if Ini1 = {wilw € I,,,i € W}, then
[m—i-l ) Im+1- =N .

(SQ2) QunNQy,=0ifwe€ I,y and v € L1\ L1

(SQ3) For any m > 0, the set Uyer,, Qw is a disjoint union of rectangles
R = [a]", 0] x [c]',d]] for j=1,... k.

See Figure 3. By (SQ2), we may assume that k,, < ky41 and RJ* =
R;"‘H for any m and any j = 1,...,k,, without loss of generality. Under
this assumption, we may omit m of R7",a’",b7",c]" and dj* and simply write
R;,a;,b;,c; and d; respectively.

Notation. As a topology of @ = [0, 1] x [0, 1], we consider the relative topology
induced by the Euclidean metric. We use int(A4) and A to denote the interior
and the boundary, respectively, of a subset A of @ with respect to this topology.

Note that int(Uyer,, Quw) = Uj=1,... k,, int (R;).
Proposition 10.1. (1) Define

X(m):Q\< U int(Rj)>.
km

j=1,...,

then X(™) O X+ for any m > 0 and X = ﬂmzoX(m) is a mon-empty
compact set. Moreover, OR; C X for any j > 1.
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(2) Define (T)m = {wjw € Wy,,int(Qy) N X # 0} for any m > 0. If T =
Un>0(T)m and A = Alrxr, then (T, A, ¢) is a locally finite tree with the
reference point ¢ and #(S(w)) > 3 for any w € T. Moreover, let

Yr =A{wlw € I, [w]m € (T)m, for any m >0}

Then X = o(X7).

(3) Define Kyy = QuwNX foranyw €T. Then Ky #0 and K : T — C(X)
defined by K(w) = Ky, is a minimal partition of X parametrized by (T, A, ¢).
Moreover, g|r is exponential and uniformly finite.

To prove the above proposition, we need the following lemma.

Lemma 10.2. If w € T, then Ujew, wigrQui s a disjoint union of rectangles
and #({ili e W,wi € T}) € {3,5,7,8,9}.

Proof. Set I = {ili € W,wi ¢ T}. For each i € I, there exists k; > 1 such that
Qui € Ry,. Hence UicrQui = Uier(Quw N Ry, ). Since {R;};>1 are mutually
disjoint, we have the desired conclusion. Assume that I = W. Suppose |i —j| =
1. Since Qui N Qu; # 0, we see thatRy, = Ry,. Hence Ry, = ... = Ry,
and Q, C Ryg,. This contradicts with the fact that int(Q.,) N X # @. Thus
I # W. Considering all the possible shape of Ujcw,wigrQui, we conclude
#{ili e W,wi € T}) € {3,5,7,8,9}. O

Proof of Proposition 10.1. (1) Since {X(™1,,5¢ is a decreasing sequence of
compact sets, it follows that X is a nonempty compact set. By (SQ2), R;NR; =
() for any ¢ # j. Therefore, OR; C X (™) for any m > 0. Hence OR; C X.

(2) Ifw € (T)m, then int(Qr(w))NX 2 int(Qy)NX # 0. Hence m(w) € (T)p—1.
Using this inductively, we see that [w], € (T) for any k € {0,1,...,m}. This
implies that (T, A, ¢) is a locally finite tree with a reference point ¢. By
Lemma 10.2, we see that #({i|i € W,wi € (T)m+1}) > 3. Next if w € X,
then for any m > 0, there exists x,, € int(Q[.),,) N X. Therefore, v, — o(w)
as m — oo. Since X is compact, it follows that o(w) € X. Conversely,assume
that z € X. Set Wy, = {w|lw € W,,,z € Q,}. Note that #(c~!(z)) < 4
and Uyew,, , Quw is a neighborhood of . Suppose that (T),, N Wy, , # 0 for
any m > 0. Then there exists wy, € (T)m, N Wy, such that z € Q,,,. Since
Wiz = {[w]m|w € 07 ()}, there exists w € o~ !(z) such that [w],, = w, for
infinitely many m. As int(Qy,,,) is monotonically decreasing, it follows that
[Wlm € (1), for any m > 0. This implies x € o(Xr). Suppose that there
exists m > 0 such that W,, , N (T),, = 0. Consequently, for any w € W, ,,
int(Q,) N X = 0 and hence there exists j,, > 1 such that Q,, € R;, . Note
that Qu N Qu # 0 for any w,w’ € Wy, , and hence R;, = R; ,. Therefore,
Uwew,, ,Qw € R; for some j > 1. Since Uyew,, ,Qw is a neighborhood of z, it
follows that ¢ X. This contradiction concludes the proof.

(3) The fact that K is a partition of X parametrized by (T, A|lrxT,®) is
straight forward from (1) and (2). As Ky \(Upe(r),, v2wv) is contained in

the sides of the square Q,,, the partition KX is minimal. Since A T _ (7)., if
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and only if % <s < 37,1%1, it follows that g|r is exponential. Furthermore,

AngT(w) C {vjv € Wy, QuNQy # 0} for any w € (T'),,. Hence #(Af‘lT(w)) <8.
This shows that g|r is uniformly finite. U

Now, we consider when the restriction of the Euclidean metric is adapted.

Definition 10.3. Let R = [a,b] X [¢, d] be a rectangle. The degree of distortion
of R, k(R), is defined by

k(R) = max{l, (1 —0c0)(1 — 5d1):3__il’ (1= 640)(1 — 0p1) :Z:;: }’

where d,, is the Kronecker delta defined by d,, = 1 if z = y and d,y = 0 if
x # y. Moreover, for k > 1, we define

R? = {R|R is a rectangle, R C Q and s(R) < r}
and

RL = {R|R C Q, R is a rectangle, there exists w € T such that Q,,\int(R)

has two connected components and «(Q,, N R) < k}

The extra factors (1 —d¢0), (1 — da1), (1 — da0) and (1 — dp1) become effective
if the rectangle R has an intersection with the boundary of the square Q.

Theorem 10.4. Let d be the restriction of the Euclidean metric on X. Then
d is adapted to gl if and only if the following condition (SQ4) holds:
(SQ4) There exists k > 1 such that R; € RS URL for any j > 1.

Several lemmas are needed to prove the above theorem.

Lemma 10.5. Define N(x,y) = min{[— loggglgyl‘], [— loggégyﬂ]} for any x =
(z1,22),y = (y1,92) € Q.

(1)
1 V2

3N($,y)+1 < d(.T, y) < 3N(z,y)

(2) If z,y € X, then there exist w,v,u € Wy (s, such that w,v € T, x € Qu,
YEQu, QuNQy#0 and Q,NQ, # 0.

Proof. Set N = N(z,y). Let n; = [—%] for i = 1,2. Then N =

min{ny, ne} and
1
3T < |5 —y;| < 3N

if n; = N. This yields (1). Since z,y € X, then there exists w,u € (T),, such
that x € K, and y € K,,. Since |x; —y1| < 1/3V and |2o — y2| < 1/3V, we find
v € Wy, such that Q, NQ, # 0 and Q, N Q,, # 0. O
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Notation. For integers n, k,l > 0, we set

3’17(’6;1)] " [3&17(5;1)}

Q(n, k1) = [

Lemma 10.6. Assume (SQ4). Let M = [log (2x)/log 3]+ 1 and L = 2[2k] +9.
If w,v € (T)y and Qu N Qy # B, then there exists K-chain (w(l),...,w(L))
such that w € Tyy1y, v € Ty and |w(k)] > m — M.

Proof. Case 1: Assume that Q,, N Q, is a line segment. Without loss of gener-
ality, we may assume that Q, = Q(m,k — 1,1) and Q, = Q(m, k,1).

Case la: K, N K, # 0, then (w,v) is a desired K-chain.

Case 1b: In case K,,NK, = (), then Q,NQ,NK,, and Q,,NQ,NK, are disjoint
closed subsets of Q, NQ,. Since @, NQ, is connected, there exists a € Q, N Q,
such that a ¢ K, N K,. Since K,, U K, is closed, there exists an open neigh-
borhood of @ which has no intersection with K, N K,,. This open neighborhood
must be contained in R; for some j. So, we see that R; Nint(Q, N Qy) # 0
and (k—1)/3™ < a; < k/3™ <b; < (k+1)/3™. If ¢; > 1/3™, then the line
segment [a;,b;] x {¢;} € X, we see that K,, N K, # (. Therefore ¢; < 1/3™.
By the same argument we have d; > (I +1)/3™. Now if R; € RY, it follows
that |d; —¢j| < 2k/3™. Hence the line segment [a;,b;] X {¢;} and [a;, b;] x {d;}
are covered by at most 4 pieces of K,’s for u € (T),, and the line segment
{a;} % [¢;,d;] and {b;} X [¢;, d;] is covered by at most 2k + 2 pieces of K,,’s for
uw € (T),. Since K,, and K, are pieces of these coverings, we obtain a K-chain
(w(1),...,w(k)) from these coverings where w(1) = w,w(k) = v and | < 2k+5.
Next assume R; € RL. Note that 2x/3™ < 1/3m~M. By the definition of
R, there exists u € (T');,— such that @Q,\R; has tow connected component.
Sifting @, up and down, we may find v’ € (T),,—ns such that Q, UQ, C Q..
Then (v') is a desired K-chain.

Case 2: Assume that @, N @, is a single point. Without loss of generality,
we may assume that @, = Q(m,k — 1,1 — 1) and Q, = Q(m,k,1). Choose
u(1),u(2) € Wy, so that Q) = Q(m, k — 1,1) and Q2) = Q(m, k + 1,1 —1).
If neither u(1) nor u(2) does not belong to T'. Then there exist ¢, j > 1 such that
Quay € R; and Q2 C R;. Since Q) N Quez) # 0, it follows that R; = R;
and hence Q. U @, C R;. This contradicts to the fact that w,v € T. Hence
u(l) € T or u(2) € T. Let u(1) € T. Then Q, N Qy1) and Q1) N Q, are line
segments. By using the method in (1), we find a chain between w and u(1) and
a chain between u(1) and v. Connecting these two chains, we obtain the desired
chain (w(1),...,w(L)). O

Proof of Theorem 10.4. Assume (SQ4). Let z,y € X. Define N = N(x,y) and
choose w,v,u € Wy as in Lemma 10.5. We fix the constants M and L as in
Lemma 10.6. There are two cases.

Case 1: Suppose v € T. Applying Lemma 10.6 to two pairs {w,v} and {v,u}
and connecting the two resultant chains, we obtain a K-chain (w(1),...,w(2L—
1)) € CHk(w,y) satisfying w € Tyy1),u €€ Tyer—1) and [w(i)] > N — M for
any 7. This concludes Case 1.
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Case 2: Suppose v ¢ T. If Q,, N Q, # 0. We have K-chain (w(1),...,w(L)) €
CH(z,y) satisfying w € Tyy(1), u € Tyyr) and |w(i)] > N — M for any i by
Lemma 10.6. Assume Q,, N Q. = . Without loss of generality, we may assume
one of the following tree situations (a), (b) and (c):

(a) Qw = Q(Nakf 1717 1) and Qu = Q(Nak+1alf 1)

(b) Quw=Q(N,k—1,0—1) and Q, = Q(N, k +1,1).

() Qu=Q(N,k—1,01—1)and Q, = Q(N,k+ 1,1+ 1).

Set Qu1) = Q(N,k,1 —1) and Q,(2) = Q(N, k,1). In each case, 1 = k/3N
and y; = (k+1)/3V.

First consider cases (a) and (b). If either v(1) or v(2) belongs to T, then
replacing v by either v(1) or v(2), we end up with Case 1. So we assume
that neither v(1) nor v(2) belongs to T. Then there exists j > 1 such that
Qu(1) UQ]\§2) C R;. Since 1 = k/3Y and y1 = (k+1)/3Y, a; = k/3Y and b;

(k+1)/3 Then by the same argument as in the proof of Lemma 10.6, there
ex1sts K-chain (w(1),...,w(L)) € CHx(x,y) such that w € Ty, u € Ty(r)
and |w(i)] > N — M for any i.

Next in the situation of (c), z = (k/3V,1/3N), y = ((k +1)/3N, (1 +1)/3V)
and v = v(2). Since v = v(1) ¢ T, there exists j > 1 such that @, C R;.
Note that z,y € X N Q,. Hence Q, = R;. Choose v(3),v(4) € Wx so that
Quz) = Q(N,k+ 1,1 — 1) and Quuy = Q(N,k +1,1). Then v(3),v(4) € T and
therefore (w,v(1),v(3),v(4),u) is a K-chain between x and y. This concludes
Case 2.

As a consequence, we may always find a K-chain (w(1),...,w(2L — 1)) €
CHi (x,y) satisfying |w(i)| > N(z,y) — M for any i. By Lemma 10.5-(1),

1
3M+1d(xvy) > 31”37]\7 2 3w (i) = g(w(i)).
Thus we have verified the conditions (ADa) and (ADb)sp,—2 in Theorem 6.4.
Hence d is (2L — 2)-adapted to g|7 by Theorem 6.4.
Conversely, assume that d is J-adapted to g|r. By (ADb);, there exists
C > 0 such that for any =,y € X, there exists a K-chain (w(1),...,w(J+1)) €
CHk(z,y) satisfying

Cd(z,y) > (10.1)

= glw()]
for any i = 1,...,J + 1. Set M = [log (v2C)/log3] + 1. Suppose that (SQ4)
does not hold; for any x > 1, there exists R; ¢ R2 URL. In particular, we
choose k > 3M+2. Write R = R; and set R = [a,b] X [c,d]. Define OR; =
{a} x [¢,d] and ORg = {b} x [¢,d]/ (The symbols “L” and “R” correspond to
the words “Left” and “Right” respectively.) Without loss of generality, we may
assume that |a — b| < |e¢ — d|. Since R ¢ R, we have k|b — a| < |d — ¢|. Let
x = (a,(c+d)/2) and let y = (b,(c +d)/2). Set N = N(z,y). There exists
(w(l),...,w(J+1)) € CHk(z,y) such that (10.1) holds for any ¢ = 1,...,J+1.
By Lemma 10.5-(1),

lw(i)| > N - M (10.2)
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forany i =1,...,J+1. Define A = [0,1] x (¢, d). If Qu;) € A, Quu)NORL # 0
and Qy;) N ORk # 0, then the fact that R ¢ R} along with Lemma 10.5-(1)

shows
K 1

(z,y) > 3N+1 Z 3N+M-1"

klb—al = kd (10.3)

1
3lw(@)] 2
This contradicts to (10.2) and hence we verify the following claim (I):
(I 1f Qw(i) C A, then Qw(i) NORy =0 or Qw(i) NORg = 0.

Next we prove that there exists j > 1 such that Q,;)\A # 0. Otherwise,
Qu(iy € A for any i = 1,...,J + 1. Let A = [0,a] x (c,d) and let Ap =
[b,1] x (¢,d). Define I, = {ili = 1,...,J + 1,Quu) N AL # 0 and Ir = {i|li =
L., J+1,QuuNAg # 0}. Since K,;) € X NAC AL U Ag, it follows that
{1,...,J + 1} = I, U Ir. Moreover, the claim (I) implies I;, N I = (). Hence
I, = {’L|7, = 1,...,J+1,Kw(i) CAp and Ig = {’L|Z = 1,...,J+1,Kw(i) - AR}
This contradicts to the fact that (w(1),...,w(J 4+ 1)) is a K-chain between x
and y. Thus we have shown that there exists j > 1 such that Q,;\A # 0.
Define i, = min{ili = 1,...,J +1,Q,)\A # 0}. without loss of generality, we
may assume that Q) N [0,1] x {d} # 0. Set

c+d 1
2 ’d_gww(mw :

ORT = {a} x
Shifting Q. ;)’s for i = 1,...,4, — 1 horizontally towards Ry, we obtain a
covering of ORY. Note that the length of ORY is |d — ¢|/2 — 1/3!"()| and

|d — ¢ 1 S k|b — al 1
2 3wl = 2 3N-M

K 1 k 1 1
= §d(x,y) T 3N-M = 93N+l 3gN-M’

On the other hand, the lengths of the sides of @, (;)’s are no less that 1/3N-M
by (10.2). Hence

. Nemf K 1 1 Kk 1
=123 (23N+13N_M>223M+1

Since J + 1 > i,,
2(J +1)3M+1 > k.

This contradicts to the fact that x can be arbitrarily large. Hence we conclude
that (SQ4) holds. O

In the followings, we give four examples. The first one has infinite connected
components but still the restriction of the Euclidean metric is adapted.

Example 10.7 (Figure 4). Let X be the self-similar set associated with the
contractions {Fy, F3, Fy, F5, Fr, Fg}, i.e. X is the unique nonempty compact set

which satisfies
X = E(x),
€S
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Figure 4: Examples 10.7 and 10.8

where S = {1,3,4,5,7,8}. Then X = C5x 0, 1], where Cj is the ternary Cantor
set. Define (T),, = S™ and T' = Up>1(T)m. If Ky = Fy(X) for any w € T,
then K is a partition of X parametrized by (T, A|r, ¢). Define

12 2 i 1 g 2
Iy = {5, g} x[0,1] and I . 4, = |:Z3_k + W’ZS_’C + W] x [0, 1]
k=1 k=1

for any 1 > 0 and any 41,...,i, € {0,2}. Then
{Rj}j21 = {I¢'7Ii1,---7in|n >1,41,...,1, € {072}}

Set Jiyin = [Dopet 2,5y & + 2] % [0, %] Then there exists w € (T),
such that J;, ;. = Qu, Qu\int(l;, ;) has two connected component and
K(QuwN I . ,zn) = 3. Therefore, {R;};>1 C R} and hence d is adapted to g|7.

The second example is the case where the restriction of the Euclidean metric
is not adapted.

Example 10.8 (Figure 4). Set ©; = 35 — 47, ¥; = = + 557 and R; =
[z;,y;] x [0,1] for any j > 1. Define X = Q\(U;>1int(R;)). Let T' = {w|w €
W, int(Qu)NX # 0} and let K, = XNQ,, for any w € T. Then K : T — C(X)
is a partition of X parametrized by (T, A|rx1, ) by Proposition 10.1. In this

case, we easily see the following facts:
e k(R;) =3%/2for any j > 1,
o If w € Upy>i(T)m, then Qy,\int(R;) is a rectangle,

e Set (1)" % lme1S € (T)n. Then Q1);—1\int(R;) has two connected com-

ponents and £(Q1)-1 N R;) = 2371

These facts yield that R; ¢ 'R2 3 2 4; for sufficiently large j. By Theo-
rem 10.4, d is not adapted to g|r. In fact D3, ((x;,0), (y,0)) = 37U~ for any
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Example 10.9 Example 10.10

Figure 5: Example 10.9 and 10.10

j > 1 while d((z;,0), (y:,0)) = 2:37%/. Hence the ratio between DJ}'(-,-) and
d(-,-) is not bounded for any M > 0.

Furthermore, let d.(x,y) = d(z,y)/v2 for any x,y € X. Then g|r = ga..
Since d is not adapted to g|r, it follows that d, is not adapted to g|r as well.
Hence d, is not adapted.

The third one is the case when the restriction of the Euclidean metric is not
l-adapted but 2-adapted.

Example 10.9. Define

w(f) = (1)719(1)
R; = Qw*(j)

o= [2]

for j € N and m € N. Note that (1) = 1...1 as is defined in Example 10.8.
n

-times

Then it follows that T = T\ Ujen Tu(i)(j), where T = {wiyiag ... |i1,ia,... €

{1,...,9}}. Let g(w) = 371*! for any w € T. Define w(m) = (1)™'9 and
v(m) = (1)™. Then (w(m),(1)™ 18(3)*,v(m)) is a chain for k = 0,1,...,m.
See Figure 5. Therefore, w(m) and v(m) are l-separated in Aj_,, but not 2-
separated in Aj_,,. This means that the condition (EV5),, for M = 1 does
not hold. Therefore, there exists no metric which is 1-adapted to g¢ for any
a > 0. On the other hand, since x(R;) = 1 for any j € N, the restriction of
the Euclidean metric to X, which is denoted by d, is adapted to g. In fact, it is
easy to see that d is 2-adapted to g. As a consequence, d is not 1-adapted but
2-adapted to g.

In the fourth example, we do not have thickness while the restriction of the
Euclidean metric is adapted.
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Example 10.10. Define AQ = (R?\Q) N Q, which is the topological boundary
of @ as a subset of R%. Let Iy = 0 and let E = {1,3,5,7}. Define {I,,},>0

inductively by Io;,—1 = Igm 1 and Iy, = Jp, U Igm for m > 1, where
Jm = {v9w|v € E™ L w € Wy, Qu N AQ # 0}

{In}m>o0 satisfies (SQ1), (SQ2) and (SQ3). In fact, if Jp,, = {vIwjw €
Wi, Qu NAQ # 0} for any v € E™ 1, J,, , is a collection of (3™ — 2)2-words
in Wa,,. Set R(v) = Uyey,, ,Qu for any m > 1 and v € E™=1. See Figure 5.
Then {R;};>1 = {R(v)lm > 1,v € E™ '}, More precisely R(v) C Q9 and it
is a square which has the same center, namely the intersection of two diagonals,
as Quo and the length of the sides is 35 (1 — 3% ). Note that the length of the
sides of Q9 is 3%,1 Hence the relative size of R(v) in comparison with Q.9 is
monotonically increasing and convergent to 1 as m — oo. The corresponding
tree (T, A|r, ¢) and the partition K : T — C(X) of X = Q\ U;j>1 int(R;) has
the following properties:

Let d be the restriction of the Euclidean metric to X. Then

(a) d is adapted to g|r.
(b) g|r is exponential and uniformly finite.

(c) Let s be the restriction of the Lebesgue measure on X. Then p, has the
volume doubling property with respect to d.

(d) s is not gentle with respect to g|r.
(e) p.« is not super-exponential.
(f) g|r is not thick.

In the rest, we present proofs of the above claims.

(a) Since k(R,,) = 1 for any m > 1, we see that {R,,}m>1 C RY. Hence
Theorem 10.4 shows that d is adapted to g|r. In fact, d is 1-adapted to g|r in
this case.

(b) This is included in the statement of Proposition 10.1-(3).

(¢) Ifve Al and Q, = K., then . (K,) = 971 and hence p, (K,,) < 9714l =
9=+l < 94, (K,) for any u € A", Therefore, v € O(s, 3, k,9) for any k > 1.
on the other hand, for any w € T, there exists v € Ang( ) such that K, = Q,.

Therefore, we see that AgllT( )N BO(s,3,3,9) # 0. By Lemma 9.7, we have (c).
(d) and (e) Set w(m) = (1)™'9. Then Kyum) = Qum)\int(Rp), where
Ry = Uwes,,Qu. Then p,(Ky(my) = 4(3™ — 1)3=%™, On the other hand, if
v(m) = (1)™~18, then j1, (Ky(m)) = 372™. Since Ky () N Kym) # 0, pix is not
gentle with respect to g|7. Moreover, since Ky (y(m)) contains Q, (), we have
s (K (w(m)) > 372m, This implies that p, is not super-exponential.

(f) To clarify the notation, we use B(x,r) = {yly € Q,|x —y| < r} and
B.(x,r) = B(xz,r) N X. This means that B.(z,r) is the ball of radius r with
respect to the metric d on X. Assume that g|r is thick. Since K is minimal,
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Proposition 8.2 implies that K,,n) 2 B.(z, ¢3™™) for some x € K y(m), where
c is independent of m and x. However, for any x € K, (), there exists y €
X\K,(m) such that [z —y| < 2-372™. This contradiction shows that g|7 is not
thick.

11 Gentleness and exponentially

« R

In this section, we show that the gentleness o is an equivalence relation

among exponential weight functions. Moreover, the thickness of the interior,
tightness, the uniformly finiteness and the existence of visual metric will be
proven to be invariant under the gentle equivalence.

As in the section 9, (T, A, ¢) is a locally finite tree with a reference point ¢,
(X, 0) is a compact metrizable space and K : T — C(X, O) is a partition of X
parametrized by (T, A, ¢).

Definition 11.1. Define G.(T') as the collection of exponential weight functions.

Theorem 11.2. The relation o is an equivalence relation on G.(T).

Several steps of preparation are required to prove the above theorem.
Definition 11.3. (1) Let A CT. For m > 0, we define S™(A) C T as
Sm(A) = U {v\v € (T)m+|w\v [v]\wl = w}'
weA

(2) Let g : T — (0,1] be a weight function. For any w € T, define
Ny(w) = min{n|n > 0,7"(w) € Ai(w)}

and 7 (w) = Vo (@) ().
(3) (u,v) € T x T is called an ordered pair if and only if u € T, or v € T,.
Define |u,v| = ||u| — |v|| for an ordered pair (u,v).

Note that if g(w) < 1, then we have

N, (w) = min{nln > 0,g(x"+ () > g(w)}.
Therefore, if g(m(w)) > g(w) for any w € T', then Ny(w) = 0 and 7;(w) = w
for any w e T.

The following lemma is immediate from the definitions.

Lemma 11.4. Let g : T — (0,1] be a super-exponential weight function, i.e.
there exists v € (0,1) such that g(w) > vg(m(w)) for any w € T. If (u,v) is an
ordered pair, then g(u) < v~ !"lg(v).

Lemma 11.5. Let g : T — (0,1] be a weight function. If g is sub-exponential,
then sup,,cp Ng(w) < +00.
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Proof. Since g is sub-exponential, there exist ¢ € (0,1) and m > 0 such that
cg(w) > g(u) if w e T, u € Ty, and |u,v| > m. This immediately imply that
Ny(w) < m. O

Lemma 11.6. Assume that g,h € G.(T) and h is gentle with respect to g.
Then there exist M and N such that 7"(u) € A" for some n € [0, N] when-
ever s € (0,1], w € A" and u € SM(AZ(M) (w5 (w))). Moreover, define ng:l!
SM(Ag(w)’l(’ﬂ'; (w))) = Ab by n&h(u) = 7" (u). Then it follows that A%, (w) C

B (GM(AY
né’,w(s (Ag(w)J
any v € A% (w), there exists u € A

pair and |u,v| < max{M, N}.

(w5 (w)))). In particular, for any s € (0,1], any w € Al and
9

g(wm(ﬂ'g(w)) such that (u,v) is an ordered

Proof. Since h is sub-exponential, there exist ¢; € (0,1) and m > 0 such that
cih(w) > h(u) for any w € T and any v € S™(w). Let w € A" and let
w' = mp(w). Set t = g(w). Let v € A (w’). As h is gentle with respect to g,
there exists ¢ > 1 such that

h(w')/e < h(v) < ch(w’),

where c is independent of s,w and v. By Lemma 11.5 and the fact that h is
super-exponential, there exists ¢/ > 1 such that

h(w)/c < h(v) < ' h(w)

for any s, w and v. Using this, the sub-exponentially of h and Proposition 7.16,
we see that there exist ¢/ > 0 and M which are independent of s and w
such that ¢’s < h(u) < s for any u € SM(A{ (w')). Choose k so that
c’(c1)7% > 1. Then h(7*™(u)) > (c1) " *h(u) > ¢’(c1) *s > 5. Set N = km —1.
Then, for any u € SM(A] (w')), there exists n(u) such that n(u) < N and
7" (u) € A", Now for any p € A | (w), there exists v € A (w') such that
(p,v) is an ordered pair. Since 7™(*)(u) = p for any u € SM(v), it follows that

ng:h(SM (AZ(w) L(mi(w)))) 2 AL (w). The rest is straight forward. O

Finally we are ready to give a proof of Theorem 11.2.
Proof of Theorem 11.2. Let g,h,& € G.(T). Then there exists v € (0,1) such

that g(w) > 1g(x(w)), h(w) > vh(n(w)) and &(w) > vE(x(w)) for any w € T.
First we show g & 9 By Proposition 7.16, there exists ¢ € (0,1) such
that if w € AY, then cg(w) < s < g(w). As a consequence, if w,v € A?, then
g(w) < s/e < h(w)/ec < s/c* < g(w)/c?. Thus g &9
Next assume g ol h. Suppose that w,v € A" and K,, N K, # (). Since

v € A} (w), Lemma 11.6 implies that there exists u € Ag(w) L (7 (w)) such that
(u,v) is an ordered pair and |u, v| < L, where L = max{M, N}. By Lemma 11.4,

9(v) = v"g(u) = y"g(w). Hence b ~ g.
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Finally assume that g o h and h ol ¢. Suppose that w,v € A§ and

K,NK, # (. Since v € Ag}l(w), Lemma 11.6 implies that there exists
u € Az(w),l(ﬂ;(w)) such that (u,v) is an ordered pair and |u,v|] < L. By
Lemma 11.4, it follows that g(v) > yFg(u). Set s’ = h(w) and v’ = 7} (w).
Note that w' € A} and u € A% (w’). Again by Lemma 11.6, there exists
a € Ai(w/m(ﬂ;(w’)) such that (u,a) is an ordered pair and |a,u] < L. By
Lemma 11.4, it follows that g(u) > ~vFg(a) > ~vFg(n}(w)). By Lemma 11.5,
Np(w) is uniformly bounded and hence there exists ¢, > 0 which is indepen-
dent of s, w and v such that g(7}(w)) > c.g(w). Combining these, we obtain
g(v) > v g(m; (w)) > v?Lesg(w). Hence € o9 Consequently we verify g é\ng

by the above arguments. O

Next, we show the invariance of thickness, tightness and uniform finiteness
under the equivalence relation &

Theorem 11.7. Let g,h € G.(T). Suppose g & h.

(1) Suppose that sup,,cr #(S(w)) < +o0. If g is uniformly finite then so is h.
(2) If g is thick, then so is h.
(3) If g is tight, then so is h.

We need the next lemma to prove Theorem 11.7.

Lemma 11.8. Let g,h € G.(T). Assume that g is gentle with respect to h.
Then for any « € (0,1] and M > 0, there exists v € (0,1) such that

U]‘(\]/[(l‘, ag(w)) 2 Uﬁ/[ (mv fyh(w))
forany w € T and x € K,,.

Proof. Since g and h are exponential, there exist ¢1,ce € (0,1) and m > 1 such
that h(w) > cah(m(w)), g(w) > cag(m(w)), h(v) < crh(w) and g(v) < ¢1g(w) for
any w € T and any v € S™(w). Moreover, since g is gentle with respect to g,
there exists ¢ > 1 such that g(w) < cg(u) whenever w,u € A" and K,,NK, # 0.
Note that Ng(w) < m and Np(w) < m for any w € T.

Let w € T and let 2 € K,,. Assume that v < (c2)!™. Let v € Azh(w) olT).

Then h(m(v)) > yh(w) > h(v). There exists k > 0 such that 7*(v) € AZ(w).
Then h(7*+1(v)) > h(w) > h(7*(v)). Thus we have

Yh(7* T (v)) = h(v)
Therefore, it follows that k + 1 > Im. Let w, = ﬂ'N“(“’)(w). Then we see

that & € K i1,y N Ky, Therefore, ¢ 1g(w,) < g(7*(v)) < cg(wy). Since
k+1>Im and Np(w) < m, it follows that

9(v) < (e1)'g(x" " (v)) < ele1)'g(w.) < e(er)'(e2) " g(w).
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Now suppose that (w(1),...,w(M + 1)) is a chain in A:h(w) with w(l) €

A,’;h(w),o(x). Using the above arguments, we obtain

g(w(i) < ¢ g(w(1)) < ¢'(e1)!(e2) " g(w) < M (er)! (e2) Mg (w)

for any i = 1,..., M + 1. Choosing [ so that ¢c™*1(c;)!(ca)™™ < a, we see that
Upy (@, 7h(w)) € Ujy (2, ag(w)). .

Proof of Theorem 11.7. (1) Set L = sup,er #(S(w)). By Lemma 11.6, it
follows that #(A%,(w)) < LM#(Ag(w)71(7T;(w))). This suffices to the desired
conclusion. '
(2) Since g is thick, by Proposition 8.1, for any M > 0, there exists 5 > 0 such
that, for any w € T,

Ky 2 Ul (. By(n(w)))

for some x € K,,. By Lemma 11.8, there exists v € (0,1) such that

U3y (. Bg(m(w))) 2 Ugy (@, vh(m(w)))

for any w € T. Thus making use of Proposition 8.1 again, we see that h is thick.
(3) Since g is tight, for any M > 0, there exists & > 0 such that, for any w € T,
K, \U{ (z, ag(w)) # 0 for some z € K,,. By Lemma 11.8, there exists v € (0, 1)
such that U{,(z, ag(w)) 2 Ul (z,vh(w)) for any w € T and x € K,,. Hence

sup 8y (z,y) > vh(w)
z,ye K,

for any w € T'. Thus we have shown that h is tight. O

Finally, the existence of visual metric is also invariant under o 38 follows.
E

Theorem 11.9. Assume that the partition K : T — C(X, Q) is minimal. Let
g,h € Ge(T) and let M € N. Assume that g & h. Then g satisfies the condition

(EV),, if and only if h satisfies the condition (EV),,.

Proof. Since g and h are exponential, there exists A € (0,1) and m > 1 such
that

ifweT, w,w €Ty, |w|—|w >mand |w

there exists 7 > 1 such that if w,v € AY and K,, N K, # 0, then h(w) < nh(v)

and if w,v € A" and K,, N K,, # 0, then g(w) < ng(v). Fix k € N satisfying
MAk <1
MR < 1

Now assume that g satisfies (EV),,. Let w,v € A" and assume that (w,v)

is M-separated in A". Set t = g(v). Suppose that (w,v) is not M-separated

in A{,..,. Then there exists a chain (w.(1),...,w.(M — 1)) in AY,,,, such

| —|w| = 1. Moreover, since g o h,
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that (w,w«(1),...,w«(M — 1),v) is a chain. Choose v. € A%,,., N T, so that
Ky, (m—1)NK,, #0. Since g(v.) < Xt = Xmg(v), it follows that |v.| —[v] >

km. Then we have
h(ws(i)) < nMh(v.) < M MNeh(v) < h(v).

Hence there exists a chain (w(1),...,w(M — 1)) in A" such that w, (i) € T,
for any 4 = 1,..., M — 1. This implies that (w,v) is not M-separated in A".
This contradiction implies that (w,v) is M-separated in Af,,,,.

Since (EV5),, holds for g, we see that (w,v) is (M +1)-separated in A? ...
Set t, = TA¥"t. Choose v’ € A{ NT,. Then exchanging g and h and using the
same argument as above, we see that (w,v) is (M + 1)-separated in Aikmh(v’)‘

Since h is exponential, Proposition 7.16 shows that there exists ¢ > 0 such
that ¢r < g(u) < r for any r € (0,1] and any u € A9. Choose n, so that
A" < er. Suppose |v'| — |v] > (km + n.)m. Then

NmEne g (1) < er A g(v) < ety < g(v') < AP g (),

This contradiction yields that |v'| — |v| < (km + n.)m. Therefore, h(v') >
AEmAnagmp () > \kmtngmg - Thys \kmp(y/) > AEmtnatkmg - Qet 1, =
Alkmtn.+k)m - Then (w,v) is (M + 1)-separated in A" . Thus we have shown
that (EV5),, is satisfied for h.

O

12 Quasisymmetry

In this section, we are going to identify the gentleness equivalence “&JE” with

the quasisymmetry equivalence 58 among the metrics under certain conditions.

As in the last section, (T, A, ¢) is a locally finite tree with a reference point ¢,
(X, 0) is a compact metrizable space and K : T'— C(X, O) is a partition of X
parametrized by (T, A, ¢) throughout this section.

Definition 12.1 (Quasisymmetry). A metric p € D(X, ) is said to be qua-
sisymmetric with respect to a metric d € D(X, ) if and only if there exists
a homeomorphism h from [0,400) to itself such that h(0) = 0 and, for any
t >0, p(x,z) < h(t)p(x,y) whenever d(zx, z) < td(z,y). We write p it dif pis

quasisymmetric with respect to d.

It is known that o is an equivalence relations on D(X, O).

Definition 12.2. Let d € D(X,0). We say that d is (super-, sub-)exponential
if and only if g4 is (super-, sub-)exponential.

Under the uniformly perfectness of a metric space defined below, we can
utilize a useful equivalent condition for quasisymmetry obtained in [10]. See the
details in the proof of Theorem 12.4.
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Definition 12.3. A metric space (X, d) is called uniformly perfect if and only
if there exists € > 0 such that By(z, (1 + €)r)\Bg(z,r) # 0 unless By(z,7) = X.

Lemma 12.4. Let d € D(X,0). If d is super-exponential, then (X,d) is uni-
formly perfect.

Proof. Write dy, = gq(w) for any w € T. Since d is super-exponential, there ex-
ists ¢2 € (0,1) such that d,, > czdw(w) for any w € T. Therefore, s > d,, > cos
if w € AL For any x € X and any r € (0,1], choose w € Ad/zo(x). Then

d(z,y) < dy < r/2 for any y € K,. This shows K,, C By(x,r). Since
diam(Bg(z, cor/4),d) < cor/2 < dy,, it follows that K, \Ba(z,car/2) # 0.
Therefore By(z,7)\Bg(z, car/2) # 0. This shows that (X,d) is uniformly per-
fect. O

Definition 12.5. Define
Dae(X,0) ={d|d € D(X,0),d is adapted and exponential.}
The next theorem is the main result of this section.
Theorem 12.6. Let d € D4 (X,0) and let p € D(X,0). Then d G P if and

only if p € Da(X,0) and d &P

Remark. In the case of partitions of self-similar sets introduced in Example 4.5,
the above theorem has been obtained in [11].

The following corollary is straightforward from the above theorem.

Corollary 12.7. Let d,p € D4 (X,0). Then d as p if and only if d &9

The rest of this section is devoted to a proof of the above theorem.

Proof of Theorem 12.6: Part 1. Assume that d and p belongs to D4 (X, O).
We show that if d o P then d fd p. By Lemma 12.4, both (X,d) and (X, p)

are uniformly perfect. By [10, Theorems 11.5 and 12.3], d évs p is equivalent to
the facts that there exists § € (0,1) such that

Ba(z, 1) 2 By(x,0py4(,7))

c (12.1)
B,(x,7) 2 By(z,0d,(x, 1))
and
?d(xﬂ“/?) > 5@(3677“) (12.2)
dy(z,r/2) > édy(z,7),

where ﬁd(xv T) = SupyGBd(ac,r) p(l’, y) and Ed(x’ T) = SupyGBP(I,r) d(l’, y)
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Now we are going to show (12.1) and (12.2). Since d and p are adapted,
there exist 8 € (0,1), ¥ > 1 and M > 1 such that
U (x, Br) C By(z,r) C U (2, ~yr)
Ut (x, Br) C By(x,r) CUY (x,~r)
for any 2 € X and any r € (0,1]. By Lemma 11.8, there exists « € (0,1) such

that U, (z, pw) 2 U (7, ady,) and U (2, dy) 2 UL (2, apy,) for any w € T and
xe K, Hfwe Aiiw_/%o(x), then

By(z,r) C U (x,y7) C UG (2, ady,) C UL (x, pw), (12.3)

where w € A? ~r/a- Hence for any y € By(z,r), there exists (w(1),...,w(k)) €

CHr(z,y) such that k < M + 1 and w(i) € A . Since p(z,y) < Zi:l Puw(i) <
(M + 1)py, we have
Pa(@,r) < (M +1)puw.

Let w € Aw/a o(x) as above. Since /2 < 1 < 7/a, there exists v € T, such

that v € Aﬁr/2 o(z). Note that r/2 > d,. Hence we have
pr p
D — ) D D .
Bd( 2) UM(x 2) UL, (z,dy) 2 UL, (z, apy). (12.4)

Since d is sub-exponential, the fact that w € Agr/a,o( x)and v € Aﬂ 2, o(@)NTy,
implies that |v| — |w| is uniformly bounded with respect to x,r and w. This
and the fact that p is super-exponential imply that there exists ¢ > 0 which is
independent of z, r and w such that p, > ¢p,,. Now we see that ap, > np,(z,7),
where n = ac/(M + 1). Hence

Ba(w, 5) 2 Uyl ipatar, 1)) 2 By (2, Tpul ).

By the fact that (X,p) is uniformly perfect, there exists ¢, € (0,1) such
that B,(y,t)\B,(y, cxt) # 0 unless B,(y,cit) = X. Set 6 = ¢.n/v. In case
B,(x,0p4(x,7)) = X, then py(x,7/2) = py(x,r). Otherwise, there exists z €
By(x,r/2) such that p(x,z) > dpy(x,r). In each case, we have py(z,7/2) >
0pg(x,r). Furthermore, Bq(z,r) 2 B,(x,npy(z,7)/v) 2 By(z,6p4(z,7)). Thus
we have obtained halves of (12.1) and (12.2). Exchanging d and p, we have the
other halves of (12.1) and (12.2). O

Lemma 12.8. Let d € Dy(X,0) and let p € D(X,0). Assume that d s P

Let § € (0,1) be the constant appearing in (12.1) and (12.2).
(1) For any w €T and any x,y € K,

Pa(@, duw) < 67 Pg(y, du)-
(2) There exists ¢ > 0 such that

Pa(x,dw) < puw < 6Py, du)

for any w € T and any x € K,,.
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Proof. Assume d SS p. Lemma 12.4 implies that (X,d) is uniformly perfect.
Since d Ge P (X, p) is uniformly perfect as well. Hence (12.1) and (12.2) hold.

(1) Since By(z,dy) C Bal(y,2dy,), it follows that py(x, dw) < p4(y,2dy). Ap-
plying (12.2), we obtain the desired inequality.
(2) For any =z € K, K, C By(z,2d,,). Hence p,, < py(x,2dy). By (12.2), we
see that

Pw S 6_1ﬁd(x7dw)~
Set s = d,,/2 and choose v € T}, such that v € A?. Since d is adapted and tight,
there exists v > 0 which is independent of w, v and s such that

KU\Bd(Zv ’de) 7é 0

for some z € K,,. By (12.1),

KU\BP(Zaépd(Zadev)) 7é @

Hence p,, > 6p,(2,vd,). Since d is super-exponential, there exists v/ > 0 which
is independent of w,v and s such that vd, > +'d,,. Choose n > 1 so that
2n=1y/ > 1. Using (12.2) n-times, we have

Pw Z 6ﬁd(2”}/dw) = 6n+1ﬁd(z7dw)'
By (1), if ¢ = 6"*2, then p,, > dp,(x,dy). O

Proof of Theorem 12.6: Part 2. Assume that d € Dy (X, 0). We show that if
d o5 P then p € Dy (X,0) and d o P As in the proof of Lemma 12.8, (12.1)

and (12.2) hold.

Claim 1 p is super-exponential.

Proof of Claim 1: Since d is super-exponential, there exists ¢’ € (0, 1) such that
dyw > 'dy(yy for any w € T. Choose [ > 1 so that 2!¢/ > 1. By Lemma 12.8-(2)
and (12.2), if x € K,,, then

Puw = Cﬁd(xvdw) 2 Calﬁd(zv 2ldw) 2 Cdlﬁd(xa dﬂ-(w)) 2 C5l+1p7r(w)~

Claim 2 p is sub-exponential.
Proof of Claim 2: Since d is sub-exponential, there exist ¢; € (0,1) and m > 1
such that

dy < c1dy

for any w € T and any v’ € S™(w). Let w € T. If v € S™ (w) for j > 1 and
x € K,, then by Lemma 12.8-(1)

po < 5 Pala,dy) < 57 By, (1)1 dy)- (12.5)

On the other hand, by [10, Proposition 11.7], there exists A € (0,1) and
¢” > 0 such that
Pl 15) < " Npa(, )
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for any € X and any s € (0, 1]. By this, (12.5) and Lemma 12.8-(2),
po <6 Py, (1) dw) <67 Npy(w,dy) < 61" N py

Choosing j so that 7 1¢”Mc¢™! < 1, we see that p is sub-exponential.
Claim 3 d ~ p.
GE
Proof of Claim 3: Since d is super-exponential, there exists ¢ € (0,1) such
that
§ > dy > c8 (12.6)

for any s € (0,1] and any w € A% Let w,v € A? with K,, N K, # (. Then
dw < dy/ca. Choose k > 1 so that 2%c; > 1. If 2 € K, N K,, then by
Lemma 12.8-(2) and (12.2),

Puw < 5_1ﬁd(xvdw) < 5_1ﬁ($, dyp/c2) < 6_(k+1)ﬁ(xa dy) < C_lé_(k+1)pv~

Hence d ~ p.

GE
Claim 4 p is adapted.
Proof of Claim 4: Assume that d is M-adapted. Let z € X and let s € (0,1].
Then there exists a > 0 which is independent of = and s such that U, (z, as) 2
By(z,s). Let w € AL 5(x). Since p is super-exponential, there exists b € (0,1)
which is independent of w and s such that p,, > bs. By Lemma 11.8, there
exists v > 0 such that U}, (z, pw) 2 U (2, vdy) for any w € T and x € K.
Choose p > 1 so that 2Py/a > 1. Then by Lemma 12.8-(2), (12.1) and (12.2),

Ujl\Jd(‘Ta 5) 2 U]@[(Iv Pw) 2 U;é[(x, vdy)
2 Bd (.13, %dw) 2 Bp (.13, 6ﬁd($a %dw)) 2 Bp(x75p+1pd(xa dw))
2 Bp(x75p+2pw) 2 Bp(x76p+2bs)'

On the other hand, let © € K and let » € (0,1]. Then for any y € U{,(z,r),
there exists (w(1),...,w(M + 1)) € CHx(z,y) such that w(i) € A? for any i.

It follows that
M+1

p(z,y) < D pu < (M +1)r.

i=1

This shows that U} (z,r) C By(z, (M + 1)r). Thus we have shown that p is
adapted.

Using Theorem 11.7-(2), we see that g, is thick and hence p € D4 (X, O).
Thus we have shown the desired statement. O

13 Fact from measure theory

Proposition 13.1. Let (X, M, u) be measurable space and let N € N. IfU; €
M for any i € N and
#{ilieN,z e U;}) <N (13.7)
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for any x € X, then
Sl < Nu( U U)
i=1 ieN

Proof. Set U = U;enU;. Define U; = Nj=1,..,mUi;. By (13.7), if m > N,

1eebm

then Uj, ;. = 0. Fix m > 0 and let rearrange {U;,. ;|11 <2 < ... < im} SO
that
(Y7} jen = {Uiy i lin <z < ... <ip}.
Define
X7 =Y\ (Viewiz; Yi).-
Then

U =UJ_y Ujen X3
and X" N XF =0 if (m,7) # (k,1). This implies

N
pU) = >3 (X,

m=0 jEN

Set I; = {(k,1)|U; 2 X} # 0}. Then by (13.7), we have #({j|(k,l) € I;}) < N
for any (k,1). This implies

00 N
S pU) <N 3237 p(X) = Nu(U).

m=0 jeN

O

14 List of definitions, notations and conditions

Definitions

adapted — Definition 6.1, Definition 6.6
Ahlfors regular — Definition 7.18

bi-Lipschitz (metrics) — Definition 7.9
bi-Lipschitz (weight functions) — Definition 7.1
chain — Definition 4.1

degree of distortion — Definition 10.3

end of a tree — Definition 3.2

exponential — Definition 7.15

(super-, sub-)exponential for metrics — Definition 12.2
gentle — Definition 9.1

geodesic — Definition 3.1

infinite binary tree — Example 3.3

infinite geodesic ray — Definition 3.2

locally finite — Definition 3.1

minimal — Definition 4.1
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m-separated — Definition 6.9

partition — Definition 4.1

path — Definition 3.1

quasisymmetry — Definition 12.1

resolution graph — Definition 4.7

simple path — Definition 3.1

strongly finite — Definition 4.4

sub-exponential — Definition 7.15

super-exponential — Definition 7.15

thick — Definition 7.19

tight — Definition 7.5

tree — Definition 3.1

tree with a reference point — Definition 3.2

uniformly finite — Definition 7.15

uniformly perfect — Definition 12.3

volume doubling property with respect to a metric — Definition 9.3
volume doubling property with respect to a weight function — Definition 9.4
weight function — Definition 5.1

Notations

B,, — Definition 4.1

B! B": horizontal vertices — Definition 4.7
C(X,0), C(X): the collection of nonempty compact subsets, — Definition 4.1
CHg (A, B) — Definition 4.1
DY, (z,y) — Definition 6.2
D(X, O) — Definition 5.4
D4(X,O) — Definition 7.9
Da.(X,0) — Definition 12.5
9d, g, — Definition 5.4

G(T') — Definition 5.1

Ge(T') — Definition 11.1

h. — Definition 8.3

K,, — Definition 4.1
Mp(X,O) — Definition 5.4
Ny (w) — Definition 11.3

O, — Definition 4.1

RY, RL — Definition 10.3
S™(A) — Definition 11.3

S(-) — Definition 3.2

(T')y, — Definition 3.2

Tr(nN) — Example 3.3

TW) — Example 3.3

(TN, AN 4) — Example 3.3
T,, — Definition 3.6

Uy (x,s) — Definition 5.6
V(w) — Definition 3.1
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04, (x,y): visual pre-metric — Definition 5.8
k(+) — Definition 10.3
A9 — Definition 5.1
AY ,,(-) — Definition 5.6
7 - Definition 3.2
7(T-A:¢) — Remark after Definition 3.2
— Definition 3.6
>: the collection of ends — Definition 3.2
> — Definition 3.2
¥ — Definition 3.2
¥ and ¥,; abbreviation of X? and X¢ respectively,
YY) — Example 3.5
|w, v| — Definition 11.3
wv: the geodesic between w and v of a tree, — Definition 3.1
|w| — Definition 3.2
|w| (7, 4,¢) — Remark after Definition 3.2
w A v — Definition 3.6
[w]m — Definition 3.6

Equivalence relations
~ — Definition 7.3
AC

I~ relation on weight functions — Definition 7.1
I~ relation on metrics — Definition 7.9

~ — Definition 9.1

GE

~ — Definition 12.1

QS

Conditions

(ADa), (ADb)y — Theorem 6.4

(BL), (BL1), (BL2), (BL3) — Theorem 7.8
(EV),, (EV2),,, (EV3),,, (EV4),,, (EV5),, — Theorem 6.11
(G1), (G2), (G3) — Definition 5.1

(P1), (P2) — Definition 4.1

(SQ1), (SQ2), (SQ3) — Section 10

(TH1), (TH2), (TH3), (TH4) — Theorem 8.3

(VD1), (VD2), (VD3), (VD4) — Theorem 9.8
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