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Abstract

This paper studies the following three problems.
1. When does a measure on a self-similar set have the volume doubling property
with respect to a given distance?
2. Is there any distance on a self-similar set under which the contraction mappings
have the prescribed values of contractions ratios?
3. When does a heat kernel on a self-similar set associated with a self-similar Dirich-
let form satisfy the Li-Yau type sub-Gaussian diagonal estimate?
Those three problems turns out to be closely related. We introduce a new class
of self-similar set, called rationally ramified self-similar sets containing both the
Sierpinski gasket and the (higher dimensional) Sierpinski carpet and give complete
solutions of the above three problems for this class. In particular, the volume dou-
bling property is shown to be equivalent to the upper Li-Yau type sub-Gaussian
diagonal estimate of a heat kernel.
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Prologue

0.1. Introduction

This paper has originated from two naive questions about a self-similar set K.
The first one is when a (self-similar) measure g on K has the volume doubling
property ((VD) for short) with respect to a given distance d. Let B,.(z,d) =
{yld(z,y) < r} and let V(x,r) be the volume of the ball B,(z,d), i.e. V(z,r) =
w(By(z,d)). We say that p has (VD) if and only if

Vix,2r) < cVi(x,r)

for any x and r, where ¢ is independent of x and r. The simplest situation is
when V(z,r) = er™ for any r and any x as we can observe in the case of the
Lebesgue measures on the Euclidean spaces. Note that in such a case, V(x,r) is
homogeneous in space. The next best situation is to have (VD). Under it, we may
allow inhomogeneity in space and, at the same time, still have good control of the
volume by the distance. (VD) plays an important role in many area of analysis
and geometry, for example, harmonic analysis, geometric measure theory, global
analysis and so on.

The second question is when a heat kernel p(t, z, y) on a self-similar set satisfies
the following type of on-diagonal estimate

c1 C2
0.1.1 —= <pl,z,2) < —F—77,
(0.1.1) Ve, 0/7) = pt,z,2) V(z, t1/7)
for ¢ € (0,1]. The estimate (0.1.1) immediately implies
lim logp(t,z,z) — lim 1 log pu(Br(z, d))
t—0 logt r—0 3 logr

This relates the asymptotic behavior of the heat kernel to the multifractal analysis
on the measure. (See Falconer [12, 13] about multifractal analysis.) Such a relation
has been observed in [20] for post critically finite sets and in [8] for Sierpinski
carpets.

Since Barlow and Perkins [9], there have been extensive results on heat kernels
on self-similar sets. Mainly those works have focused on sub-Gaussian estimate

d(z,y)? ) 1/(Bl)>

(0.1.2) p(t,x,y) ~ et~ %/ % exp < — cz( ;

where d; is a positive constant called the spectral dimension, d(-,-) is a distance
and 3 is a constant with 3 > 2. This type of estimate has been first established for
the “Brownian motion” on the Sierpinski gasket in [9]. Then it has been proven
for nested fractals in [33], affine nested fractals in [14] and the Sierpinski carpets
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2 PROLOGUE

in [7]. Note that (0.1.2) gives a homogeneous on-diagonal estimate
(0.1.3) ert™ %2 < plt,x, ) < gt~ %/?

The homogeneous estimate (0.1.3) is known to require exact match between
the measure p and the form (£, F). To be more precise, let K be the self-similar
set associated with a family of contractions {F;};—1,. n, i.e., K = UN  Fi(K). We
consider heat kernels associated with a self-similar Dirichlet form (€, F), where &€
is the form and F is the domain of the form, under a self-similar measure p with
weight {u;}ics, where S = {1,...,N}. (£,F) is said to have self-similarity if

N
1
E(u,v) = Z r—iE(qui,vo}Q)
=1
for any u,v € F, where (r1,...,7rn) is a positive vector called resistance scaling
ratio. Also a probability measure on K is called a self-similar measure on K with
weight {41 }ies if

for any measurable set A. By the results in [20, 28, 8], the homogeneous on-
diagonal estimate (0.1.3) holds if the ratio between logr; and log u; is independent
of i. Otherwise, we may only expect inhomogeneous estimate (0.1.1) at the best.

The first and the second questions may look completely independent at a glance.
They are, however, closely related. One of the main result in this paper is that the
volume doubling property is equivalent to the upper inhomogeneous on-diagonal
heat kernel estimate

(0.1.4) p(t, 2, 2) < —O

V(z, t1/8)

for ¢t € (0,1]. Moreover, it turns out that the upper estimate (0.1.4) implies the up-
per and lower estimate (0.1.1). As a consequence, the first and the second questions
are virtually the same. In fact, it has been known that (VD) combined with other
properties is equivalent to the following Li-Yau type estimate of a heat kernel,

. «a d(z,y)P\1/(B-D)
(0.1.5) plt2,y) ~ e —i7E) P < N CQ(f) '

For example, in the case of Riemannian manifolds, Grigor’yan [16] and Salofi-
Coste [38] have shown that (0.1.5) is equivalent to (VD) and the Poincaré inequality.
See [19, 17] for other settings. In our case, the self-similarity of the space and the
form allow (VD) itself to be equivalent to the heat kernel estimate (0.1.4).

At this point, a careful reader might notice that something is missing. Indeed,
we have not mentioned what kind of distance we use in (0.1.1). In the course of
our study, the natural distance for a heat kernel estimate like (0.1.1) should be a
distance under which the system of contractions {F;};cs has an asymptotic con-
traction ratio {(r;;)®/?}ies for some o, i.e. d(Fy, . w, (), Fu,. w, (y)) is asymp-
totically (Yuw, - Y, )“d(x,y), where v; = /riji; and Fy, . w,, = Fu, 0...0F,,, for
Wi, ..., W, € 5. Does such a distance really exist or not? Generalizing this, we
have the third question. For a given ratio a = (a;)cs, is there any distance under
which {F;},cs has the asymptotic contraction ratio a? A similar problem has been
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studied in [25] for post critically finite self-similar sets. We will consider broader
class of self-similar set with a different approach.

The key idea to study the third question is the notion of a scale, which essen-
tially gives the size of Ky, . .w,, = Fu,..w,, (K). For a given ratio a = (a1,...,an),
we think of ay, .. w,, = Gw," -, as the size of Ky,  w, . (Note that we do not
suppose the existence of any distance at this point. If there were a distance which
satisfies d(F;(x), F;(y)) = a;d(x,y), then the size of Ky, 4, had to be aw, . w,,-)
Starting from the scale (i.e. the size of K. v,,), we will construct a system of
fundamental neighborhoods {Us()}s¢(0,1), which is the counterpart of balls with
radius s and center x under a distance. See Section 1.3 for details. Now the problem
is the existence of a distance whose balls match the virtual balls {Us(z)}, or to be
more exact, there is a distance d which satisfies

(0.1.6) Beys(2,d) C Us(x) C Beys(a, d)

for any s and any = or not, where ¢; and ¢y are independent of s and x. We say
that a distance d is adapted to a scale if (0.1.6) holds.

As a whole, we will study three problems in this paper. Introduced in accor-
dance with the appearance in this paper, they are
(P1) When does a (self-similar) measure have the volume doubling property with
respect to a scale? The volume doubling property with respect to a scale means
that

p(Uzs(2)) < cu(Us(x))

for any s € (0,1/2] and any x € K.

(P2) Is there a good distance which is adapted to a given scale?

(P3) When does (0.1.1) hold for the heat kernel associated with a self-similar
Dirichlet form and a (self-similar) measure?

(P1), (P2) and (P3) will be studied in Chapter 1, 2 and 3 respectively. Also
those three questions are shown to be closely related in the course of discussion. In
Chapter 1, we are going to introduce three properties, namely, an elliptic measure
(EL), a locally finite scale (LF) and a gentle measure (GE). In short, (VD) turns out
to be equivalent to the combination of (EL), (LF) and (GE). See Theorem 1.3.5. In
the following sections, we will try to get simpler and effective description of (EL),
(LF) and (GE) respectively for a restricted class of self-similar sets called rationally
ramified self-similar sets. This class includes post critically finite self-similar sets,
the cubes in R™ and the (higher dimensional) Sierpinski carpets. Also, for this class,
we will give a complete answer to (P2) in Corollary 2.2.8, saying that, for a given
ratio a = (a1, ...,an), the scale associated with a satisfies (LF) if and only if there
exists a distance which matches to the scale associated with the ratio ((a;)%)ics
for some a > 0. Based on those results, close relation between (P1), (P2) and (P3)
will be revealed in Chapter 3. In particular, in Theorem 3.2.3, the following three
conditions (a), (¢) and (d) will be shown to be equivalent for rationally ramified
self-similar sets:

(a) p is (VD) with respect to the scale associated with the ratio (7v;)ies-
c
< — .
(c) p(t,z,x) < WU @) for t € (0,1]
(d) There exist a > 0 and a distance d which is adapted to the scale associated

with the ratio ((7;)®)ies such that (0.1.4) holds, where 8 = 2/
Moreover, if any of the above condition is satisfied, then we have full diagonal
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estimate (0.1.1) and the upper Li-Yau type estimate

d(z,y)? ) 1/(Bl)>

C1
(017) p(t,x,y) < W exp < — 02( P

for ¢ € (0,1]. Combining this results with the conclusion on (P2), we can easily
determine self-similar measures for which (0.1.4) holds.

The organization of this paper is as follows. In Section 1.1, we introduce the no-
tion of scales and establish several fundamental facts on this notion. In Section 1.2,
we study self-similar structures and self-similar measures under the assumption that
K # Vp. This section gives bases of the discussions in the following sections. Sec-
tion 1.3 is devoted to showing the equivalence between (VD) and the combination
of (EL), (LF) and (GE) as we mentioned above. In Section 1.4, the properties (LF)
and (GE) are closely examined. In particular, it is shown that (GE) is a equiva-
lence relation among elliptic scales and (LF) is inherited by the equivalence relation
(GE). The notion of rationally ramified self-similar set is introduced in Section 1.5.
For this class of self-similar sets, we will find an effective and simple criteria for
(LF) and (GE) in Section 1.6. We apply them to examples including post critically
self-similar sets and the Sierpinski gasket in Section 1.7. The search of a distance
which matches a scale starts at Section 2.1, where we define a pseudodistance as-
sociated with a scale. In Section 2.2, the notion of intersection type is introduced
to give an answer to the existence problem of a distance adapted to a scale. Using
the notion of qdistance, we will simplify the results in the previous two sections
in Section 2.3. We will finally encounter with heat kernels in Section 3.1, which is
completely devoted to setting up a reasonable framework of self-similar Dirichlet
forms and the heat kernel associated with them. In Section 3.2, we establish a
theorem to answer (P3), which will be the most important result in this paper. In
Sections 3.3 and 3.4, we apply our main theorem to the post critically finite self-
similar set and the Sierpinski carpets respectively. We need the entire Section 3.5
to complete the main theorem. In Appendixes, we mainly discuss relations between
the properties of the heat kernel associated with a local regular Dirichlet from on
a general measure-metric space.

0.2. the Unit square

Let us illustrate our main results by applying them to the unit square [0, 1]?,
which is naturally self-similar. We denote the square by K and think of it as a
subset of C. Namely, K = {x + yy/—1|z,y € [0,1]}. The unit square can be
regarded as a self-similar set in many ways. First, let f1(z) = 2/2, fa(z) = 2/24+1/2,
f3(2) = z/2+ (1 ++v=1)/2 and f4(2) = 2/2++/—1/2. Then K = f1(K)U fo(K)U
f3(K) U f4(K). According to the terminology in [28], K is the self-similar set with
respect to {f1, f2, f3, fa}. K is not post critically finite but, so called, infinitely
ramified self-similar set. Roughly speaking if any of f;(K) N f;(K) is not a finite
set, then K is called infinitely ramified self-similar set. In this case, K1 N K5 is a
line, where K; = f;(K).

Now let us explain the notion of “rationally ramified” self-similar sets by the
unit square, which is the simplest (non trivial) rationally ramified self-similar set.
There exists a natural map 7 from {1, 2, 3,4} — K which is defined by 7 (iyiz...) =
Nm>1fiy..in, (K). This map 7 determines the structure of K as a self-similar set.
Note that the four line segments in the boundary of K is also self-similar sets. To
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M14 T T M23
4 0 343 p(1) =2
LR R R o) =3
1 2 P N 1 2 7T(27,17,2):7T(1(b(21)¢(7,2))

1 € fo(Mys) = f1(Mas) = K1 N K>

where iy, is,... € {1,4}N

J1(Ma3) = f2(Mha)

FIGURE 0.1. the square as a self-similar set

see this, set M4 = {v/—1t|t € [0,1]} and Moz = {1+ +/—1t|t € [0,1]} for example.
Then M4 = fl(M14)Uf4(M14) and Mys = fg(Mgg,)Ufg(Mgg) and hence Mij is the
self-similar set with respect to {f;, f;}. In other words, M;; = m({i,5}"). Those
two self-similar sets M4 and Mss meet each other at K7 N K5 under the action of
f1 and fo. More precisely, let € K; N Ky. Then there exists iyig... € {1,4}
such that x = 7(2i142...) = 7(1¢(i1)P(i2) .. .), where ¢ : {1,4} — {2,3} is defined
by ¢(1) =2, ¢(4) = 3. See Figure 0.1.

Note that other intersections K; MK have similar descriptions. This is a typical
example of rationally ramified self-similar set defined in 1.5, where an intersection
of fi(K) N f;(K) itself is a self-similar set and two different expressions (started
from 7 and j respectively) by infinite sequences of symbols can be translated by a
simple rewriting rules.

Next, applying the results in Chapter 1, we present the answer to the problem
(P1) in this case. In particular, we can determine the class of self-similar measures
which have the volume doubling property with respect to the Euclidean distance.

THEOREM 0.2.1. A self-similar measure with weight (u1, po, s, a) has the
volume doubling property with respect to the Fuclidean distance if and only if 1 =

po = pi3 = pia = 1/4.

If p; = 1/4 for all 4, then p is the restriction of the Lebesgue measure on K.
So, the situation is very rigid and not quite interesting. In general, however, we
can find richer structure of the volume doubling (self-similar) measures (even in the
case of unit square). To see this, we are going to change the self-similar structure
of the unit square.

From now on, K is regarded as a self-similar set with respect to nine contrac-
tions {F; }i=1,... ¢ in stead of four contractions {f;},=1,... 4 as above. Set p1 = 0,ps =

1/2,p3 =1,ps = 1+v/—1/2,p5s = 1+ —1,ps = 1/2++v/—1,pr = V—1,ps = vV/—1/2
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a=ay = a3 = a5 = ay

C d C b=uas = ag
C = a4 = as

d:ag

FIGURE 0.2. Weakly symmetric ratio

and pg = 1/2 + y/—1/2. Define F;(z) = (z — p;)/3 + p; for i = 1,...,9. Then the
square K is the self-similar set with respect to {F;}ics, where S = {1,...,9},
ie. K = UjesF;(K). In this case, we also have the natural map 7 from SN =
{wiws ... |w; € S} to K defined by m(wiws...) = Nm>0Fw,..w,, (K). Examining
the intersection of Fj(K) and F5(K), one may notice that x = w(lwjws...) =
7(2¢(w1)p(we) . ..) for any x € F1(K) N Fy(K), where wiws ... € {3,4,5}" and
v {3,4,5} — {1,8,7} is given by ¢(3) = 1,¢(4) = 8 and ¢(5) = 7. Also for
any y € Fi(K) N Fg(K), we have y = w(8vyvz...) = 7(1¢p(v1)(v2)...), where
vvg... € {1,2,3}N and ¢ : {1,2,3} — {7,6,5} is given by (1) = 7,7(2) = 6 and
1(3) = 5. This is again a typical example of a rationally ramified self-similar set.

Under this self-similar structure, self-similar volume doubling measures are
much richer than before. The following condition will play an important role to
solve all the three problems (P1), (P2) and (P3).

DEFINITION 0.2.2. A ratio (a;)ies € (0,1)° is called weakly symmetric if and
only if a; = ay(; for any i € {3,4,5} and a; = ay(; for any j € {1,2,3}.

Note that a ratio (a;);cs is weakly symmetric if and only if
a1 =az =as =ar,a2 =ag and a4 = as,

See Figure 0.2. First our results on (P1) in Chapter 1 yields the following char-
acterization of the class of self-similar measures which are volume doubling with
respect to the Euclidean distance.

THEOREM 0.2.3. A self-similar measure with weight (u;)ies has the volume
doubling property with respect to the Euclidean distance if and only if (u;)ics s
weakly symmetric.

As we have explained in the introduction, the main result of this paper is
roughly the equivalence of the three properties: the volume doubling property of a
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measure, the existence of “asymptotically self-similar” distance and the upper and
lower on-diagonal heat kernel estimate (0.1.1). In accordance with this spirit, being
weakly symmetric gives an answer to (P2) as well. More precisely, the results in
Chapter 2 gives the following theorem.

THEOREM 0.2.4. Let (a;)ics € (0,1)°. (a;)ies is weakly symmetric if and only
if there exists a distance d which is adapted to the scale associated with a ratio
((a;)*)iecs for some a > 0.

Naturally, weakly symmetric ratios appear again in our result on the problem
(P3). To consider heat kernels, we regard K as a subset of R? in the natural
manner. Let v be the restriction of the Lebesgue measure and let F = WH2(K).
W12(K) is the Sobolev space defined by

of of
"oz’ Oy
where % and g—g are the partial derivatives in the sense of distribution. Note that
v is the self-similar measure with weight (1/9,...,1/9). For any f,g € F, set
of 0g Of Og
& = — ==+ =— = )dzdy.
(£.9) /}<(6x8x+8y8y) vy

Then (&, F) is a local regular Dirichlet form on L?(K,v) and the corresponding
diffusion process is the Brownian motion which is reflected at the boundary of K.
Moreover, the associated heat kernel satisfy the Gaussian type estimate

Ix—yIQ)
t

Wh(K) = {f|f € L*(K,v) € L*(K,v)},

p(tvxvy) ~ C?lexp(_ C2

for ¢ € (0,1]. This form (€, F) has the self-similarity with the resistance scaling
ratio (1,...,1), i.e.
E(f,9) = E(foF,goF).
icS

for any f,g € F. Let u be a self-similar measure with weight (u;);cs. Then by [8],
making slight modifications, we may regard (£, F) as a local regular Dirichlet form
on L?(K,p). At this time, the corresponding diffusion process is the time change
of the Brownian motion. Let p,(t,z,y) be the associated heat kernel. (The heat
kernel does exists and is jointly continuous in this case.) Then the results on (P3)
implies the following.

THEOREM 0.2.5. There exist o € (0,1] and a distance d such that d is adapted to
the scale associated with the ratio ((1;)*/?)ics and the upper Li- Yau estimate (0.1.7)
for pu(t,xz,y) holds with B = 2/a, if and only if (\/lt;)ies is weakly symmetric.
Moreover, either of the above conditions suffices the upper and the lower on-diagonal
estimate (0.1.1) for p,(t,z,y).






CHAPTER 1

Scales and Volume Doubling Property of Measures

1.1. Scale

In this section, we introduce a notion of scales. A scale gives a fundamental
system of neighborhoods of the shift space, which is the collection of infinite se-
quences of finite symbols. Later in Section 1.3, we will define a family of “balls” of
a self-similar set through a scale.

NoOTATION. For a set V, we define £(V) = {f|f : V — R}. If V is a finite set,
¢(V) is considered to be equipped with the standard inner product (-,-)y defined
by (u,v)v = > oy ulp)v(p) for any u,v € £(V). Also |uly = /(u,u)y for any
ue V).

Now we define basic notions on the word spaces and the shift space. Let S be
a finite set.

DEerFINITION 1.1.1. (1) For m > 0, the word space of length m, W,,(5), is
defined by

Wi (S) = 8™ ={wjw=w; ... wn,w; € Sfor any i =1,...,m}.

In particular Wy(S) = {0}, where () is called the empty word.  Also W,(S) =
Um>0Wn (S) and Wi (S) = Up>1 Wi, (S). For w € W, (S), we define |w| = m and
call it the length of the word w.

(2) For w,v € W,(S), we define wv € W,(S) by wv = wy ... wnv1 ...0y,, where
w=wi... Wy and v = vy...v,. Also for w!, w? € W,(S), we write w! < w? if
and only if w! = w?v for some v € W,(S).

(3) The (one sided) shift space %(.5) is defined by

E(S)ZSN:{UJ|WZUJ1UJ2...,W¢ € Sfor any ¢ > 1}.

The shift map o : £(S) — X(95) is defined by o(wiws...) = waws.... For each
1 € S, we define o; : X(S) — X(S) by 0;(w) = iwjws ..., where w = wiws. ...
For w = wy...wy, € Wi(S), 0w = 0w, ©...0 0y, and X, (S) = 0,(2(9)).
(4) The extended shift map o : W,.(S) — W.(S) is defined by o(@) =  and
o(wy ... wy) = we...wy for any w € Wy. Also we extend o; : W, (S) — W, (S5)
by o (w1 ... W) = W1 ... Wip-

Note that < is a partial order of W,(S). We write w! < w? if and only
if w! < w? and w! # w?. If no confusion can occur, we omit S in the above
notations. For example, we write W, in stead of W;,(5).

The shift space ¥ has a product topology as an infinite product of a finite set
S. Under this topology, 3 is compact and metrizable. See [28] for details.

DEFINITION 1.1.2. (1) Let A C W, be a finite set. A is called a partition of
Y if and only if ¥ = UyeaXy and X, N3, = 0 for any w # v € A.

9



10 1. SCALES AND VOLUME DOUBLING PROPERTY OF MEASURES

(2) Let A; and Ag be partitions of ¥. A; is said to be a refinement of Ag if and
only for any w! € A1, there exists w? € Ay such that w! < w?. We write A} < A,
if A; is a refinement of As.

For a partition A, {3, }wea is a division of ¥ and may be thought of as an
approximation of 3. Note that “<” is a partial order of the collection of partitions.
If Ay < Ag, then {X, }yea, contains finer structure of ¥ than {X }wea,-

Next we introduce the notion of a scale, which is a monotonically decreasing
family of partitions.

DEFINITION 1.1.3 (Scales). A family of partitions of X, {As}o<s<1, is called a
scale on ¥ if and only if it satisfies (S1) and (S2):
(S1) Ay =Wy A, <A, forany 0 < s1 < s9 < 1.
(S2) min{|w||lw € As} — +oo as s | 0.

Let {As}o<s<1 be a scale on ¥. For any w € ¥ and any s € (0,1], choose
w € As so that w € X, (such a w uniquely exists), and set Us(w) = ¥,,. Then
{Us(w)}se(0,1] is a system of fundamental neighborhoods of w. We will think of
Us(w) as a “ball” with radius s and center w even if there may not be a corresponding
distance.

In the rest of this section, we will try to understand the basics on scales. First
problem is how to describe the structure of a scale.

DEFINITION 1.1.4. Let 8§ = {A}o<s<1 be a scale on X. For w € W,. We define
R, (8) = {s|s € (0,1], there exists w’ € W, such that w < w" and w’" € A},
Cw(8) = {s|s € (0,1],w € As},

L, (8) = {s|s € (0,1], there exists w’ € W, such that w’ < w and w’ € Ag}.

For ease of notation, we use R,,, Cy, and L, instead of R,,(8), Cy(8) and L, (8)
if no confusion can occur. Note that Ry = () and that Cj contains 1.

LEMMA 1.1.5. Let 8 = {As}o<s<1 be a scale on X. For w € W,.
(1) There exist r: Wy — (0,1] and I : W, — (0,1] such that, for any w, l(w) <
r(w) and Ry 2 (r(w),1], Cy 2 (l(w),r(w)) and L, 2 (0,1(w)).
(2) Foranyw € W, and any i € S, Cyi U Ly; = Ly,. In particular, r(wi) = l(w)
and l(wi) < l(w).
(3) max{l(w)lw € Wy} — 0 as m — oo.

PrROOF. (1) Since 1 € Ly, Ry # 0 for w € Wy. Also by (S2), L, # 0
for any w € W,. Using (S1), we see that z < y for any z € L,, UC,, and any
y € Ry,. Therefore the Dedekind theorem implies that there exists r(w) such that
(0,7(w)) € Ly UCy and (rew), 1] € Ry,. In the same manner, we have [(w).

(2) Note that s € Ly,; U C,y; if and only if there exists w’ € W, such that v’ < wi
and w’ € As;. This immediately implies that L.; U Cy; C Ly. Suppose s € Ly,.
There exists w’ € A such that wii... € X,/. Since w” ¢ A if w < w”, it follows
that w’ < wi. Therefore s € L,,; U Cy;. The rest of the statement is obvious.

(3) Let ay = max{l(w)lw € Wy}. Then a, > amy1 for any m > 1. Set
a = limy,— 00 @ Suppose a > 0. Choosing w™ € W, so that [(w™) > «, we see
that A, /o contains w’ < w™ for any m > 1. Therefore, A,/ is an infinite set. This
contradiction implies that a = 0. (I
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In general, R,, can be either (r(w),1] or [r(w),1]. To remove this ambiguity,
we introduce the notion of a right continuous scale.

DEFINITION 1.1.6. A scale {As}o<s<1 on X is called right continuous if and
only if R, = [r(w),1] for any w € W,.

Lemma 1.1.5 implies that if {As}o<s<1 is right continuous then L,, = (0,(w))
and C,, = [[(w), r(w)).

PROPOSITION 1.1.7. A scale {As}o<s<i on X is right continuous if and only
if, for any s, there exists € > 0 such that Ay = As for any s’ € [s,s +€).

Right continuous scales are completely determined by I : W, — (0, 1], which
will be called the gauge function of the scale. See Theorem 1.1.10 for details.

DEFINITION 1.1.8. A function g : W, — (0, 1] is called a gauge function on W,
if it satisfies (G1) and (G2):
(G1) g(wi) < g(w) for any w € W, and any i € S.
(G2) max{g(w)lw € W,,} — 0 as m — oco.

The following proposition is immediate by Lemma 1.1.5.

PROPOSITION 1.1.9. Let 8 be a scale on X. Then the function 1 : W, — (0,1]
defined in Lemma 1.1.5 is a gauge function on W,. We calll the gauge function of
the scale 8.

Naturally there exists a one to one correspondence between the (right contin-
uous) scales and the gauge functions.

THEOREM 1.1.10. Let g be a gauge function on W,. Define As(g) by
(1.1.8) As(g) ={wlw =wy ... wym € Wy, gwy ... wp-1) > s> g(w)}

for any s € (0,1]. (We regard g(wi ... wm—1) as 2 for w =0.) Then {As(g)}ocs<i
is a right continuous scale on X. {As(g)}o<s<1 is called the scale induced by the
gauge function g. Conversely, let 8 = {As}o<s<1 be a right continuous scale on
Y and let | be its gauge function. Then the scale induced by the gauge function I
coincides with S.

ProOF. We write As = A4(g) for ease of notation. First we show that A, is a
finite set for any s. By (G2), there exists m > 1 such that s > g(w) for any w € W,.
Now if g(vy...vp-1) > s > g(v1...v,), then n < m. Therefore Ay C UD_ Wp,.
Hence A; is a finite set.

Next we show that Ag is a partition. Let w = wijws... € 3. (G2) implies
that g(wi...wm) — 0 as m — oo. Hence there exists a unique m such that
gwi ... wm—1) > s> g(wy...wpn). Therefore Uyen, Xy = X. Also the uniqueness
of m implies that 3,1 N X2 = 0 if w! # w? € A,. So A, is a partition.

To show (S1), since g(f) < 1, we have Ay = Wy. Let s1 < s and let w =
wy ... Wy € Ag,. Then g(wy ... wg—1) > s2 > g(wy ... wy) for some k < m. This
implies that wy ... wy € Ag,. Therefore A;, < Aq,.

If s < mingew,, g(w), then min{|w|jw € Ay} > m. This shows (S2).

Since Ry, = [g(w1 ... wm—1),1] for w = w1 ... wp, {As}o<s<1 is right continu-
ous.

Finally, let [ be the gauge function of a scale § = {As}o<s<1. Then A; = {w|s €
Cyw} = As(1). This completes the proof of the theorem. O
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Hereafter, we only consider right continuous scales.

DEFINITION 1.1.11. A right continuous scale § = {As}o<s<1 on X is called
elliptic if and only if it satisfies the following two conditions (EL1) and (EL2):
(EL1) AsN Ay, s =0 for any s € (0,1], where oy is independent of s.

(EL2) There exist as € (0,1) and n > 1 such that

max{|v||[v € Wi, wv € Ag,s} <n
for any s € (0,1] and any w € As.

Roughly speaking, a scale is elliptic if the differences between A; and A, are
uniform with respect to s. This become clearer when we describe (EL1) and (EL2)
in terms of gauge functions.

PROPOSITION 1.1.12. Let 8 = {As}o<s<1 be a right continuous scale on ¥ and
let I be its gauge function.
(1) 8 satisfies (EL1) if and only if there exists f1 € (0,1) such that l(wi) > Brl(w)
for any w e W, and anyi € S.
(2) 8§ satisfies (EL2) if and only if there exist B2 € (0,1) and n > 1 such that
l(wv) < Bal(w) for any w € W, and any v € W,,.

ProoOF. (1) First suppose for any §1 € (0,1) there exist w € W, and i € S
such that I(wi) < f1l(w). In particular, we assume that 51 < 1/2. Note that
wi € Ag for s € [I(wi),l(w)). If s1 =1(w)/2, then As, N Ays, contains wi for any
a € [201,1]. Hence 8 does not satisfy (EL1).

Conversely, assume that there exists 8; € (0,1) such that I(wi) > (1l(w) for

any w € W, and any ¢ € S. Let w = w1 ... wy € As. Then l(wy ... wp_1) >t >
l(w) > frl(w1 ... wm—1). Therefore I(w) > B1s. This implies that w ¢ Ag,s. Hence
As N Ag, s is empty for any s € (0,1].
(2) Assume that there exist By € (0,1) and n > 1 such that [(wv) < Bal(w) for
any w € W, and any v € W,,. If w € A, then s > [(w). Therefore, fas > Gal(w) >
[(wv) for any v € W,,. Hence if wv’ € Ag,, then |v]’ < n. Thus we obtain (EL2)
with Qo = ﬁg.

Conversely, suppose that, for any 8 € (0,1) and any k > 1, there exist w € W,
and v € Wy, such that gl(w) < l(wv). Let s = l[(w). Here, if necessary, replacing
w=wi... w; by w=wi... w; for some 0 < j < i, we may assume that w € A,.
(Then, in general, |[v| > k.) Now choose 8 > ag and k > n. Then ags < s =
Bl(w) < l(wv). Therefore there exists v/ € W, such that wvv’ € ags. By (EL2),
|vv'| < n. This contradicts to the fact that |v| > k. O

The following fact will be used later in many places.

LEMMA 1.1.13. Let 8§ = {As}o<s<1 be a scale on X satisfying (EL1) and let 1
be its gauge function on W,. Then there exists a constant ¢ > 0 such that l[(w) <
s < cl(w) for any s € (0,1] and any w € A,.

PROOF. Let w = wy...w, € Ag. Then l(wy...wpm—1) > s > l(w). By
Proposition 1.1.12-(1), I(w) > Gil(wy...wm—1). Therefore, if ¢ = 1/3;, then
cd(w) > s > l(w). O

Next we define a multiplication of two scales and a power of a scale.



1.2. SELF-SIMILAR STRUCTURES AND MEASURES 13

DEFINITION 1.1.14. (1) For i = 1,2, let §; be a scale on ¥ and let [; be its
gauge function. Then we use 8182 to denote the sale induced by the gauge function
lls.

(2) Let 8 be a scale on . Then for a > 0, the scale induced by the gauge function
¢ is denoted by 8<.

If 8 = {AS}0<S§1, then 80‘ = {ASUQ }0<5§1.

LeEmMMA 1.1.15. (1) If 81 and 82 are elliptic scales on X, then 81 - 84 is elliptic.
(2) Let 8 be a scale on o and let o« > 0. Then 8 is elliptic if and only if 8* is
elliptic.

Finally we introduce an important class of scales.

DEFINITION 1.1.16. Let a = (a;)ies € (0,1)°. Define g : Wi — (0,1] by
9a(W) = Ay = Qo Guyy - - - Ay, fOr W = w1 ... Wy, € Wi. ga is called the self-similar
gauge function on W, with weight a. Also the scale induced by g, is called the self-
similar scale with weight a and is denoted by S(a). We also write As(ga) = As(a).
We use G(X) to denote the collection of self-similar scales on X.

We often identify &(X) with (0,1)° through the natural correspondence a —
S(a). Note that a self-similar scale is elliptic.

1.2. Self-similar structures and measures

The notion of self-similar structure is a purely topological formulation of self-
similar sets.

DEerINITION 1.2.1. (1) Let K be a compact metrizable topological space and
let S be a finite set. Also, let F;, for i € S, be a continuous injection from K
to itself. Then, (K,S,{F;}ics) is called a self-similar structure if there exists a
continuous surjection 7 : ¥ — K such that F; om = 7w o g; for every i € S.
(2) Let £ = (K,S,{F;}ics) be a self-similar structure. Define the critical set C.
and the post critical set Pz by Cz = 7 1 (Uigjes (Fi(K) N Fj(K))) and Py =
Un>10"(Cr). Also define Vo = 7(Pr).
(3) A self-similar structure £ = (K, S, {F;}ics) is said to be strongly finite if and
only if sup,c i #(77(z)) < 400, where #(A) is the number of elements of a set
A.

NoOTATION. Let £ = (K,S,{F;}ics) be a self-similar structure. For w =
wy ... wy, € Wy, we define F, = F,, o...0F, and K, = F,(K). In partic-
ular, if w = ) € Wy, then F,, is thought of as the identity map of K and K, = K.

If (K,S,{F;}ics) is a self-similar structure, then

K = | F(K).
€S
In other words, K is the self-similar set with respect to maps {F;};cs. The set
Vo is a kind of “boundary” of K. Indeed, for any w,v € W, with X, N X, = 0,
K, NK, = F,(Vo) N F,(Vp). Moreover, Vo = () if and only if 7 is bijective and
K is identified with X. Vj is thought of as a characteristic of “complexity” of the
self-similar structure.
Throughout this section, we fix a self-similar structure £ = (K, S, {F; }ics)-
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THEOREM 1.2.2. K # Vy if and only if int(Vy) = 0.

PROOF. Assume that int(Vy) # 0. Then Vo O K, for some w € W,. Let
lw| = m. Let z € K. If z € Ky N (Uyew,, vrwky), then z € F, (V) by [28,
Proposition 1.3.5]. Hence (F,) '(z) € V. Next we assume that x ¢ K, N
(Upew,, v£wKy). This assumption is equivalent to that 7—!(z) C X,. Since z €
Vo, there exist w(1),w(2),... € P such that 7n(w(i)) — = as i — oo. Choosing a
subsequence, we may assume that there exists w € ¥ such that w(i) — w as i — oo.
The continuity of 7 implies that 7(w) = x. Hence w € 3,,. Now 0™w(i) — c™w as
i — oo and (F,) (z) = m(c™w). Since oc™w(i) € P, it follows that (F,) " !(x) €
V. Thus we see that (F,)~'(z) € V for any x € K,,. This immediately implies
that Vy = K. The converse is obvious. O

Next we introduce a class of non-degenerate measures on a self-similar structure.

DEFINITION 1.2.3. M(K) is defined to be the collection of Borel regular mea-
sures on K satisfying the following conditions (M1), (M2) and (M3):
(M1) uis a finite Borel regular measure on K.
(M2) For any w € Wy, u(Ky) > 0 and u(F,(Vp)) = 0.
(M3) p({z})=0for any =z € K.
Also My(K) = {ulp € M(K), u(K) = 1}.

THEOREM 1.2.4. Assume that K # V. Let ju be a finite Borel reqular measure
on K with u(K) > 0. Then pn € M(K) if the following condition (ELm) holds:
(ELm) there exists v > 0 such that p(Kyi) > yu(Ky) for any w € W, and any
1eS.

DEFINITION 1.2.5. A finite Borel regular measure p on K is called an elliptic
measure if and only if it satisfies (ELm).

REMARK. In [28, Section 3.4], a Borel regular measure p satisfying (ELm) is
called a 7-elliptic measure. By the proof of [28, Lemma 3.4.1], it follows that if p
is elliptic then there exists § € (0,1) and m > 1 such that p(Ky.) < dp(Ky,) for
any w € W, and any v € W,.

PROOF. (M1) is immediate. Since K # V), there exist k € N and v € Wy
such that K, N Vo = (). Since p is a finite Borel regular measure, for any € > 0,
we find an open set O which satisfies Fy, (Vo) C O and pu(O) < u(F, (Vo)) + €. Set
Q= {rlr e W.\,K; C O|r| > |w|}. As O is open, O = U,cgK,. Define Q. =
{7|7 € Q, there exists no 7" € Q such that 7 < 7'}. Then {K;,}-cq. is mutually
disjoint. Also, for any 7 € Q., since K, NV}, = 0, we see that F, (Vo) N K, = 0.
Therefore, by the fact that u is elliptic,

p(Fu(Vo)) < 1(O\ Ureq. Kry) = p(0) = Y u(Kr)
TEQ«

< u(0) = F > wE,) < (1=4")u0) < (1= ) (u(Fu(Vo)) +¢)
TEQ«

Since this holds for any € > 0, it follows that p(Fy, (Vo)) = 0. Thus we obtain (M2).
To show (M3), let z = m(w) for w € ¥. By the above remark, we see that
(K, wmn) < 8" for any n. Therefore, u({z}) = p(Mn>1Kw; .0, ) = 0. O

A immediate example of a elliptic measure is a self-similar measure.
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DEFINITION 1.2.6. Let (u)ies € (0,1)% satisfy >, .q pi = 1. A Borel regular
probability measure p is called a self-similar measure with weight (u;);cs if and
only if

(1.2.1) p(A) =" pap((F)~H(A))
€S
for any Borel set A.

It is known that, for any weight (u;);cs, there exists a unique Borel regular
probability measure on k that satisfies (1.2.1). See [28, Section 1.4]. In our case,
we have the following theorem.

THEOREM 1.2.7. Assume that K # V. Let p be a self-similar measure with
weight (p1;)ies € (0,1)% with Y- ,cq i = 1. Then, p(Ky) = pw for any w € W,
where fy = fhw, - Pw,, for w = wi...Wn. In particular, p is elliptic and p €

M (K).

PROOF. Let O = K\Vy. For any w € W,,, K, = F,(0) U F,(Vy) and
F,(0)NF,(Vy) = 0. By [28, Proposition 1.3.5], F,,(0O) N K, = () for any v € W,,
with w # v. Therefore, F,,(O) is open. Moreover, since Vo C Vin = Uvew,, F,(Vo),
it follows that F,,(O) NV, = 0. This implies that F,,(O)NV o = 0. Hence F,,(0) C
0.

On the other hand, by (1.2.1),

WFu(0)) = Uvew,, topt((Fo) ™ Fu(0)) = puwp(O).

Therefore, if O = Uwew,, Fu(0), we obtain u(Om) =, cw. 1(Fu(0)) = p(O).
Note that O,, € O. For sufficiently large m, there exists w € W, such that
K, C O. Since F,(Vo) N Oy = 0, Fy(Vo) € O\Oyy,. Therefore u(F, (Vo)) = 0.
By (1.2.1), u(Vo) = 0 and therefore pu(O) = u(Ox) = 0 for any k > 1. This
implies that p(Uyew, Fio (Vo)) = 0 for any k > 1. Hence for any w € Wi, u(K,,) =
w(Fy(0)) = puwp(O) = py. This immediately shows that p is elliptic. Now by
Theorem 1.2.4, we verify u € My (K). O

REMARK. In the above proof, it was shown that if K # V, then £ satisfy
an “intrinsic” open set condition: there exists a nonempty intrinsic open subset
O C K (i.e. O is open with respect to the topology of K) such that F;(O) C O and
F,(O)NF;(O) =0 forany i # j € S.

REMARK. We conjecture that the converse of the above theorem is true: if
every self-similar measure p belongs to M1 (K) (and hence p(Ky) = pu for any
w € W, where (u;)iecs is the weight of p), then K # V.

We may define a natural gauge function associated with a measure as follows.

PROPOSITION 1.2.8. Let p € MY (K). Define g, : W — (0,1] by g.(w) =
w(Ky). Then g, is a gauge function on Wi.

PROOF. (G1) is immediate. To prove (G2), assume that there exists & > 0 such
that max{u(Ky)|lw € Wy} > 2a for any m > 1. Then A = {w|w € W, u(Ky) >
a} is an infinite set. Let T' = {wjw € A, {v|v € A,v <w} =0}. fw!,--- Wk €T
and w' # w for any i # 7, then (M2) implies that u(UF_ K,:) = Ele w(K i) >
ka. Hence k < 1/a. So T is a finite set. Set M = maxyer |w| and choose
w € A with |w| > M. Then there exists a sequence {w(#)};=1,2,... C A such that
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w(l) = w and w(l) > w(2) > w(3) > .... Let x = 7(w), where 7 : ¥ — K is
given in Definition 1.2.1 and w € X is the unique infinite sequence contained in
Ni=1,2,...8w()- Then p({z}) = lim; oo u(Kyi)) > @ This contradicts to (M3).
Hence we have verified (G2). O

DEFINITION 1.2.9. Let pp € M(K) and denote i = p/p(K). Then gz defined
in Proposition 1.2.8 is called the gauge function on W, induced by the measure
w. If no confusion can occur, we use u to denote gz and write As(n) = As(9p)-
{As(1) }o<s<1 is called a scale on ¥ induced by the measure u.

The following two facts are immediate from the definition.

ProPOSITION 1.2.10. Let p be a self-similar measure. Then the scale induced
by w is an self-similar scale with the same weight as .

PROPOSITION 1.2.11. Let u € M(K). Then the scale induced by p is elliptic if
and only if p is elliptic.

1.3. Volume doubling property

In this section, S is a finite set, £ = (K, S, {F;}ics) is a self-similar structure
with K # V. Also § = {As}o<s<1 is a right-continuous scale on ¥ and p is always
assumed to be a Borel regular finite measure on K which belongs to M(K). We
will introduce a system of neighborhoods {Us") (2)} of z € K associated with the
scale ¥ and consider the counterpart of “volume doubling measures” on K.

Ordinarily, if (X,d) is a metric space and p is a Borel measure on (X, d),
then p is said to have the volume doubling property (or p is volume doubling in
short) if p(Bar(x)) < Cu(By(z)) for any © € X and r > 0, where B, (z) is a ball
B,.(z) = {yld(xz,y) < r} and C is a constant which is independent of x and r.
We will think of Us")(x) as a ball and introduce the notion corresponding to the
volume doubling property. The main goal of this section, which is Theorem 1.3.5,
is to establish conditions which are equivalent to the volume doubling property in
our framework.

To start with, we associate subsets of words with those of self-similar sets.

DEFINITION 1.3.1. Let I' C W, and let A C K.

(1) W(I,A) ={wweT,K,NA%#0}}.

(2) K(T) = UyerKy.

(3) Define W\, A) and K™(T, A) by WO(T, A) = W(T, A), K"([',A) =
KW®(T, A)) and W+H)(T, A) = W(T, K™(T, A)) for n =0,1,....

(4) We use OA be the topological boundary of A4, i.e. A = AcN A.

Under a scale 8§ = {A;}o<s<1, the “radius” of K,, is thought of as s if w € As.
In this way we may define a ball of radius s with respect to a scale in the following
way.

DEFINITION 1.3.2. Let 8 = {As}o<s<1 be a scale on ¥. For x € K, we write
AL, = W (A, {2}) and US(")(x) = K™ (A, {z}) for n > 0. In particular, we use
Aoo = N, Ky(z) = U (2) and Uy(z) = UM (2). Also set Ay, = W(Ay, Ky)

s,x

for w € W,.



1.3. VOLUME DOUBLING PROPERTY 17

Ul (z) is a neighborhood of z for any n. In the case n = 0, however, K (z) =

© (z) is not a good ball with center x since x may be very close to the boundary of

Ky(x) ie. 0K (z). (Note that if © € K,,\F, (Vo) and w € A, then Ks(z) = K,.)

This will make a crucial difference between the role of {US(")(x)}weKDo forn =10
and that for n > 1.

DEFINITION 1.3.3. Let 8§ = {A}o<s<1 be a scale on ¥ and let 4 € M(K). For
n > 0, we define a property (VD), on (8, 1) as follows.

(VD), There exist a € (0,1) and ey > 0 such that p(US™ (2)) < ey p(USY (2)) for
any s € (0,1] and any x € K.

If (S, u) satisfy (VD), for some n > 1, we say that p has the volume doubling
property (or (VD) for short) with respect to 8.

If § satisfies (EL1), then (VD), will be shown to be equivalent to (VD); for
any n > 1 in Theorem 1.3.11. Therefore, 1 has (VD) with respect to 8 if and only
it (VD),, holds for all n > 1.

We introduce several notions to describe the conditions which is equivalent to
the volume doubling property.

DEFINITION 1.3.4. (1) Let ¢ : W, — [0,00). We say that ¢ is gentle with
respect to (£, 8) if and only if it satisfies the following condition (GE):

(GE) There exists ¢ > 0 such that p(w) < cgp(v) for any s € (0,1] and any
w,v € Ay with K, N K, # (.

w is said to be gentle with respect to § if and only if ¢, is gentle with respect to
(L,8), where ¢, is defined by ¢(w) = pu(Kw).

(2) 8 is said to be locally finite with respect to £ if and only if it satisfies the
following condition (LF):

(LF) sup{#(A}l,)[s € (0,1],2 € K} < 400,
(3) Let n € N. We define properties (A), on (8, i) as follows.

(A);, There exists c4 > 0 such that pu( m (2)) < cap(Ks(x)) for any s € (0, 1] and
any x € K.

Note that the notion of “gentle measure” concerns both a scale and a measure
while the condition (LF) is determined solely by a scale.

THEOREM 1.3.5. Assume that 8 = {As}o<s<1 is elliptic. Let n > 1. Then the
following three conditions are equivalent.
(1) 8 is locally finite and u is elliptic and gentle with respect to 8. In short,
(LF) A (ELm) A (GE).
(2) (8, 1) has properties (A)n and (VD)g. In short, (A)y A (VD)g.
(3) (8, p) satisfies (VD)y.

In particular, (VD)y is equivalent to (VD)1 for any n € N and (VD) < (LF)
A (ELm) A (GE).

REMARK. We will show stronger statement on the equivalence between (1) and
(2). In fact, by Theorems 1.3.8 and 1.3.10, (LF) A (GE) < (A), and (ELm) <
(VD)o.

The main purpose of the rest of this section is to prove the above theorem.
First we examine the condition (LF).
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LEMMA 1.3.6. The following three conditions are equivalent:
(1) 8 is locally finite with respect to L.
(2) sup{#(As.w)|s € (0,1],w € As} < +o00.
(3) sup{#(A%,)ls € (0,1],z € K} < 400 for anyn > 1.
Moreover, if 8 is locally finite with respect to L, then L is strongly finite.

PROOF. (1) = (2): Let s € (0,1] and let w € As. Choose z € K,,. Then
Ag. © AL,. This immediately implies (2).
(2) = (3): Set M = sup{#(As.»)|s € (0,1],w € Ag}. First we show that (2) implies
that £ is strongly finite. For any =z € K, if #(7 (z)) > m, then #(As,) > m
for sufficiently small s. Choose w € Ag,, then #(Asw) > m. Therefore (2)
implies that #(7~1(2)) < M and #(A,,) < M. Note A7, = Upear-1As,w. Hence
#(A?,) < M™! for any n > 1.
(3) = (1): Obvious. O

If p satisty (VD)y, then u(Ugn) (x)) < (cv)mu(Ugﬁ?S(m)) for any m > 1. This
fact lead us to the following proposition.

PROPOSITION 1.3.7. Let n > 0. (VD), is equivalent to the following stronger
condition:
For any o € (0,1), there exists ¢ > 0 such that u(Us(n) (x)) < cu(Ug;) (x)) for any
s €(0,1] and any x € K.

Now we give the first piece of a proof of Theorem 1.3.5.

THEOREM 1.3.8. Let n € N. Then u is gentle with respect to the scale 8 and
S is locally finite if and only if the property (A)y is satisfied. In short, (GE) A
(LF) & (A)n. In particular, (A)n and (A)m are equivalent to each other for any
n,m € N.

PROOF. (GE) A (LF) = (A)n: For any w € A7, there exist w’, w', ..., w" €

A such that w° € Ay, w™ = w and K- N K, # 0 for j = 1,...,n. Hence by
(GE),

(ca)"#(ALz) max u(Kuw) < (c6)"#(A ) u(Ks(2))-
Therefore by Lemma 1.3.6, (LF) implies (A)y.
(A), = (GE): Note that (A), implies (A);. Let w,v € A, satisty K, N K, # 0.
Since K\Vg # 0, K,\F,(Vo) # 0. Choose x € K, \F, (Vo). Then K¢(z) = K,.
By (A)1, cap(Ku) = cap(Kyo(2)) = p(Us(2)) > p(Ko).
(A)y A (GE) = (LF): Let w € As. Choosing z € K, \F,(Vp), we see that
K (z) = Ky and Af, = A, . By (A); and (GE),

cap(Ks(x)) > p(Us(2)) > capt (A p)1(Kw) = catt(Ag ) u(Ks(2)).
Dividing this by u(Ks(x)), we obtain (LF). O

The second piece of Theorem 1.3.5 is the equivalence between (VD)y and
(ELm). To give an exact statement, we need a definition.
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DEFINITION 1.3.9. (£, 8, ) is said to have the property (ELmg) if and only if
the following condition is satisfied:
There exist @ € (0,1) and c¢g > 0 such that u(Kyy,) > cgu(K,) for any s € (0,1],
any w € A; and any v € W, with wv € A,s.

REMARK. If (ELmg) is satisfied, then, for any 5 € (0,1), there exists ¢ > 0
such that p(Kyy) > cpu(Ky) for any s € (0,1), any w € As and any v € W, with
wv € Ags. Indeed, for any k > 0, p(Kypy) > ¥ u(Ky) for any s € A, any w € A,
and any v € W, with wv € A x,.

THEOREM 1.3.10. (VD)y & (ELmg) < (ELm) A (EL2). In particular, if 8 is
elliptic, then (VD)g is equivalent to (ELm).

PrOOF. (VD)y = (ELmg): Let w € A; and let wv € Ays. Choose z €

Ko\ Fuu (Vo). Then Kys(z) = Kyyp. Hence by (VD)g, cpp(Kuyy) = cpp(Kas(z)) >
w(Ks(z)). Since Ks(z) O Ky, cpp(Kyy) > pu(Ky). This shows (ELmg).
(ELmg) = (ELm) A (EL2): Let g be the gauge function of the scale §. For
any w = wi ... w, € W,, there exists n > 0 such that g(w) = g(wy ... wp—pn) <
glwy .. Wm—pn_1). Set w' = wy ... wp_y,. Let s = g(w). Note that w’ € A,. For
any ¢ € S, we can find v € W, which satisfies wiv € Ays. By (ELmg),

(K wi) > p(Kwiv) > cp(Kw) > cpu(Ky).
This shows (ELm). Recall the remark after Definition 1.2.5. Under (ELm), there

exist § € (0,1) and k > 1 such that u(Ky,) < 0u(K,,) for any w € W, and any
v € Wy. Therefore (ELmg) implies

cep(Kw) < p(Kwy) < 5[|v‘/k]M(Kw)'

for any s € (0,1], any w € Ag and any v € W, with wv € A,s, where [z] is the
integral part of . Dividing this by u(K,,), we have uniform upper estimate of |v|.
This shows (EL2).

(ELm) A (EL2) = (VD)o: Letz € K. For any w € A; ,, we may choose v(w) € W,
so that wv(w) € Ays. By (EL2), we have |v(w)| < m, where m is independent of
z,s and w. Using (ELm), we obtain p(Kyyw)) > " u(Ky). Hence,

WEas@) 2 Y i) 2 3 u(KL) = " u(K ().

WEAs & WEAs

Therefore we have (VD). O
The next theorem is a generalized version of Theorem 1.3.5.

THEOREM 1.3.11. Letn > 1. Assume that 8 satisfies (EL1). Then the following
three conditions are equivalent:
(1) 8 is locally finite, u is gentle with respect to 8 and satisfy (VD)o. In short,
(LF) A (GE) A (VD).
(2) (8,u) has properties (A), and (VD)y.
(3) (8, p) satisfies (VD)y.

In particular, (VD)y is equivalent to (VD)y for any n € N and (VD) < (LF)
A (GE) A (VD)g.

To prove the above theorem, we need the following lemma.

LEMMA 1.3.12. Let n € N. If 8 satisfy (EL1), then there exist « € (0,1) and
z € K such that K,, 2 Uéz)(Fw(z)) for any s € (0,1] and any w € As,.
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PROOF. Choose z € K\V. Since K\Vy is open, there exists 3 € (0,1) such
that Uén)(z) C K\Vo. Set m = maxyea, |v]. Let w € A;. Note that (EL1)
implies that |v| > m for any wv € A(y,)ms, where oy is the constant appeared
in Definition 1.1.11. Denote z = F,(2) and a = (a1)™. For any 7 € Ay, ,,

there exist w®, w',...,w* € A”__ such that k < n, wF = 7, w € AJ for

j=0,1,...,k, where Ags’r = Aa;7w, and K,i-1 N K, # 0 for any j = 1, k.
Let p = max{jlw/ < w}. Then, w/ = wovl for j = 0,1,...,p. Since |[v/]| > m,
there exists u/ € Ag such that v/ < /. It follows that z € K,0 C K,o and that
K,-1NKy # 0 for any j = 1,...,p. Therefore, u’/ € Aé,z for j = 1,...,p.
This implies that K,; C Fw(Ué(z)) for j = 1,...,p. Hence Ky» N F,(Vo) = 0.
If p < k, then there exists w’ € A, such that w’ # w and wPt! < w’. Since
KN Ky = Fy,(Vo) N Fy (Vo), we have Kyp N Fy, (Vo) # 0. This is a contradiction

and hence we have p = k. Hence K, C K,,. Therefore, UO(Z)(;U) C K. O

Proor oF THEOREM 1.3.11. (LF) A (GE) A (VD)o = (A)n A (VD)o: This
is obvious by Theorem 1.3.8.
(A)n A (VD)g = (VD),: For s € (0,1] and = € K,

uUM (@) < cap(Ks(w)) < cacpp(Kas(@)) < cacpu(UL ().

(VD), = (GE): By Lemma 1.3.12, there exist o € (0,1) and z € K such that
K, 2 UMY (Fy(2)) for any s € (0,1] and any w € Ag. Proposition 1.3.7 implies
that M(US(") (x)) < cu(Ug;) (x)). Now assume that w # v € A, and K, N K, # 0.
Set © = F,,(2). Then

(1.3.1) p(Ky) < p(UM (@) < ep(USD (@) < cp(Ko).

Hence, p is gentle.

(VD)y = (VD)o: Fix f € (0,1). Let w € A,. By Lemma 1.3.12, Ky D UUS, ()
for any wv € Ags, where x = Fy,(z). Note that K,, C Us(n)(x). By Proposi-
tion 1.3.7, there exists ¢ > 0 such that u(Us(n) () < cu(Uo(Za)S(x)) Hence cpu(Kypy) >
cu(U(%)s(x) > u(Us(n)(x)) > u(Ky). By Theorem 1.3.10, we have (VD).

(VD), = (LF): Let s € (0,1] and let w € As. Choose x = F,,(z), where z is given
in Lemma 1.3.12. Then by (1.3.1), using the similar argument as in the proof of
Theorem 1.3.8, we see that u(K,) > ¢~ "u(K,) for any v € Ay . Hence

cp(Kw) = ep(USD (2)) > p(UM () = Y plI) > ¢ (AL ) p(Ku).
UEA?,I

Dividing this by u(K,), we obtain (LF) by Lemma 1.3.6. O

Finally combining Theorems 1.3.10 and 1.3.11, we immediately obtain Theo-
rem 1.3.5.

1.4. Locally finiteness and gentleness

In this section, we will define the notion of a scale being gentle with respect to
another scale. It will turn out that the relation of “being gentle with respect to” is
an equivalence relation among elliptic scales and the locally finiteness is inherited
from a scale to another scale by this equivalence relation. As in the previous section,
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we fix a self-similar structure £ = (K, S, {F;}ics) with K # Vp. Also all the scales
are assumed to be right continuous.

DEFINITION 1.4.1. Let 8; and 83 be scales on X. 85 is said to be gentle with
respect to 87 if and only if the gauge function of 85 is gentle with respect to (£, 81).

REMARK. Note that we need information on the self-similar structure £ to
determine whether 85 is gentle with respect to 81 or not.

Naturally we have the next proposition.

PROPOSITION 1.4.2. Let 8 be a scale and let p € M(K). Then u is gentle with
respect to 8 if and only if {As(p)}o<s<1 is gentle with respect to 8.

Here is the main results of this section.

THEOREM 1.4.3. Let 81 and Sq be elliptic scales on Y. Assume that 8 is gentle
with respect to 8.
(1) 81 is gentle with respect to 8.
(2) If 81 is locally finite, then 84 is locally finite.
(3) 81 is gentle with respect to 8s.
(4) Let 83 be an elliptic scale on X. Suppose 83 is gentle with respect to 8, then
83 1s gentle with respect to 8;.

PROOF. Let 81 = {As}o<s<1 and let 8o = {T's}o<s<1. Let I and g be the gauge
functions of 81 and 8y respectively. First we show (1). Recall that w = w; ... w,, €
A if and only if [(w) < s <I(w; ...wm—1). By Proposition 1.1.12-(1), there exists
¢ > 0 such that I(w) > cl(w; ... wp—1) for any w € W,. Hence if w € Ag, then
l(w) < s < l(w)/c. This shows that cl(w) < I(v) for any w,v € As. Hence we
obtain (1).

Proofs of (2), (3) and (4) are based on the same idea. If w = wy ... wy, € T,
then

glwy ... Wm—1) > s > g(w).
On the other hand, there exists a unique k& < m such that [(wq...wp_1) >
lwy...wg) = H(wy...wy). By (EL2), m —k < n, where n € N is independent
of w. Let a = l(w) and let w' = w; ... wg. Since 8y is gentle with respect to 81,
g(v) < cg(w') for any v € Ay . If 8 is elliptic, g(w') < (81) "g(w), where 5y
is the constant appearing in Proposition 1.1.12-(1). Therefore there exists ¢/ > 0
such that g(v) < ’g(w) for any v € Ay .. Using Proposition 1.1.12-(2), we see
that there exists p € N such that g(vr) < g(w) < s for any 7 € W,,. (Note that p
in independent of s and w.) This shows that, for any 7 € W, and any v € Ag .,
there exists a unique v’ such that v7 < ¢’ and v’ € T's. Define 7(v7r) = v’. Then
m : Ay X W, — TI's. Note that I';,, is included in the image of w. Hence
#(Dsw) < #(Agw )NP, where N = #(S5). By Lemma 1.3.6, if 8; is locally finite,
then so is 8. This proves (2). Next we show (3). For any v’ € I'y,, choose
v € Ay and 7 € W, so that w(vr) = v'. Then I(vr) < I(v'). Since §; satisfies
(EL1), there exists v > 0 such that [(wi) > vl(w) for any w € W, and any i € S.
Therefore,
1(v') > 1(vr) > ~Pl(v) > vPa = yPl(w).

Hence 8 is gentle with respect to Sq.

To prove (4), we write 83 = {Qs}o<s<1. Let w € Q4. There exist k, j € N such
that j <k <m = |w|, g(wi ... wk—1) > g(wy ... wx) = g(w) and I(wy ... wj_1) >



22 1. SCALES AND VOLUME DOUBLING PROPERTY OF MEASURES

l(wi...w;) =l(w; ... wg). Now using the same construction as m above, we have
maps T : Agwr X Wy, — Ty and g : Ty e X Wy — Qg, where w” = w1 ... wj,a =
l(w"),w =w ... wg and b = g(w'), satisfying the same properties as m. Now for
any v € Qg., there exist v € Iy, 77 € Wy, v € Agwr and 77 € W, such that
m2(v'7") = v and m (v”7"”) = v'. Note that v'7/ < v and v”7” < ¢'. This implies
I(v) 2 1(0'7") > y1(0") = 10" T") 2 APFU(") = 4P Fa > 4P (w)

This shows that 8 is gentle with respect to 83. Applying (3), we obtain the desired
result. O

By the above theorem, the relation “gentle with respect to” is an equivalence
relation on elliptic scales.
DEFINITION 1.4.4. (1) Let 8; and 82 be elliptic scales. We write 8 & 8o if

and only if 8; is gentle with respect to Ss.
(2) Let S be a scale. We define

Myp(L£,8) = {u|p € M(K), u has (VD) with respect to 8}.

PROPOSITION 1.4.5. (1) Let 8 be an elliptic scale on %. If Myp(L,8) # 0,
then 8 is locally finite.
(2) Let 81 and 82 be elliptic scales. Then

Myp(L,81) N Myp(L,82) # 0 = 8 & 82 = Myp (L, S1) = Myp(L,Ss).

PROOF. (1) This is immediate by Theorem 1.3.5.
(2) Let p € Myp(L,81) N Myp(L,82). If 83 is the scale induced by p, then
81 & 83 and 89 & 83 by Proposition 1.4.2. Hence 8 & 83. Next assume

81 & 8o and let p € Mvyp(L,81). Let 83 be the scale induced by p. Then
81 & 83 by Proposition 1.4.2. Hence 8o & 83. Again by Proposition 1.4.2,
€ Myp(L,82). Hence Myp(L,81) C Myp(L,82). Exchanging 8; and 8, we
see Myp(L,81) = Mvyp(L,82). 0

Denote the collection of elliptic scales on ¥ by £8(X). Then, by the above
results, an equivalence class of £§(X) /(:,VE tells us whether a scale 8 is locally finite

or not and determines Mvyp(L,S§), the family of volume doubling measures with
respect to 8. Those facts raises our curiosity on the structure of £§(3) /évE In the

following sections, we will study this problem in a restricted situation.
We conclude this section by giving an important necessary condition for two
self-similar scales being gentle.
NOTATION. For w € Wy and any n € N, we define (w)" =w...w € W,. Also
—

n times
(w)® =www... €.

LEMMA 1.4.6. Let a = (a;)ies € (0,1)° and let b = (b;)ies € (0,1)°. Assume

log a.,

/ / o) — / 7\ oo —
that 8(a) & S(b). If w,w',v,v" € Wy and m(v(w)*®) = w(v'(w')*>), then Togby
log @,

log by
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PROOF. For sufficiently small s, there exist i(s), j(s) € N and w(s),w’(s) € Wi
such that w < w(s),w’ < w'(s), v(w)"@w(s),v' (W) (s) € Ag(a) Set v(s) =
v(w) @ w(s) and v/ (s) = v/ (') w'(s). By Lemma 1.1.13, Qo (s)/ Qo (s) 18 uniformly
bounded with respect to s. Since a,a.(s)/(@v @y (s)) is uniformly bounded, we see
that (ay)"®) /(@ )’ is uniformly bounded with respect to s. As $(a) & 8(b),
we see that by(s) /by (s) is uniformly bounded as well. Note that byby(s)/(bybur(s))
is uniformly bounded. Hence

b)) _ (it (@)

(b )7®) (a0 )18’
where a = logb,,/loga, and B = logb,/loga,, is uniformly bounded. Since
i(s) — 400 as s | 0, it follows that oo = (3. O

1.5. Rationally ramified self-similar sets 1

In this section, we will introduce a special class of self-similar structures called
“rationally ramified self-similar structures”. £ = (K, S,{F;}ics) is assumed to
be a self-similar structure throughout this section. Roughly speaking, £ is called
rationally ramified if K;NKj is again a self-similar set. This class of self-similar sets
include post critically finite self-similar sets, for example, the Sierpinski gasket, as
well as so called “infinitely ramified” self-similar sets like the Sierpinski carpet and
the Menger sponge. The advantage of a rationally ramified self-similar structure is
that one can give simple characterizations for the locally finiteness of a scale and the
gentleness of two scales. Using such results, we can explicitly determine the class
of self-similar measures which have the volume doubling property with respect to a
given scale for rationally ramified self-similar sets. See the next section for details

To start with, we need several notions and results on the shift space.

DEFINITION 1.5.1. Let X be a non-empty finite subset of Wx. For w € Wy,
we denote w = (w), ... (w),, where (w); € Sfori=1,...,|w|. We define a map
tx from (X)) = {z122...|z; € X for any i € N} to X(S) by

Lx(xlxg .. ) = ($1)1 N (xl)lrll(@)l . (x2)|r2| e
Define $[X] = 1x (2(X)), K[X] = 7(2[X]), Su[X] = 0w (1x (2(X))) and K, [X] =
Fu(K[X])(=m(X4[X])) for w € Wy. X is called independent if and only if ¢x is
injective. When X is independent, we sometimes identify 3(X) with 3[X].

For example, let S = {1,2} and let X = {1,12,21} Then X is not independent.
In fact,

2112(1)*° = 1x (¢b(a)™) = tx (cac(a)™).
where a =1,b=12,¢c = 21.

Since tx : 3(X) — X[X] and 7 : ¥ — K are continuous, we have the following

lemma.

LEMMA 1.5.2. If X is a nonempty finite subset of Wy, then %[X] and K[X]
are compact.

Now we study how to characterize the independence of X.

DEFINITION 1.5.3. Let X be a nonempty subset of Wx.
(1) For m >0, define p,, : ¥ — W, by pim(w) = w1 ... wpy, for w =wiws .. ..
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(2) For m > n, define ppy n : Wiy, — Wy, by pmn (w1 ... W) = w1 ... W
(3) Forzy,za,...,x,m € X, recalling that each x; € W,, we may regard 1 ..., €
W, (X) as an element of W,. We use 1% (1 ... 2zym) to denote z; . .. ,, as an element
of W, to avoid confusion. In other word, /% : W, (X) — W, is defined by

@y am) =21(1) . cx1(ne) oo (1) - 2 (),

where n; = |z;| and z; = 2;(1)z;(2) ... zi(n;) € Wy, fori=1,...,m.
(4) For m >0, we define

QX)= U (Pn(SulX]D) N pm(S[X]))-

w,vE X, wH#v

The following fact is immediate from the above definition. It says that an
element of @,,,(X) can be expressed by two different words of X whose first symbols
are different. X is assumed to be a nonempty finite subset of W.

LEMMA 1.5.4. Let w € W,,. Then w € Q. (X) if and only if there ex-
ist x1...xx and 2’1 ... 2", € W (X) such that x1 # x), 0% (x1...25) < w <
(g xp—1) and B (2. 20y) < w < ¥ (1. 2 1), Moreover, if m > n,

then pmn(Q@m (X)) C Qn(X).

LEMMA 1.5.5. Let w € Y. Suppose that there exist w € X and mp < mg < ...
such that pm,(w) € pm; (Zw[X]). Then w = 1x(wza...) for some x9,x3,... € X.

PRrOOF. For sufficiently large i, we may find x(i) € X such that p,,, (w) €
Ywa(i)- Since X is a finite set, we may find x2 € X and a subsequence {mg,;};>1 of
{mi}i>1 such that py,, (W) € Xz, for any i. Repeating the same procedure, we
may inductively obtain z; € X and {m;;};>1 for j > 2. Now, w = vx(wzazs...).

O

We have a simple characterization of the independence of X in terms of @, (X).

THEOREM 1.5.6. Let X be a nonempty finite subset of Wx. Then X is inde-
pendent if and only if Qm(X) =10 for some m € N.

REMARK. By Lemma 1.5.4, if Q,,(X) = 0, then Q,(X) = 0 for any n > m.

ProoF. If X is not independent, then there exist xjzo...,2525... € I(X)
such that tx (z122...) = tx(2]z)...). We may assume that x1 # 2} without loss
of generality. Now, ppm(tx (z122...)) € Qmn(X) for any m > 0.

Conversely suppose that Q,,(X) # 0 for any m > 0. Set

;knn(X) = Pmtn,m(Qmin(X)).

Then {Q}, ,,(X)}n>0 is a decreasing sequence of nonempty finite sets. Therefore,
Q(X) = Np>0Q;,, . (X) is not empty. Also it follows that py 1 (Q} (X)) = QF (X)
for any k,l € N with & > [. Therefore, there exists w = wyws... € 3 such that
pm(w) € Qr,(X) for any m > 0. For each m, there exist w(m),v(m) € X such that
w(m) # v(m) and pp (W) € P (tx (B(X))) N Eym) N Ey(m). Since X is a finite set,
there exist w,v € X and {m;};>1 such that w # v, w(m;) = w and v(m;) = v.
Now using Lemma 1.5.5, we see that w = tx(wzazs...) = tx(vrhah...) for some
{z;},{z;} € X. Hence tx is not injective and therefore X is not independent. O
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Hereafter, if a nonempty finite subset X of W is independent, we think of
1 ... Ty € Wo(X) (where x; € X for any i) as an element of W, in the natural
manner.

Before getting to the definition of rationally ramified self-similar structure, we
still need several notions.

DEFINITION 1.5.7. Let ¥ be a nonempty subset of 3 and let x € W,. We
define Ox, »(w)

Osyz(w) =#({m|m > 0,06™w € 0,(Z0)})
for any w € . We allow oo as a value of Og, (w).
The following two lemmas are basic facts on Ox(x] . (w).
LEMMA 1.5.8. Let X be a nonempty finite subset of W, and let x € W,. If

sup Oxx),«(w) = +00,
weXx

then there exists T € X such that Osyx],(7) = 0o.

PROOF. Set & = maxy,cx |w| and define M = |z|(k* + 3). By the above
assumption, we may choose w € X,[X] so that #({m|o™(w) € ¥,[X]}) > M. Let

w = wx (212 ...), where 1, z2,... € X. There exists a sequence {m;}o=1, . x242
such that mg = 0, m; + || < m;yq for any i = 1,...,k* + 1 and o™i (w) € X, [X]
for any i = 1,...,k? + 2. Choose n so that myz,o + |2| < |221...75—1]. Then
|Tpni1 .. Tpik| > k and so, for any i = 1,..., k% + 2, there exists {xé‘}jzl,...,n(i) C

X such that zz1 ... zpxpy1 - Tpyr < W1 .. .wmixmﬁ .. .m;(i) < xxy...T,. Since
k242> |Zpi1 .. Tpgr| + 1, we see wy ... wp,, za] . --$Z(p) =W ... W,z ..mi(q)
for some 0 < p < g < k. (We set z¥ = z; and n(0) = n.) Note that m, + || < m,.
Hence we have [ which satisfies o' (xf Ty ) =TT Sebw = af TP
and define 7 = (w)>. Then7 = (w)'w; ... wzx] ...z}
olvlitls € 3, [X] for any i. O

@ (w)® for any i. Therefore,

REMARK. In the proof, we have shown the following statement:
Let k = maxyex |w]. If Ogix).(w) > M = |z|(k* 4 3) for some w € X, then there
exists 7 € ¥ such that Oxx),(7) = +o00.

As a final step to the definition of rationally ramified self-similar structures, we
need several definitions.

DEFINITION 1.5.9. Let Q = (X,Y, ¢, z,y), where X and Y are a non-empty
independent finite subsets of Wx, ¢ is a bijective map between X and Y and
z,y € Wy
(1) We define @, : 3;[X] — Zy[Y] by p«(zzi22...) = yo(x1)e(z2) ... for any
r1,T2,... € X.

(2) A pair (w,7) € 3(S) x X(S) with w # 7 is called a corresponding pair with
respect to © if and only if w = vw’ and 7 = vp, (') for some v € W, and some
w' e X, [X].

(3) Q is called a relation of £ if and only if the first symbol of x is different from
that of y, Ox[x) »(w) and Ogpy),,(w) are finite for any w € ¥ and 7(w) = 7(7) for
any corresponding pair (w,7) with respect to 2. The collection of relations of L is
denoted by R..
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(4) Let Q = (X,Y,p,z,y) be a relation of L. Q' = (X' Y, ¢, x,y) is called a
sub-relation of Q if X' C X, Y" = p(X’) and ¢’ = ¢|x.

(5) Let R C Re. Arelation Q = (X,Y, ¢, x,y) is said to be generated by R if there
exists a sequence of sub-relations of relations in R, {(X;, X1, @i,xi,xiJrl)};i_ll,
such that X = X1, = X,z = 21,y = &, and ¢ = @—10...0p1. We use [R]
to denote the collection of relations generated by R. If R C R’ C [R], then R’ is
said to be generated by R or R is a generator of R'.

REMARK. If (X,Y,p,2,y) is a relation of £. Then sup, 5 Osx],.(w) and
SUpP,ex Ospyl,y(w) is finite by Lemma 1.5.8.

REMARK. If Q = (X, Y, p,z,y) be a relation of £, then so is (Y, X, ¢~ !y, z).
We denote Q! = (Y, X, o1, y,2) and identify Q with Q~1. In particular, if R is a
subset of R, for a self-similar structure £, then we always suppose that Q=1 € R
for any Q2 € R. In making a list of elements of a relation set, we customary mention
only one of (X,Y, ¢, x,y) or (Y, X,¢o 1y, ).

DEFINITION 1.5.10 (Rationally ramified self-similar structure). A self-similar
structure £ = (K, S, {F;}ics) is said to be rationally ramified if and only if it is
strongly finite and there exists a finite subset R of R, satisfying the following
property: for any 4,5 € S with i # j,

(1.5.1) N KiNK;)NY; = U ¥ [X],
(X,Y,0,2,9) R j,w€ai (W)
where
Ry ={QIQ= (XY, p,2,y) € [R],x € 0:(W.),y € 0;(W.)}.
R is called the relation set of L.

Note that [R] is a finite set if R is finite. We may assume that R = [R]
in the above definition without loss of generality. However, as one will see in
Example 1.5.12, R can be more simple than [R] in some cases.

ExaMPLE 1.5.11 (the Sierpinski gasket). Let p1,p2 and ps be vertices of a
regular triangle in C. Define F;(z) = (2 — p;)/2 + p; for i« = 1,2,3. The Sier-
pinski gasket is the self-similar set with respect to {Fi, Fy, F3}, i.e. K is the
unique non-empty compact set satisfying K = Fy(K) U Fo(K) U F3(K). £ =
(K, S,{Fi}ics), where S = {1,2,3}, is a rationally ramified self-similar structure.
Indeed, {({i},{Jj}, vi;» 4.9, 5) = (1,2),(2,3),(3,1)}, where ¢;;(i) = j, is a rela-
tion set. According to the convention in the remark above, this relation set contains
6 elements in fact.

EXAMPLE 1.5.12 (the Sierpinski carpet). et p1 = 0,ps = 1/2,p3 = 1,ps =
14+vV—=1/2,ps = 1+ +/—1,ps = 1/2+ /—1,pr = v/—1 and pg = v/—1/2. Define
F,:C—Chby Fi(z) =(2—1p;)/3+p; fori=1,...,8. Then there exists a unique
nonempty compact subset to C, K, which satisfies K = US_, F;(K). K is called
the Sierpinski carpet. Let £ = (K, S, {F;}ics), where S = {1,...,8}. Then L is
a rationally ramified self-similar structure. To describe its relation set R, we let
X1 ={1,2,3},Y1 = {7,6,5},01(1) = 7,91(2) = 6,01(3) = 5, X2 = {1,8,7}, Yo =
{3,4,5},p2(1) = 3,92(8) = 4 and ¢2(7) = 5. Then

R = {(Xl,Yl,cpl,i,j)Ki,j) = (87 1)5 (473)5 (778)5 (574)}U
{(X271/27<P2aiaj)|(iaj) = (25 1)7 (65 7)7 (352)7 (556)}7
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FIGURE 1.1. Sierpinski gasket

FIGURE 1.2. Sierpinski carpet

where p3(1) = 5 and 4(3) = 7. In this case, the set of relations generated by R,
[R], is not equal to R. In fact,

[R] =RU {({1}’ {5}7 P15, iaj)a ({3}7 {7}3 ¥37, k? l)|
(Zvj) = (658)7 (45 2)7 (kvl) = (872)5 (674)}a

where ¢,,, maps m to n. Those additions are really needed in the definition of
rationally ramified self-similar structure. For example, Ra2 = {({1}, {5}, ¢15,4,2)}.

PROPOSITION 1.5.13. Let £L = (K, S,{F;}ics) be a rationally ramified self-
similar structure with a relation set R.
(1) K #V,.
(2) Set M = max,cx #(m (). Suppose that m(w) = 7(7) and w # 7. Then
there exist Qp,..., 0 € [R] and wV, ... W™D € S which satisfy the following
conditions (AS1), (AS2) and (AS3):
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(AS1) m +1 < maxzex #(r1(z))

(AS2) w=wM wm*t) =+ and (WD, w0V is a corresponding pair with respect
to Q; foranyi=1,...,m.

(AS3) s(w® 1) < s(wV 1) for any i =1,...,m — 2, where s(6, p) = min{k —
10k # pr}t for § = 0102 ... and p = p1pa.. ..

REMARK. Under the assumptions of the above proposition, let w®, ... w(m+1)
and Qy,...,Q,, satisfy (AS1), (AS2) and (AS3). Set m, = s(t,w™). If Q, =
(X, Yo, on, z(n),y(n)), then the first symbols of (i) and y(i) are w,(;T)LH and 7y, +1
respectively. Furthermore, wm = TL .. Tm, x(n)x122 ... for some x129 -+ € L[X]

and W) =717 y(n)on (1) (22) . . .

PRrOOF. (1) Since Cz = U(x,v,p,2,y)erEe[X], the post critical set P, is a fi-
nite union of ¥,,[X|’s for some w € W, and some X where (X,Y, p, z,y) € R. Now
Vp is a finite union of F, (K[X])’s. Lemma 1.5.2 shows that V5 = V. By [28,
Corollaries 1.4.8 and 1.4.9], £ is minimal. Hence, [28, Theorem 1.3.8] implies that

K # Vo=V,
(2) Define w™,w® ... and Q;,Qs, ... inductively as follows. Set w®) = w. Sup-
pose we have w® | ... w(™ and Q4,...,Q,_1. fw = 7, then we set m = n+1 and

finish the construction. If w(™) # 7, then set k = s(w™, 7)4+1,i = w,g") and j = 7%.
By (1.5.1), we may choose Q,, = (X,Y, ¢, z,y) € Ri; such that o*(w(™) € ¥,[X].
Define w1 = 71 ... 7.0, (0% (w™). Then w,(;ﬁl) = Tpt1. Hence s(wt1),7) > k.
As far as this construction continues, w™®,w® ... W and 7 are mutually differ-
ent elements. Therefore, n + 1 will not exceed max,ex #(771(x)). O

The next two lemmas describe fine structures of intersections of two copies K,
and K, for a rationally ramified self-similar set. They are technically useful in
getting results in the following sections.

LEMMA 1.5.14. Let L be rationally ramified and let (X,Y, ¢, x,y) € Rrz. Define
o X[X] — Z[Y] by p(x122...) = @(z1)e(x2).... Then there exists a unique
homeomorphism ¢ : K[X| — K[Y] that satisfies pom = 7o @.

PRrROOF. Fix p € K[X]. If there exist z1xo... € ¥(X) and zjz ... € (X)
such that w(x129...) = w(zizh...) = p, then w(yp(r122...)) = 7(TT122...) =
m(axzizh...) = w(yp(aiayy...)). Therefore, m(p(z122...)) = w(@(z)ah .. .)). Hence
for any p € K[X], m(¢(7~!(x))) contains only one point. Define $(p) as this one
point. Then by a routine argument, ¢ : K[X]| — K[Y] is continuous. Exchanging
X and Y, we obtain the inverse of ¢. Hence ¢ is a homeomorphism. O

DEFINITION 1.5.15. Let X be a finite subset of W4 and let € W,. For each
w € W, define

Axz(w) = {(z,20,21,...,2m)|m > 0,2 € W,,

TO =T, L1y T € X, 200T1 .« .. Ty S W < ZBOXY -+ - L1 }-

LEMMA 1.5.16. Let L be rationally ramified and let Q = (X,Y, p,z,y) € Re.
Suppose w = Wy ... W,V =01 ...V, € Wy and L, N2, = 0. Set z, = wy ... wy,
where N = inf{ilw; = v;} — 1. Then, there exist a corresponding pair with re-
spect to Q in Xy X By, if and only if there exist (24, T, T1,...,Zm) € Ax z(w) and
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(24, Y, Y1, - - s Yn) € Ayy(v) such that y; = @(z;) for i = 1,...,min(m,n). More-
over, let T, = m,lnm,zn where w = zxxy.. .mm_lx,ln and let y, = y,lALy,zl where v =
2YY1. . Yn—1YL. Suppose that m > n and define Yni1,---,Ym by yi = @(x;). Then
Koz [X] = Koyzy, o1y, Y] € Kw N Ky and (Fv)ilon|Kzgn[X] = Fyyiiiym ©
@o(Fy2)~t, where ¢ is the homeomorphism between K[X] and K[Y] introduced in
Lemma 1.5.14. See the following commutative diagram, where Ys = Y2Ynt1 - - - Ym.

F 2
K[X] —" K, [X]

d |

Fy wafn [X]

1.6. Rationally ramified self-similar sets 2

Continued from the last section, we will focus on rationally ramified self-similar
structures. In this class, there are useful criteria for a scale being locally finite
and self-similar scales being gentle with respect to each other. As in the previous
sections, £ = (K, S,{F;}ics) is a self-similar structure.

THEOREM 1.6.1. Let L be rationally ramified and let R be its relation set.
Define Ry = {(X,Y,p,2,y) € RI#(X) > 2}. Then an elliptic scale § on X is
locally finite with respect to L if and only if there exist ¢1,co > 0 such that

(1.6.1) al(zezy ... zm) <l(zyp(z1) ... 0(Tm)) < col(zzx1 ... Tm)

for any (X,Y, o, x,y) € Ra, any 1 ... xm € Wi (X) and any z € Wy, where l is the
gauge function of 8. In particular, for a € (0,1)°, a self-similar scale $(a) on X is
locally finite with respect to L if and only if a, = ay(w) for any (X,Y, ¢, 2,y) € R
and any w € X.

COROLLARY 1.6.2. Let L be rationally ramified. Assume that 81 - Sq is locally
finite with respect to L for elliptic scales 81 and S on ¥. Then 81 is locally finite
with respect to L if and only if 8o is locally finite with respect to L.

To prove Theorem 1.6.1, we need the following lemma.

LEMMA 1.6.3. Let X be a nonempty independent finite subset of Wy and let x €
Wy Assume that Osx) . (w) < 400 for any w € X. Then sup,ew, #(Ax.(w)) <
+o0.

PROOF. By Theorem 1.5.6, we may choose k so that Qx(X) = 0. Fix z, € W,.

Then (2., z, 1, . - ., Tm) € Ax (w) is uniquely determined except for p,_k, . . ., Tp.
Therefore
(1.6.2) sup #{(z+, 2,21, ..., &m) € Ax z(w)} < +o0.
Now define
Nx (w) = #{z|(z,z,21,...,2m) € Ax z(w) for some (z1,...,Tm)}

Lemma 1.5.8 implies that sup,cy Ox(x],«(w) < +00. Denote the value of this
supremum by N. Suppose that Nx ,(w) > k(N + 1), where k = max,ex |w|. For
(z,2,21,...,%m) € Ax(w), |w| —k < |zzz1...2m| < |w| — 1. Therefore, for
some [ € {|w| =k, ..., |w| — 1}, there exists {(z,z,2{", ... 2{) ) }NH € Ax ,(w)
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such that 2 # 20) for any i # j and 2@Dzz” .. 2{) = w; .. w, where w =
Wi .. Wiyl Set w = wy ... wy(z4)>, where x, € X. Then, oy e Y. [X] for any
i=1,..., N+1. This contradicts to the definition of N. Hence, Nx 5(w) < k(N+1)
for any w € W,. Combining this with (1.6.2), we have the desired estimate. O

DEFINITION 1.6.4. Let £ be a self-similar structure and let R € R.. For a
scale {As}se(0,1), we define

Azw = {v|v € Ag, there exists an corresponding pair
with respect to some Q € [R] in X, x Xy}
for any s € (0,1] and any w € As.

LEMMA 1.6.5. Let R be a relation set of a rationally ramified self-similar struc-
ture £ and let 8 = {As}se(0,1) be a scale on L.
(1) 8 is locally finite if and only if there exists C > 0 such that #(Azw) < C for
any s € (0,1] and any w € As.
(2) Let: W, — [0,4+00). Then, v is gentle with respect to 8 if and only if there
exists C' > 0 such that f(w) < C'f(v) for any s € (0,1], any w € As and any
veAR,.

PROOF. Let M = max,ex #(m 1 (x)). If v € Ag, then there exists p € K, N
K,. Choose w and 7 € 7~ !(p) so that w € ¥, and 7 € %,. By Proposition 1.5.13-
(2), we have w® ... W™D € 3 and Qy,...,Q,, € [R] with (AS1), (AS2) and
(AS3). Hence, if W, = AT, U{w},

(1.6.3) AwS U - U W pni—1.

wDEW, w wPEW 1) wM-DeW  (n_o)

s,w

Now if #(A%,,) < C for any s and w, then (1.6.3) implies that #(As,.,) < (C+1)M.
Hence we have (1). Next suppose that f(w) < C'f(v) for any w € A and any
v € A%, Then by (1.6.3), f(w) < (C")M~1f(v) for any w € A, and any v € Ay,
This shows (2). O

PROOF OF THEOREM 1.6.1. Note that 2 € [R] is a finite composition of sub-
relations of relations in R and the the number of composed sub-relations is uni-
formly bounded. Therefore, we may assume that R = [R] without loss of generality.
Let 8§ = {As}o<s<1. Since 8 is elliptic, there exist d1,d2 € (0,1) and ¢ > 0 such
that (61)1*11(w) < l(wv) < ¢(62)"l(w). Define

M = max{|w||lw € X or w €Y for some (X,Y, ¢, z,y) € Ra}.

By Theorem 1.5.6, we may choose n > 1 so that Q,(X) = 0 for any X with
(X,Y, o, z,y) € Ra. Assume that there exist (X,Y, ¢, z,y) € Ra, x1...Tym €
W.(X) and z € W, such that [(zzx1...2:,)(00)Y %+ > 1(zyy1 ... ym), where
y; = @(x;) for j =1,...,m. Set s = l(2yy1...yYm). Then there exists v € W,
such that v > zyy1...ym and v € A,. Since l[(z2zx1...Tmigen) > s for any
(Toity s Tmikin) € X*" Lemma 1.5.16 implies that there exists w € W, such
that w < zzx; ... Tmtksn and w € Ay ,,. Since Q,(X) = 0, the set

{wlTmir, . Tpgign € X,w < 2821 .. Ty, W € Ag o}

contains 2% elements at least. Hence #(Ag,,) > 2*. Therefore, if § is locally finite
with respect to £, then we have (1.6.1) by Lemma 1.3.6.
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Next we assume (1.6.1). Let w € A and let Q = (X,Y,p,2,y) € Ra. For
v=(z,2,21,...,%m) € Ax »(w), we define

B(PY) = {('U, Z,Y, Y1y - - - 7yn)|U S Asa (Za Yy Y1, .- 7yn) S AY7y(v)7
x; = (y;) fori=1,...,min(m,n)}.
By Lemma 1.5.16, for v € A?)w, there exist v € Ax z(w) and (v, z,y,y1,...,Yn) €
B(y). If #(X) =1, then it is immediate to see #(B()) = 1. Suppose #(X) > 2.
Let v« = (v,9,91,-.-,Yn) € B(7y). Since both w and v belongs to Ag,

csl(zaxy .. xm) <l zyyr...yn) < cl(zzzy ... xm),

where c3 and ¢4 are positive constants which are independent of s,w,2,v and
Ve If n > m, then l(zyyr ... yn) < cdgkl(zyyl ...Ym), where k = |n — m|. Hence
cal(zzry .. xm) < c(02)F1(zyy1 . .. ym). By (1.6.1), [n—m/ is bounded by a constant
which is independent of s,w,),~ and .. (Note that the above discussion is valid
even if n < m; we only need to exchange v and v, and do the same argument.)
Therefore, #(B(7)) is uniformly bounded with respect to w,~. This fact with
Lemma 1.6.3 implies that #(Afw) is uniformly bounded with respect to s and w.
By Lemma 1.6.5-(1), 8 is locally finite with respect to L.

Finally if § = 8(a), then it is straightforward to show that (1.6.1) is equivalent
to that aw = ay,(w) for any (X,Y, ¢, z,y) € Ro and any w € X. O

For the gentleness of self-similar scales, we have the following result.
THEOREM 1.6.6. Let £ = (K,8,{F;}ics) be rationally ramified and let R be a
relations set of L. For a = (a;)ies,b = (b;)ics € (0,1)%, §(a) & 8(b) if and only
if, for any (X,Y, p,z,y) € R, either (R1) or (R2) below is satisfied:
(R1)  aw = ay(w) and by = by for any w e X.
(R2) There exists 6 > 0 such that
o ].Og Ay log Ao (w)
~ logb, log by (w)

)

for any w e X.

PROOF. We may assume that R = [R] without loss of generality. First assume
that every 2 € R satisfies (R1) or (R2). Suppose that v € As,(a)®. Then we
find a corresponding pair (w,7) with respect to some (X,Y, ¢, z,y) € R satisfying
w€X,, 7€, and m(w) = 7(7r). Now, let w = zzz129 ... and let 7 = zyy1y2 . . .,
where z € W,, x1,22,... € X and y; = ¢(x;) for any i. Then we obtain that
w=zxry ... 2,2 and v = zyy1 ... Ymy', where x,11 < 2’ and y,11 < y'. Assume
that (R2) holds. Then, b,, = (a,,)° for any i. Now

b_w B bobyr o’ (agpaq) ™0 _ (a_w)‘S(ayay/)‘szbr/
by bybyaS(aya,)=®  \a, Az /) byby

Note that a,/a, is bounded (from above and below) by Lemma 1.1.13 Also since
R and X is a finite set, ag, ayr, by, by is uniformly bounded. Therefore, b, /b, is
uniformly bounded. If (R1) is satisfied, then

A Ap Qg

Ay gy Cy?

Qgpyyy -+ - Oy s
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where we assume that n > m. Since a,,/a, is uniformly bounded, it follows that
|m — n| is uniformly bounded from above. Hence
by  bypby
— = —by, .- by
by  byby "t
is uniformly bounded (from above and below). Hence Lemma 1.6.5-(2) implies that
S(a) & S(b).

Conversely assume that S(a)

n

& 8(b). Let (X,Y,p,z,y) € R and let w € X.
Since 7(z(w)*>) = m(y(p(w))*>), Lemma 1.4.6 implies
logay  10gag(w)

1.6.4 =
(1.6.4) log by, log b (w)

We write §,, = logb,,/loga,,. For x1 # x5 € X, write y; = p(;) for i = 1,2. Note
that w(z(x122)*°) = m(y(y1y2)>°). Hence by Lemma 1.4.6, we obtain (1.6.4) with
w = z1x2. Combining the three equations (1.6.4) with w = x1,z2 and z129, we
obtain either

(165) 51?1 = 5127

or

(1.6.6) logas, loghs, logas, logba,

loga,, logb,, loga,, logb,,
is satisfied. Suppose that (1.6.5) does not hold. Then we have (1.6.6). Write
p = logay, /logag,. Then a,, = (az,)? and by, = (by,)? for ¢ = 1,2. Without loss
of generality, we may assume that 0 < p < 1. (If not, exchange X and Y'.) Suppose
that p # 1. Set x(m) = z(z1)™ for any m > 1. Define s, = ay(m) = az(az,)™. As
0 < p < 1, for sufficiently large m, there exists a unique n(m) € N such that
(1.6.7) ay(ayl)m(ayg)n(m)_l > Sm 2 ay(ayl)m(ayg)n(m)-
Then y(m) = y(y1)™(y2)"™ € As,, (a). Since a,, = (az,)?, (1.6.7) implies that
log a; — logay, n m(l —p) log ag, < n(m).
log ag, p logag,
Note that xz(m),y(m) € As,, (a). Hence by(y)/bym) is uniformly bounded from
below and above with respect to m because 8(a) & 8(b). Now by () = by(ag,)™%=1.
Using Lemma 1.4.6, we obtain (1.6.4) with w = (21)™(x2)""™). Therefore, if 8, =
m n(m 6777‘
5(w1)m($2)n(m), then by(m) = by((ayl) (ay2) ( )) . Hence,
bem) _ s (@ )‘*m(%(m)‘”nm 6y =)
X N
Qg Gy (m)

by(m) by
As min(0z,,0z,) < 0 < max(dy,, 04, ), the first three factors in the above equality
is uniformly bounded from above and below with respect to m. Therefore, so is the
fourth factor (ag, )1 =%)  On the other hand, by (1.6.8),

logy, logb,, + Alogb,,

(1.6.8) n(m) —1<

lim (6z, — dm)

m— 00 " logas, logag, + Alogag,’
1—p)loga, .
where A = M%. Now since 0 < p < 1 and d,, # J,,, the value of the
b 0g Qg

above limit is not zero. Therefore, (ay,)™%1~%m) is not uniformly bounded from
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above and below with respect to m. This contradiction implies that p = 1. Thus
it follows that, for any =1 # x2 € X, (1.6.5) holds or a;, = a,, and b, = by,
for i = 1,2. So if (R1) is not satisfied (i.e.there exists some w € X such that
Uw F Gp(w) OF by 7# Dy(w)), then 8, = dy for any w' € X with w # w’. This
implies (R2). Thus we have the desired conclusion. O

Combining Theorems 1.6.1 and 1.6.6, we can show that the number of equiva-
lence classes of locally finite self-similar scales under ol is 0,1 or +o0 as follows.

THEOREM 1.6.7. Let L = (K, S,{F,;}ics) be a rationally ramified self-similar
structure and let R be its relation set. For any w = wy ...w, € Wi, we define
fuw € L(S) by fu(i) = #({klwx, =i}) for anyi € S. Define R1 = {(X,Y,¢,2,y) €
RI#A(X) =1} and Re = {(X,Y, p,z,y) € R|#(X) > 2}. Also let U be the subspace
of £(S) generated by { fu — foe)|(X,Y, 0, 2,y) € Ro,w € X}. (If Ro =0, then U
is thought of as {0}.)

(1) There exists a self-similar scale on ¥ which is locally finite with respect to L
if and only if U N [0, +00)® = {0}.

(2) Assume that U N[0, +00)® = {0}. For Q = (X,Y,p,z,y) € R1, we use Ug to
denote the subspace of £(S) generated by { fuw, fouw)}, where w € X. Also define

GLr(X, L) = {S|S € 6(X), 8 is locally finite with resepct to L}.
If for any Q € Ry with dimUq = 2, then #(GLF(E,ﬁ)/&E) = 1. In other words,

all self-similar scales which are locally finite with respect to L are gentle each other
if dim (UNUq) =1. If dim (U NUgq) = 0 for some Q € Ry with dimUq = 2, then
#(GLF(E, L)/&) = +00.

REMARK. Let Q@ = (X,Y,¢,2,y) € Ry and let X = {w}. Then both f, and
[fo(w) belong to [0, +00). Therefore, if U N [0,00)% = {0} and dim (U N Ug) > 0,
then dim (U NUgy) = 1.

The following lemma is a version of Stiemke’s Theorem (or Minkowski-Frakas’s
Theorem), which is a well-known result in convex analysis. See [39] or [37] for
example.

LEMMA 1.6.8. Let X be a finite set and U be a subspace of £(X). Then U N
[0, +00)X = {0} if and only if UL N (0,+00)X # 0, where U+ is the orthogonal
complement with respect to the inner product (-,-)x.

LEMMA 1.6.9. Assume that U N[0, +00)% = {0}. Let Q = ({w}, {v}, ¢, 2,9) €
R1. Define ®q : U+ — R? by ®q(p) = ((fw,p)s)' Then dim ®q(UL) =1 or 2.

(fvvp)s
Moreover, dim ®q(UL) =1 if and only if dimUq = 1 or dim (U N Ug) = 1.

PrOOF. By Lemma 1.6.9, we have U+ N (0, +00)® # (). Hence ®q(U+) # {0}.
Hence dim ®(UL) > 0. Since UL N (0, +00)? # 0, it follows that dim ®o(U+) = 1
if and only if there exist @ > 0 and 3 > 0 such that af, — 8f, € (UL)t = U.
afw—Bfy = 0if and only if dim U = 1. Also af,, — B f, # 0 if and only if UNUq #
0. By the remark after Theorem 1.6.7, this is equivalent to dim (U NUq) =1. O

PROOF OF THEOREM 1.6.7. Let § = §(a), where a = (a;)ics € (0,1)%. Set
p; = loga; for i € S and write p = (p;)ics. Note that p € (—o0,0). By Theo-
rem 1.6.1, 8 is locally finite if and only if ( fu, — fy(w), P)s = 0 for any (X, Y, ¢, z,y) €
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Ry and any w € X. This is equivalent to that p € UL. Therefore, there exists a
self-similar scale which is locally finite if and only if U+ N (—o00,0)° # (). Since U
is a linear subspace, UL N (—00,0)° # @ if and only if U+ N (0,400)° # 0. Now
Lemma 1.6.8 immediately implies (1).

Next we assume that U N [0, +00)® = {0}. Let §(a) and §(b) be locally finite.
By Theorem 1.6.1, the condition (R1) is satisfied for any (X,Y,p,z,y) € Ra. If
dim (U NUgq) =1 for any Q € Ry with dim Ug = 2, then Lemma 1.6.9 shows that
dim ®o(U+) = 1 for any Q € Ry. This immediately implies that (R2) holds for
any Q € Ry. Thus we see S(a) & 8(b). Now assume that dim (U NUq) = 0 for
some 2 € Ry with dim Ug = 2. Then by Lemma 1.6.9 implies that dimg,, 1) = 2.
Then for any ¢ € (—o00,0)?, there exists a = (a;)ics such that loga € Ut N
(—00,0)¥ and ®q(loga) = g, where loga = (loga;)ics € £(S). Therefore there is
no constraint on the ratio between log a,, and log a,, where Q@ = ({w}, {v}, ¢, x,y).
Hence #(GLF(E,E)/(’;E) = +o0. O

COROLLARY 1.6.10. Let L be rationally ramified and let Ry and Ry be the same
as in Theorem 1.6.7. If Ry = 0 and U N0, +00)® = {0}, then #(GLF(Z,E)/(’;E) =

1.

In the case of post critically finite self-similar structures, the above results are
easy to verify as follows.

DEFINITION 1.6.11. A self-similar structure £ = (K, S, {F;}ies) is called post
critically finite (p.c.f. for short) if and only if the post critical set P of £ is a finite
set.

PROPOSITION 1.6.12. £ = (K, S, {F;}ics) is post critically finite if and only if
L is rationally ramified with a relation set R which satisfies R = Ry. Moreover, if
L is post critically finite, then any scale 8 of ¥ is locally finite with respect to L.

COROLLARY 1.6.13. Suppose that L is post critically finite with a relation set
R. Let

R = {({w( )}7{’0(])}7@]7x( ) y(]))U = 1,...,k,w(j),v(j),x(j)y(j) € W#}a

where @;(w ())= (J

)-
(1) Fora= (a;)ies,b = (bi)ics € (0,1)%, §(a) & 8(B) if and only if

1og aw(j) _ 1og av(j)
log bay log by ()

(1.6.9)

foralli=1,... k.

(2) Let a = (a;)ies € (0,1)°. A self-similar measure p with weight (u;)ics has
volume doubling property with respect to 8(a) if and only if (1.6.9) withb = (;)ics
holds for all j =1,... k.

1.7. Examples

In this section, we will apply our results in the previous sections to several
examples.

EXAMPLE 1.7.1 (Sierpinski gasket). Let (K,S,{F;}ics) be the same as in
Example 1.5.11. By Corollary 1.6.13, for a = (a;)ies,b = (bi)ies € (0,1)°,
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S(a) o2 8(b) if and only if there exists § > 0 such that § = 1E% for any

i € S. Hence {88 is a self-similar scale and § & 8(a)} = {8(a?)|s > 0}, where

a’ = {(a;)?}ics. Also a self-similar measure p with weight (u;)ics has volume
doubling property with respect to $(a) if and only if u; = (a;)?, where d is the

unique constant that satisfies Y, _4(a;)? = 1.

Define
M35 (L, 8) = {(1)ies|the self-similar measure with weight (u;)ics
has volume doubling property with respect to 8}.

We always identify M%D as the collections of self-similar measures with volume
doubling property with respect to 8. For the Sierpinski gasket, M3 (£, 8) consists
of only one self-similar measure. In general, however, the collection of self-similar
measures with volume doubling property may have richer structure. In fact, even
for the Sierpinski gasket, this is the case if we change the self-similar structure.

EXAMPLE 1.7.2. £ = (K, S,{F;}ics) is the same as in Example 1.7.1. Define
Lo = (K, Wa,{Fy}wew,). Then Ly is a p.c.f. self-similar structure with Pg, =
{(#)>°]i € S}. If (X,Y, ¢, x,y) belongs to the relation set of Lo, then X = {ii}, Y =
{jj} and @(ii) = jj for some i # j € S. Let a = (aw)wew, € (0,1)"? and consider
S(a), the self-similar scale on 3 (Ws) with weight a. Also let p be a self-similar
measure with respect to Lo with weight (e )wew,. Then a self-similar measure
w with weight (p4:5)ijew, has the volume doubling property with respect to a self-
similar scale (a;j)ijew, if and only if there exists 6 > 0 such that p; = (ai)®
for any ¢ € S. In particular, if ¢ # j, we may choose any value for u;; as long
as Y egbw = 1 and 0 < pij. So MY (K, 8) is an infinite set. This fact also
shows that Myp(L,8) is not trivial for any self-similar scale 8§ on X(S) because
MY (L2,82(a)) € Myp(L,8(a)), where 82(a) is the self-similar scale on X (Ws)
with weight (aiaj)ijGWQ.

Next we present two examples, unit square and the Sierpinski carpet, which
are not post critically finite but rationally ramified.

EXAMPLE 1.7.3 (Unit square). Let K be the unit square in R?, i.e. K = [0,1]2
as in Section 0.2. We will identify R? with C is the usual manner. Let p; = 0,py =
1,p3 = 1+v/—1 and py = /—1. Define f; : C — Cby fi(z) = (x—pi)/2+pi- ({fi}’s
are the same as in Section 0.2.) Then, £ = (K, S,{fi}ics), where S = {1,2, 3,4},
is a rationally ramified self-similar structure. To describe its relation set R, we
define X7 = {1,2}, Y1 = {4,3}, p1(1) = 4,01(2) = 3, Xa = {1,4}, Y2 = {2,3},
v2(1) = 2 and ¢2(4) = 3. As we explained in Section 0.2, where @5 was denoted
by ¢, (Xa,Ys,¢2,2,1) is a relation. (See Figure 0.1.) In the same way, we have a
relation set

R = {(Xla Yla ¥1, 47 1)) (X17 1/17 #1, 3) 2)7 (XQa }/25 ¥2, 2) 1)7 (X27 1/27 P2, 37 4)}
Let a = (a;)ies € (0,1)° and let b = (b;)ies € (0,1)°. Then Theorem 1.6.6 implies
that S(a) & 8(b) if and only if there exists § > 0 such that logb;/loga; = ¢ for

any ¢ € S. On the other hand, by Theorem 1.6.1, §(a) is locally finite with respect
to L if and only if a; = as = a3 = a4. Hence,there is only one equivalence class in
S(%) /(:‘.\fa which consists of locally finite scales. Let i be a self-similar measure on K
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and let a € (0,1)°. Theorem 1.3.5 shows that x has the volume doubling property
with respect to 8(a) if and only if a1 = a2 = a3 = a4 and p is the restriction of
the Lebesgue measure on K. So, we have only one choice of the volume doubling
measure in this case. Note that if a; = 1/2 for all 4, Us(z) is equivalent to the
Euclidean ball, i.e. there exist ¢; and ¢ such that Be,r(z,d) C Up(x) C Beyr(2,d)
for any r € [0,1] and any = € K, where d is the Euclidean distance. (In such
a situation, the Fuclidean distance is said to be adapted to the scale §(a). (See
Section 2.3 for details.) This fact shows Theorem 0.2.1.

Changing the self-similar structure, however, we have richer structure as in the
case of Sierpinski gaskets. Let S’ = {1,...,9} and let {F;},cs be the collection
of contractions defined in Section 0.2. Then £’ = {K,S’,{F}}ics'} is a self-similar
structure. Let

R ={({1,8,7},{3,4,5}, v, 2,9)(z,y) = (2,1),(2,3),(9,8),(4,9),(6,7),(5,6)}
U{({1,2,3},{7,6,5}, ¥, 2, y)l(2, ) = (8,1),(7,8),(9,2),(6,9), (4,3), (5,4)},

where ¢y (1) = 3,91(8) = 4,31(7) = 5,02(1) = 7,95(2) = 6,14(3) = 5. Then L’
is rationally ramified with a relation set R. By Theorem 1.6.1, a self-similar scale
S(a) is locally finite with respect to £ if and only if a; = a3 = a5 = a7, as = ag and
as = ag. (In Section 0.2, a ratio {a;};cs’ which satisfies this condition is said to be
weakly symmetric.) Moreover, Corollary 1.6.10 implies that #(Syr(2, ,C)/(;JE) =1

Combining those results with Theorem 1.3.5, we see that a self-similar measure u
with weight {p; };cs’ has the volume doubling property with respect to a self-similar
scale 8(a) if and only if both {u;}ics and {a;};cs are weakly symmetric. This
fact essentially shows Theorem 0.2.3.

ExXAMPLE 1.7.4 (the Sierpinski Carpet). Let £ be the self-similar structure
associated with the Sierpinski carpet given in Example 1.5.12. Fix a = (a;)ies €
(0,1)%. Using Theorem 1.6.6, we are going to determine if §(b) & S(a) holds for
= (b;)ies or not. Define two conditions (SC1) and (SC2) as follows:
Cl) a1 =ar,az =as and a3 = as
C2) a1 =as,as = aq and a7 = as

Then there are four cases:
(A) Assume that both (SC1) and (SC2) are satisfied, i.e.a; = ag = a5 = a7, a2 =
ag and ag = ay. See Figure 1.3. Then §(b) & S(a) if and only if by = bg =

bs = br,ba = bg and bg = by. So all self-similar scales on ¥ with (SC1) and
(SC2) are equivalent under & Theorem 1.6.1 implies that any scale in this class is

locally finite. Moreover, by Corollary 1.6.10, this is the only one equivalence class
in 6(%) /&z3 which consists of locally finite scales. Also in this case,

MSn(L,8(a)) = {(pi)ies|in = ps = ps = p7, o = 6, pta = pis}-
(B) Assume that (SC1) holds but (SC2) does not. Then 8(b) & S(a) if and

only if bl = b7 = (al)é,bg = b5 = (Clg)é,b4 = (a4)5,bg = (Clg)é and b2 = b6 for
some § > 0. In this case, as we mentioned in (A), no scale is locally finite and
Myp(L,8(a)) = 0.

(C) Assume that (SC2) holds but (SC1) does not. Then 8§(b) & S

if bl = bg = (al)‘s,b5 = b7 = (0,5)6,[)2 = (ag)[s,bﬁ = (0,6)6 and bg = b4 for some

(a) if and only
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a b a

a = aq a3 = a5 = ay
C C b:ag—a@'

C = a4 = as
a b a

FIGURE 1.3. Case (A) of the Sierpinski carpet

d > 0. In this case, no scale is locally finite and Mvyp (L, 8(a)) = 0.
(D) Assume that neither (SC1) nor (SC2) holds. Then 8§(b) & S(a) if and only if

there exists § > 0 such that b; = (a;)° for any i € S. In this case, no scale is locally
finite and Mvyp (L, 8(a)) = 0.

Next we introduce a class of self-similar sets which are modifications of the
Sierpinski carpet. This class contains self-similar structures which are not rationally
ramified.

EXAMPLE 1.7.5 (Sierpinski cross). Let pi,...,ps be the same as in Exam-
ples 1.5.12 and1.7.4. For r € [1/3,1/2), define

Fi(z) = r(z = pi) + pi if i is odd,
Y (M =20) (2 —pi) + i if s even.

The unique nonempty compact set K C R? satisfying K = US_| F;(K) is called
a Sierpinski cross. (Note that if » = 1/3, then K is the Sierpinski carpet.) Let
S =A{1,...,8} and let £ = (K, S,{Fi}ics). In this case, £ may (or may not) be
rationally ramified. In fact, we have the following dichotomy.

PROPOSITION 1.7.6. Let L be a Sierpinski cross. Then L is rationally ramified
if and only if r is the unique positive solution of 1 — 2r = 1™ for some m € N.

We will prove this proposition at the end of this section.

First we consider the rationally ramified cases. Assume that 1 — 2r = ™ for
some m € N. Since L is the Sierpinski gasket for m = 1, we assume that m > 1. If
X1, Y1,01, X2, Y5 and @9 are the same as in Example 1.5.12, then the relation set
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FIGURE 1.5. Sierpinski cross: non rationally ramified case r = 2/5

R of L equals

{(Xh §/l7 P, i(j)’m717 k)a (Xl7 ifla P, kaj(i)’mil)
|(i,7,k,1) = (7,1,8,1),(5,3,4,1),(3,1,2,2),(5,7,6,2) }

Using Theorems 1.6.1 and 1.6.7, we see that §(a) is locally finite if and only if
a1 = a3 = a5 = ay, az = ag and a4 = ag. Obviously those scales are gentle each
other and form an equivalence class of G(X) /évE Also a self-similar measure p with

weight (u;)ies has volume doubling property with respect to those scales if and
only if 11 = p3 = ps = pr, p2 = pe and pg = ps.

Even if £ is not rationally ramified, there exists at lease one self-similar scale
on ¥ that is locally finite with respect to £. Define ¢ = (¢;)ics by ¢; = r if i is odd,
c¢i =1—2rifiis even. For any w € W,, define 0K, as the topological boundary
of F,,([0,1]). (In fact, 0K, = F,(Vp).) Then total length of 0K, is 4c,. Let
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D2 q23 q32 D3

FIGURE 1.6. Construction of diamond fractal

w € Ag(c). Note that ¢, /(1 —2r) > 5 > ¢, Since {Ky N Ky }oen, ,(c) Provide a
division of K, it follows that #(As(c)) < 4(1 + (1 — 2r)~1). Therefore, for any
r, 8(c) is locally finite with respect to L.

The next example is the diamond fractal which has been introduced in [31].
This self-similar structure is not post critically finite but any self-similar scale is
locally finite as in the post critically finite case.

ExaMPLE 1.7.7 (Diamond fractal). Let p1,p2,ps € C be vertices of a regular
triangle with the length of edges 1, i.e.|p; — p;| = 1 if i # j. Define p = (p1 + p2 +
p3)/3. For i € {1,2,3}, define F;(z) = (z — p;)/3 + p; and

lg, .
Fiys(z) = _55(2 —Dits) + Di+s,
where qi = pPi—p and Di+3 = (3p+pz)/4 Let qij = (2pz+pj)/3 for any Z,] S {1, 2, 3}
If {4, 4,k} = {1, 2,3}, then F;;3 maps the regular triangle with vertices {p;, p;, px }
to the regular triangle {p, pi;, pir }-

There exists a unique nonempty compact set K satisfying K = US_, F;(K).

K is called the diamond fractal. The corresponding self-similar structure £ =
(K,S,{F;}ics), where S = {1,...,6}, is rationally ramified. In fact, the relation
set R equals

{{i g Ad ghid b k4 3)G, 5, k) = (1,2,3),(2,3,1),(3,1,2)}U
where id is the identity map and ¢;;(¢) = j. By Theorem 1.6.1, any self-similar

scale on ¥ is locally finite with respect to £. Using Theorem 1.6.6, we see that, for
a,b e (0,1)%, §(a) (b) if and only if there exists § > 0 such that b; = (a;)° for

i=1,2,3.

~ 8
GE
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FIGURE 1.7. Diamond fractal

The rest of this section is devoted to a proof of Proposition 1.7.6.

LEMMA 1.7.8. Let S be a finite set. Let f; : R — R be an affine contraction
forany i € S, ie. fi(x) = rx+ a;, where |r;| < 1. Let K be the self-similar set
associated with {fi}ics. If fi(K) N f;(K) = 0 for any i,j € S with i # j, then
vi(K) =0, where vy is the 1-dimensional Hausdorff measure.

PROOF. Define K. = {yly € R,|x —y| < € for some z € K}. Let y € K..
Choose x € K so that |x —y| <e. Then f;(z) € K and |f(y) — f(z)| < |y —z| < e.
Hence f;(y) € K.. This shows that f;(K.) C K.. Let K! = Ujesf;(K.). Then
K! C K.. Since K. # K, the uniqueness of the self-similar set implies K} # K..
Therefore, if o = 11 (KL)/v1(K.), then « € (0,1). On the other hand, if we choose
sufficiently small €, then f;(K.) N f;j(K.) = 0 for any ¢,j € S with ¢ # j. Define
K™ inductively by K™ = Ujesfi(K™1). Then v1(K™) = a™v(K.). Since
K = Np>o K", it follows that v (K) = 0. O

Let £ be a Sierpinski cross.

PROOF OF PROPOSITION 1.7.6. If 1 — 2r = r™ for some m € R, then we can
give the relation set R as in Example 1.7.5. Hence L is rationally ramified.

Next assume that £ is rationally ramified with a relation set R. Let [R] =
{Q,...,Q}, where Q@ = (X;,Y;, pi,2(2),y(7)), be a relation set. Consider Kg N
K; = F7(L1) n Fg(Lg) = Fg(Lg), where L1 = [0, 1] and Lo = {(E + \/—_].|{E S [0, 1]}
Define J = {Z|$(l) S U7(W*),y(i) S US(W*),I/l(Kz(i)[XZ‘] NK7;nN Kg) > 0} By
(1.5.1), K7 N Kg C Ujc K, (;)[Xi]. Choose i € J so that K,;)[X;] contains F7(0) =
F3(v/—=1) and write X = X;,Y = Y;, ¢ = p;, 2 = (i) and y = y(i) for simplicity.
Since 771 (F7(0)) = {8(7)°°,7(1)>°}, we see that z = 7(1)?, X C W4 ({1,2,3}),y =
8(7)% and Y C Wx({7,6,5}). Note that v (K[X]) > 0 and that K[X] is the self-
similar set associated with {F,, },ex. By Lemma 1.7.8, F,,(K[X]) N F,(K[X]) # 0
for some w,v € X. Note that K[X] C L, = [0, 1]. The intersection F,,(L1)NF,(L1)
contains a pair of points {m(w.(1)>), 7(v.«(3)°} if it is not empty. Hence there
exists a w € X such that w = (3)™. This implies 7((3)*°) = 1 € K[X]. Using the
same arguments, we also obtain that m(5%) = 1+ +/—1 € K[Y]. Since 1 + /—1
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and 1 are the most right points in K[X] and K[Y] respectively, Fg7yr(1++v/—1) =
Fr(1)a(1). Therefore, 1 — 2r = r9"177_ Since 0 < 1 —2r < 1, it follows that
g+1l-p=>1 O






CHAPTER 2

Construction of Distances

2.1. Distances associated with scales

We have studied the scale and the associated family of “balls” {Us () }zex,se(0,1]
in the previous sections. Can this family of “balls”be thought of as real balls with
respect to any distance? The next three sections are devoted to answer this ques-
tion. In this section, we will define a pseudodistance on a self-similar set associated
with a scale and consider when this pseudodistance is a distance.

As in the previous sections, S is a finite set, § = {A;}o<s<1 is a right-continuous
scale on ¥ = ¥(S) whose gauge function is and £ = (K, S, {F;}ics) is a self-similar
structure. Moreover, we assume that K is connected in the following sections.

DEFINITION 2.1.1. A sequence of words, (w(1),...,w(m)),where w(i) € W, for
any i, is called a chain of £ if and only if K N Kyp1) # 0 fori=1,...,m— 1.
We use CH to denote the collection of all chains of £. A chain (w(1),...,w(m))
is said to be a chain between = and y for z,y € K if and only if x € K1) and
Y € Ky(m). The collection of all chains between = and y is denoted by CH(z,y).

Since K is assumed to be connected, CH(z,y) # 0 for any x,y € K. See [28,
Theorem 1.6.2].

PROPOSITION 2.1.2. For z,y € K, we define Ds(x,y) by
Ds(z,y) = inf{D _1(w(®))|(w(1),...,w(m)) € CH(z,y)}.
i=1

Then Ds(-,-) is a pseudodistance on K: Dg(x,y) = Ds(y,x) > 0 for any z,y,
Dg(z,x) =0 for any x € K and Dg(x, z) < Ds(x,y)+ Ds(y, 2) for any z,y,z € K.
Also Dg(Fy (), Fiy(y)) < l(w) for any x,y € K. Moreover, if Ds(-,-) is a distance
on K, then it is compatible with the original topology of K.

PROOF. It is straight forward to see that Dg is a pseudodistance on K by its
definition. Since both F,(z) and Fy,(y) belong to K, Ds(Fy(z), Fiu(y)) < l(w).
Now assume that Dg is a distance on K, i.e. Dg(x,y) > 0 for any z,y € K. Note
that {Us(z)}o<s<1 is a system of fundamental neighborhoods of x with respect to
the original topology. Let d be a distance on K which gives the original topology
of K. Suppose that d(z,,z) — 0 as n — oo for a sequence {z,},>1. Then, for
any s > 0, z, belongs to Us(x) for sufficiently large n. Hence Dg(z,z,) < 2s for
sufficiently large n. This implies that Dg(x, z,) — 0 as n — co. Conversely assume
that Dg(zp,x) — 0 as n — oo. Let y be an accumulating point of {x,},>1 with
respect to d: there exists a subsequence {ym, }m>1 of {zy }n>1 such that d(ym,y) — 0
as m — oo. Since Dg(ym,x) — 0 as m — oo, we see that Dg(z,y) = 0. Hence
x = y. Now the compactness of (K, d) implies that d(x,,z) — 0 as n — oco. O

43
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DEFINITION 2.1.3. Dg is called the pseudodistance on K associated with the
scale 8. In particular, if § = §(a) for a € (0,1)°, then we write Dg = D,.

REMARK. If § = §(a) for a € (0,1)°, then Dg coincides with the standard
pseudodistance on K with poly ratio a defined by Kameyama [26].

NOTATION. Let d be a (pseudo)distance on K. For x € K and r > 0, we define
B.(z,d) = {yly € K,d(z,y) <r). Also diam(A,d) = sup, ,c4d(z,y) for A C K.

B, (z,d) is the r-ball around z with respect to d and diam(A4, d) is the diameter
of A with respect to d. A ball with respect to the pseudodistance Dg always contains
a “ball” associated with the scale § as follows.

PROPOSITION 2.1.4. For anyn € NU{0}, any s € (0,1] and any x € K,
Ugn)(x) g B(n+1)s(x7DS)7

PROOF. Let y € Us(n)(x). Then there exists a chain (w(1),...,w(m)) between
2 and y such that m < n+1 and w(j) € A for any j. Since [(w(j)) < s for any j,
it follows that 327, [(w(j)) < (n +1)s. O

In general, we have the next equivalence between conditions concerning a dis-
tance and a pseudodistance associated with a scale.

PROPOSITION 2.1.5. Let d be a distance on K and let 3 > 0. Then the following
four conditions are equivalent.
(1) Ks(z) C Bgs(x,d) for any x € K and any s € (0,1].
(2) m (z) € Bng1)ss(x,d) for anyn >0, any x € K and any s € (0,1].
(3) d(z,y) < BDs(x,y) for any z,y € K.
(4) diam(K,,d) < Sl(w) for any w € Wi,.

In particular, if any of the four conditions above is satisfied, Dg is a distance
on K.

Recall that K,(x) = © (x).

Proor. (1) = (3): Let (w(j))j=1,....m € CH(z,y). Choose z; € K, N
K1y for j=1,...,m—1. Set 29 = x and z,, = y. Then z; € Uy(s))(zj-1) C
Bgiw(j))(wj—1) for j = 1,...,m. Hence d(z;_1,7;) < pl(w(j)). Summing these
inequalities for j = 1 to j = m, we obtain d(z,y) < 8Ds(z,y).

(3) = (2): Since Bs(z, Dg) C Bgs(x,d), Proposition 2.1.4 suffices to see the claim.
(2) = (1): Obvious

(3) = (4): Let = and y belong to K. Since Dg(x,y) < l(w), it follows that
d(z,y) < Bl(w).

(4)=(1): Lety € US(O)(Z‘). Then z,y € K, for some w € A;. Since d(z,y) < fl(w),
we obtain (1). O

If we can find one elliptic scale 8, where Dg, is a distance, then for any elliptic
scale 8§, Dga is a distance for some o > 0. To give detailed version of such a result,
we need the following definition.

DEFINITION 2.1.6. Let 8§ be a scale on ¥ and let [ be its gauge function. For
w € Wy, define l,, : W, — (0,1] by l(v) = l(wv)/l(w). We denote the scale whose
gauge function is [, by 8.
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In the above definition, it is obvious that 8, is actually a (right-continuous)
scale. In the followings, we use 8% to denote (8%),, for a > 0 and w € W,. Note
that (8%), = (84)%.

PROPOSITION 2.1.7. Let 8, be a scale on X2 with (EL2). Suppose that Ds, is a
distance on K. If a scale 8 satisfies (EL1), then there exist « > 0 and 3 > 0 such
that Dsa (x,y) > BDs, (x,y) for any x,y € K and any w € W. In particular, Dga
is a distance on K.

PROOF. Let I, be the gauge function of 8.. By (EL2), there exists v € (0,1)
and 3 > 0 such that I, (v) < Bv/*l for any v € W,. Also if [ is the gauge function
of 8, then (EL2) implies that there exists 3; € (0,1) such that L,(v) > (31)!"! for
any v,w € W,. Therefore if (41)® > =, then diam(K,, Ds,) < 8711, (v) for any
v € W,. By Proposition 2.1.5, we see that Dsa (x,y) > 3Ds, (z,y). O

Next theorem gives a topological sufficient condition for Dg being a distance.
By virtue of this result, for any locally finite scale 8§ on a rationally ramified self-
similar structures, Dg« is shown to be a distance for some o« > 0 in the next
section.

THEOREM 2.1.8. Let 8§ = {As}o<s<1 be a scale on . Assume the existence of
n € N satisfying the following two conditions (D1) and (D2):
(D1) Ifwe Ay, 7€ Wy, v € Ay and Kyr N Ky, # 0, then Ky N Ky =0 for
any v € As\As -
(D2) Let 1 be the gauge function of 8. Set 3 = (v/17 —1)/4. Then l(wT) > Bl(w)
for any w € W, and any 7 € W,,.
Then for any x,y € K,

inf{s|y € US(3)(x)} < Dg(z,y) < 4inf{s|ly € US(3)(9£)}.
In particular, Ds is a distance on K. Moreover, for any s € (0,1] and any = € K,
Bs(x, Ds) C U® (2) C Bys(x, Ds).

Note that 0 < 8 < 1.

The condition (D1) is shown to hold if § is intersection type finite in the next
section. See the next section for the notion of “intersection type finite”.

To prove the above theorem, we need several lemmas.

LEMMA 2.1.9. For w € Ag, we define Us(w) = K(Asw) = K(W(As, Ky)).
Assume that (D1) is satisfied. If w € Ag, 7 € Wy, v € Agy, v7 € Ay and
Ky N Ky # 0, then Uy (vr) C Ug(w).

PROOF. Let v € Ay 7. Since K, N K,y = ) for any v’ € Ag,,, there exists
w' € Ag 4 such that w’ > v”. Therefore, K,» C K,y C Us(w). O

LEMMA 2.1.10. Assume (D1) and (D2). Let (w,v) be a chain of L. If w €
Ags,v € Ay and Bl(w) > 1(v), then Us (v) C Us(w).

ProoOF. If |u| < n, then I(v) > BI(0) > Bi(w) > l(v). Therefore, 1 = [(f) =
I(w). Since w € Ag, we see that w = () and s = 1. Hence Uy (v) C Us(w) = K.
Assume that |v| > n. Let v = v’z for z € W,,. Then I(v) > BI(v'). This implies
l(w) > I(v'). Therefore, v = v,77’" for v, € Ag, 7 € W,, and 77 € W,. Since
Ky,o N Ky # 0, Lemma 2.1.9 implies that Uy, - (v«z) C Us(w). Note that s" <
[(v.T). Hence Uy (v) C Ugs(w). O
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LEMMA 2.1.11. Assume (D1) and (D2). Let (v,w,7) be a chain of L. If
Bl(w) < l(v) and Bl(w) < I(1), then there exists a chain (v',7') such that v/ >
v, 7 > 7 and I(V') + (7)) < l(v) + I(w) + (7).

PRrROOF. If |w| < n, then let v = 7/ = (). By (D2), (14+28)8 > 2 and l(w) > .
Therefore, I[(v) +I(w) +1(7) > (14+28)8 > 2 =1(v') +1(7'). Hence we may assume
that |w| > n. Let w = wy ... wy,. Set we = wy ... Wym—y, and define s = l(w,). If
I(v) > s, then we may find v, € W, such that v > v, K,, N Ky, # 0 and v, € As.
If I(v) < s, then there exists a unique v, such that v, > v and v, € A;. Also we
define 7, in the same way as v,. Since (1 +28)8 > 2 and (1 + 3)8 > 1 by (D2),

lw) +1(v) > (14 B)Bl(ws) > U(w.) > 1(vs)
(2.1.1) lw) +1(1) > (1+ B)Bl(w.) > L(w.) > 1(7:)

1) + 1(w) + 1(7) > (14 26)Bl(w,) > 2l(w.) > 1(v.) + 1(72)
Since wy € Agy,, KyNK,, # 0 and KyNK,, # 0, (D1) implies that K,, NK,, # .

Define v/ = max{v.,v} and 7" = max{r.,7}. Then by (2.1.1), (v/,7') satisfies the
desired properties. O

PROOF OF THEOREM 2.1.8. Define
CH* (z,y) = {(w(j))j=1,...m|(w(5))j=1,...m € CH(z,y), min l(w(j)) = s}

7]:17...7m
F(s) = inf{)_ W(w(i))|(w(5))j=1,...m € CH"(z,y)}
j=1

for any s > 0 and any z,y € K. Then F(s) is monotonically decreasing and
Dg(x,y) = limg)o F(s). Note that we may only consider chains without loops in
the definition of F'(s). Hence there exists (w(j));j=1,...,.m € CH*(z,y) which attains
the infimum. Set s; = [(w(j)) and U; = Us; (w(j)) for j =1,...,m. If 1 < j <m,
then Lemma 2.1.11 implies that 3s; > sj_; or 8s; > s;41. Hence by Lemma 2.1.10,
Uj—1 CUj or Ujy1 C Uj. Therefore, there exists j. such that 1 < j, <m +1 and
U CU;C...C Uj*,l,Uj* 2...20Uy-1 2U,.

Let s, = max{s;, 1,5;,}. Since K, —1) N Ky.) # 0, v € Uy and y € Up,, we
see that y € Us(f)(x) Therefore, F(s) = 37" 55 > s, > inf{s|y € Ul (x)}. Thus
Ds(z,y) > inf{s|y € Uég)(x)}. On the other hand, if y € US(S)(x), then there exists
(w(1),w(2),w(3),w(4)) € CH(x,y) such that w(j) € A, for j =1,2,3,4. Therefore,
Dg(x,y) < 4s. Hence Dg(z,y) < 4inf{s|ly € Ul (x)}.

Finally, since {U, 5(3)(33)}0<5§1 is monotonically decreasing with respect to s and
No<s<1UP (z) = {2}, we see that inf{sly € U (z)} > 0 if = # . O

2.2. Intersection type

Let £ = (K,S,{F;}ics) be a self-similar structure satisfying K\Vo # 0. A
scale 8 = {As}se(0,1] is said to be intersection type finite if the topological types
of K, N K, for s € (0,1] and w,v € A are finite. Under the assumption of a
scale being intersection type finite, we can verify the conditions (D1) and (D2)
in Theorem 2.1.8 and hence the associated pseudodistance is a distance for some
power of the scale. See Theorem 2.2.6 for details.

First we define the notion of intersection pairs.
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DEFINITION 2.2.1. (1) Define ZP(L) by
IP(L) = {(w,v)|w,v € Wy, K, N K, # 0,3, N X, = 0}.
(w,v) € IP(L) is called an intersecting pair of L.
(2) Define
A= {(A, B, ¢)|A and B are nonempty closed subsets of Vj

and ¢ : A — B is a homeomorphism between A and B}.

There exists a natural map from ZP(L) — A.
PROPOSITION 2.2.2. Define
O((w,v)) = (Fu) ™ (Kw N Ky), (F) 7 (Ew N Ky), (Fy) 7 0 Fulip,)-1(k,nk.,))
for any (w,v) € IP(L). Then ® : IP(L) — A.
The image of an intersection pair under the map @ is called the intersection
type.

DEFINITION 2.2.3. (1) Define Z7(£) = ®(ZP(L)). An element of Z7 (L) is
called an intersection type of L.
(2) Let 8 = {As}o<s<1 be a scale on 3. Define

IP(L,8) = {(w,v)|(w,v) € ITP(L), w,v € A, for some s € (0,1]}
and
I7T(L,8) ={P(w,v))|(w,v) € TP(L,8)}

§ is said to be intersection type finite with respect to £ if and only if Z7 (£, 8) is
a finite set.

The following proposition is straight forward by definition.

PROPOSITION 2.2.4. Let 8§ be a scale on X. If L is strongly finite and § is
intersection type finite with respect to L, then § is locally finite.

The property of a scale being intersection type finite is preserved under the
equivalence relation ot

PROPOSITION 2.2.5. Let 81 and 83 be elliptic scales. If 81 is intersection type
finite and 81 o 8a, then 8g is intersection type finite.

PROOF. Set 81 = {As}o<s<1 and 82 = {AL}o<s<i. Also let I be the gauge
function of 8;. Suppose that w,v € A}, that K,, N K, # 0 and that [(v) < l(w).
Since 8 ol 8o and 87 is elliptic, there exist n (which is independent of s, w and

v) such that v = v.7 and v« € Ay, for some v,,7 € W, with |7| < n. Therefore,
D ((w,v)) € {P((w,v42))||2] < n}. Note that {P((w,v.z))||z| < n} only depends
on ®((w,vy)). Therefore, if 81 is intersection type finite, then so is 8s. O

Now we present the first main theorem of this section.

THEOREM 2.2.6. Let 8 be a scale on ¥ with (EL1). If 8 is intersection type
finite, then there exists a > 0 such that Dse is a distance on K and Bs(x, Dga) C

Ug’/)a () C Bys(z, Dga) for any s € (0,1] and any x € K.



48 2. CONSTRUCTION OF DISTANCES

PROOF. Let § = {A }o<s<1 and let [ be its gauge function. First we show (D1).
Since § is intersection type finite, there exists compact subsets Bi,..., B, C K
such that ®((w,v)) = (Bj, Bj, ¢i;) for any s € (0,1], any w € A, and any v € Ag .
Define Wy, ; = {7|r € Wy, K, N Bj # 0} and Ky ; = Urcw, , K, for any j. Since
Mk>1Ky,; = Bj, there exists n such that K, ; N B, = () for any j,p € {1,...,m}
with Bj N B, = (). This implies (D1).

Now note that 8% satisfies (D1) with the same n as 8 for any « > 0. Since §
satisfies (EL1), there exists v € (0, 1) such that I(wv) > vl(w) for any w € W, and
any v € W,,. Choosing a so that v* > 3 = (v/17 — 1) /4, we see that 8§ satisfies
(D2). Thus by Theorem 2.1.8, Dg« is a distance on K. O

The second main theorem of this section tells us that one can identify “inter-
section type” finite with “locally” finite in the rationally ramified case.

THEOREM 2.2.7. Let L be a rationally ramified self-similar structure. Then an
elliptic scale 8§ on X is intersection type finite if and only if 8 is locally finite with
respect to L.

PrROOF. Since L is strongly finite, if § is intersection type finite, then § is
locally finite by Proposition 2.2.4. Conversely assume that 8 is locally finite. Let R
be the relation set of £. We may assume that R = [R] without loss of generality.
Set 8§ = {A3}0<5S1.

Let R’ be a subset of R.. For (w,v) € IP(L), define R(w,v, R') =

1, (2,20, -, xm)s (2,905 - - - yn)) |2 = (X, Y, p,2,y) € R,
(2,20, ..., Zm) € Ax o (W), (2,90,...,yn) € Ayy(v),
y; = p(xj)for j =1,...,min{m,n}}
Let n = (Q, (2,20, -, Zm), (2,Y0,- - -, Yn)) € R(w,v,R") with Q = (X,Y, ¢, z,y).
Note that z = w; ... wy, where N = inf{i|w; # v;} — 1 and that the first symbols
of z and y are wyy1 and vyyi1 respectively. Define K (1, w), K(n,v) and v, :
K(n,w) — K(n,v) as follows. If m > n, then we set K(n,w) = K,2 [X], K(n,v) =
Kyzyooroy Y] and oy = Fpeyy 0 0G0 (Fgcgn)*l7 where z2, and y? are given
in Lemma 1.5.16 and y; = ¢(y;) for j =n+1,...,m. If m <n, then K(n,w) =
Kzfnzm+1...mn [X]a K(n7v) = Kyﬁ [Y] and ’@[177 = Fy%O¢O(Fz$nrm+1...zn)717 where Lj =
o Ny;) for j =m+1,...,n. Note that F,(K(n,w)) = K,(K(n,v)) C K, N K,
and that ¢, = F, 'oFy|k(y,w) by Lemma 1.5.16.
Next, we define

IP(L,8,R") = {(w,v)|(w,v) € IP(L,8), R(w,v,R") # 0}
and
IT(L,8,R) = {(K(n,w), K(n,v), vy)|(w,v) € IP(L,8,R'),n € R(w,v, R")},

where R’ is a subset of R. The first step of the proof is to show that Z7 (L, 8, R) =

IT(L,8,R1)UZT(L,8,Ry) is a finite set, where Ry and Ry are the same as in
Theorem 1.6.7. First we consider Z7 (£,8,R2). Let (w,v) € ZP(L,S) and let
n=(Q,(z,z0,...,Zm), (2,Y0,---,Yn)) € R(w,v,Ra) with Q = (X, Y, p,z,y). Since
§ is locally finite with respect to £, Theorem 1.6.1 implies that |yn41-..Ym| or
|Tma1 - - - Tn| (depending on m > n or m < n) is uniformly bounded with respect to
w,v and 7. Also by Lemma 1.6.3, #(Ax (w)) is uniformly bounded with respect
to  and w. Therefore, Z7 (£, 8, R2) is finite.
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Secondly, let n = (Q, (2,20, -, Zm), (z,Y0,---,Yn)) € R(w,v,Rq1) with Q =
({z ) {y vy 2,y). Then K(n,w) € {m(oi(x(x.)>®)|i = 1,2,...} and K(n,v) €
{m(c*(y(y«)>°)|i = 1,2,...}. Since R; is finite, Z7(L,8,R1) is finite. Thus it
follows that Z7 (L£,8,R) is a finite set.

To proceed to the next step, we need to define §,,0...06; for d1,...,0,, € A.
For §; = (Al,Bl, ‘Pl) and d9 = (AQ,BQ, (pg) S .A, define 95007 € A by

62002 = ((p1) " (A2 N By), 2(A2 N B1), 02001 (p1)~1(4081))-

Then §,,0...00; is defined inductively by 6,,0(dm—10...0d1).

Now, let (w,v) € ITP(L,8) and let p € K,, N K,. Choose s so that w,v €
As. Choose w € ¥, N7 1(p) and 7 € ¥, N7 1(p). By Proposition 1.5.13-(2),
there exist Q1,...,Q, € R and w®, ... 0™t € %(S) which satisfies (AS1),
(AS2) and (AS3). For some n, w™ ¢ ¥, but w1 € ¥,. Recall the remark
after Proposition 1.5.13. Set m; = s(w"), 7). Then m; < |v| for j = 1,...,n.
Hence letting w(j) = ng) . w,(ﬁz (=v1...0m;), then l(w(j)) > (v ... vjy=1) > s,
where [ is the gauge function of 8. We may choose k; > m; so that v(j) =
w%j) .. .wg) €Asforanyj=1,...,n. (Wesetv(l) =wandv(n+1) =v.) Let Q; =
(X;,Y5,05,2(5),y(5)). Then, w9 = w(j)z(j)zizs ... for some z1zs... € B[X]]
and WU = w(5)y(j)y1y2 ..., where y; = p;(x;). Hence, for some M; and N;,
Ny = (ij (’LU(_]), m(j)vxlv ) xMj)? (’LU(_]), y(j)v Yi, .-, yMj) € R(U(]),’U(j + l)vR)
Define p; = (K(n;,v(j)), K(n;,v(j + 1)),4y,;). Then p; € Z7T(L,8,R). Now,
Pno. ..o p1 gives a fraction of ®((w,v)) around F,1(p). Therefore, ®((w,v)) is a
combination of elements in {d10...08,|n < max,ex #(7 1 (p)),d; € IT(L,8,R))}.
Since this set is finite, £ is intersection type finite. ([

Combining the last two theorems, we obtain the following fact.

COROLLARY 2.2.8. Let L be a rationally ramified self-similar structure. If an
elliptic scale & on % is locally finite, then Dge is a distance on K for some o > 0.
Moreover, Bs(x, Dga) C US/)Q () C Bys(x, D) for any s € (0,1] and any z € K.
In particular, if L is post critically finite, then, for any elliptic scale on K, Dga is
a distance on K for some o > 0.

PROOF. The first half is verified by using Theorems 2.2.6 and 2.2.7. About
post critically finite self-similar structure, recall that any scale on K is locally
finite. This suffices the conclusion. O

REMARK. In [26], Kameyama has shown that there exists a self-similar scale
a € (0,1)% such that D, is a distance on K for any critically finite self-similar set,
which corresponds to post critically finite self-similar structure in our language.
(His definition of self-similar sets allows that the contraction mappings are not
injective.) The above corollary partially extends his result to rationally ramified
case.

In the rest of this section, we will give several accounts about intersection pairs.
Those results are rather technical but play important roles later.

DEFINITION 2.2.9. Let I'; C W, for i = 1,2. A bijection ¢ : I'; — I's is called
an L-isomorphism between I'; and I'; if the following condition is satisfied:
For w,v € Ty, (w,v) € ITP(L) if and only if (¥ (w),¥(v)) € TP(L). If (w,v) €
IP(L) for w,v € T'y, then ®((w,v)) = ((Y(w), P (v))).
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I'y and I's are said to be L-similar if there exists an L-isomorphism between
Fl and FQ.

PrOPOSITION 2.2.10. Let T'; C W, for i =1,2 and let 1 be an L-isomorphism
between T'y and Ta. Then there exists a homeomorphism ¢ between K(T'1) and
K(T3) such that ¢|k,, = Fywyo(Fu)™ ! for anyw € T1. ¢ is called the L-similitude
between K(T'1) and K(Ts) associated with 1.

For I'1,T'y C W, we say that ¢ : K(I'1) — K(I'2) is an L-similitude between
K(I'1) and K(T'9) if and only if there exists a L-isomorphism ¢ between I'y and I'y
and ¢ is associated with 1.

PRrROOF. Let (w,v) € IP(L) for w,v € I'1. Since ®((w,v)) = ¢((¢(w), ¥ (v))),
it follows that Fy,)o(Fy,) ™" coincides with Fy,)o(F,) ' on Ky N K,. Hence if
¢ = Fy(uw)o(Fy) ™" on K, then ¢ is a well-defined homeomorphism between K (T';)
and K (I'y). 0

DEFINITION 2.2.11. Let n € {0} UN. For (s1,21),(s2,22) € (0,1] x K, we
write (s1,21) ~ (S2,22) if and only if there exists an L-isomorphism ¢ between

A7 . and A7, . such that (A% )= AF,  forany k =0,1,...,n. We call ¢

51,21 52,2 §2,T2
the n-isomorphism between (s1, 1) and (s2,z2).
Note that (s1,21) ~ (82, z2) implies (s1,21) ~ (s2,x2) for any 0 < k < n. It is
n

easy to see that ~ is an equivalence relation.
n

PROPOSITION 2.2.12. The relation ~ is an equivalence relation on (0,1] x K
n
for any n > 0.

We can relate the notion of being intersection type finite with the number of

equivalence classes under ~.
n

THEOREM 2.2.13. Let L be strongly finite. Then the following three conditions
are equivalent.
(1) 8 is intersection type finite with respect to L.
(2) ((0,1] x K)/: is a finite set for any n € {0} UN.
(

3) ((0,1] x K)/~ is a finite set for some n € {0} UN.
The following fact, which is used to show the above theorem, is straight forward.

LEMMA 2.2.14. For (s,z) € (0,1] x K and n € {0} UN, define JI', : AT, —
{0,1,...,n} by JI(w) = min{klw € A%} and define HY, : A7, x AT, —
IT(L,8)uU{0,1} by

O((w,v)) if (w,v) € IP(L),
H (w,v) =40 if Ky NK, =0,
1 ifw=nv.

Then v is an n-isomorphism between (s1,x1) and (s2,z2) if and only if Js, &, (w)
= J52,12 (¢(w)) and H51,11(wvv) = HS2,962 (1/)(11)), ¢(’U)) fOT’ any w,v € Agl,rl'
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PROOF OF THEOREM 2.2.13. (1) = (2): Assume that 8 is intersection type
finite with respect to £. Then by Proposition 2.2.4, 8 is locally finite with respect
to £. Hence Lemma 1.3.6 implies that #(A{ ;) is uniformly bounded with respect
to (s,z) € (0,1] x K. Since Z7 (L,S§) is a finite set, we only have finite number
of choices of J', and H, up to n-isomorphisms. Therefore by Lemma 2.2.14,
((0,1] x K)/: is a finite set for any n € {0} UN.

(2) = (3): This is obvious.

(3) = (1): We see that ((0,1] x K)/F is a finite set under (3). Since £ is strongly
finite, #(As ;) is uniformly bounded with respect to (s, ) € (0,1] x K. Therefore if
X = U(s,2)e01)x kIm HY ., then Lemma 2.2.14 implies that X is a finite set. Note

s,z

that Z7 (£,8) C X. Thus we have #(Z7 (L, §)) is finite. O

2.3. Qdistances adapted to scales

As is seen in the last section, Dg is not always a distance even if a scale § is
elliptic and locally finite. Instead we sometimes managed to show that Dga is a
distance for some a > 0. In such a case, if d(z,y) = (Dsa(z,y))"/®, then d has
the same scaling ratio as the scale § but d is not a distance. Considering such a
situation, we will introduce the notion of an a-qdistandce in this section.

DEFINITION 2.3.1. Let X be a set. For @ > 0, d: X x X — [0,00) is called a-
qdistance on X if and only if d(x, y)® is a distance on X. Also d is called a qdistance
on X if it is an a-qdistance on X for some a > 0. We say dy and dy are equivalent
if there exist ¢; > 0 and co > 0 such that c1dq(z,y) < da(z,y) < codi(z,y) for any
z,y € X.

REMARK. We may give more general definition of a gqdistance: let f : [0, 00) —
[0, 00) satisfy that f(z) < f(y) if z,y € [0,00) and = < y, lim,|o f(z) = f(a) for
any a € [0,00) and that f(0) = 0. Then d : X x X — [0,00) is called f-qdistance
on X if and only if f(d(z,y)) is a distance on X. In this paper, however, we do not
need such an generality. So we restrict ourselves to the case where f(z) = z® for
some a > 0.

The symbol “q” of qdistance represents the prefix “quasi”. We do not use the
word “quasidistance” to avoid confusion with the existent notion of quasidistance
(or quasimetric) which has been defined as follows: d: X x X — [0, 400) is called
a C-quasidistance (or quasimetric) for C' > 0 if and only if d(z,y) = 0 is equivalent
to x =y, d(z,y) = d(y,x) for any x,y and

d(z,2) < Cld(z,y) + d(y, 2))

for any x,y, z. A qdistance is is a quasidistance. (In fact, an a-qdistance is a 21/*~1-
quasidistance.) The immediate converse itself is not true. We have, however, the
following modification of the converse.

PROPOSITION 2.3.2. Let d be a quasidistance on a set X. Then d is equivalent
to an a-qdistance D for some o > 0, i.e. there exist positive constants c¢1 and co
such that c1d(z,y) < D(z,y) < cod(z,y) for any x,y € X.

PRrROOF. This proposition is a version of [23, Proposition 14.5] in terms of
“qdistance”. O
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If d is a qdistance, lim,_ o d(2,, ) = 0 implies lim,,_, o, d(z,,y) = d(z,y) for
any y. This is not the case in general for a quasidistance.

If d is an a-qdistance, then d is an o/-qdistance for any o € (0, ], because
a® < b%+c° for any a, b, ¢, € R with a < b+c and any s € (0, 1]. In particular, if d is
an a-qdistance for a > 1, then d is a distance. Thus, we will consider a-qdistances
for a € (0,1].

For an a-qdistance d on a set X, we always associate the topology given by the
distance d*. Also we may define Hausdorff measures and Hausdorff dimensions of
subsets of X in the same manner as in the case of distance as follows.

DEFINITION 2.3.3. Let d be a qdistance on X. Then for any A C X, we define
HE(A) = Hlf{z dlam(El)S|A CUi>1 B, dlam(El) < 5}
i>1
for any § > 0 and s > 0, where diam(E) = sup, ,c4d(z,y). Also we define
H*(A) = limsjo H3(A). H® is called the s-dimensional Hausdorff measure with
respect to the qdistance d. Also let
dimy (A, d) = sup{s|H*(A) = oo} = inf{s|H*(A) = 0}

for any A C X. dimy(A,d) is called the Hausdorff dimension of A with respect to
the qgdistance d.

As in the case of distances, H® is a complete Borel regular measure on X for
any s > 0.

Hereafter in this section, S is a non-empty finite set and £ = (K, S, {F;}ics)
is a self-similar structure with K\Vy # (). Also § is a right-continuous scale.

DEFINITION 2.3.4. A gdistance d on K is said to be adapted to a scale § if and
only if there exists 31,02 > 0 and n € N such that

Bﬂls(xvd) - Us(n)(m) - 3525(1‘,60
for any z € K and any s € (0,1].

For example, the distance Dg given in Theorem 2.1.8 is adapted to the scale §
withn =3,0; =1 and [ = 4.

ProrosiTION 2.3.5. If d is a qdistance on K which is adapted to a scale 8,
then the topology on K given by d is the same as the original topology of K.

PRrRoOOF. Note that {Us(n)(x)}o<sg1 is a fundamental system of neighborhoods
of x for any x € K. This immediately imply the desired statement. O

Hereafter, we always assume that the topology of K given by a qdistance d is
the same as the original topology of K.

First we give an extension of Moran-Hutchinson’s theorem on the Hausdorff
dimension of self-similar sets.

THEOREM 2.3.6. Let 8 be a scale on ¥ which satisfies (EL1) and let | be the
gauge function of 8. Assume that S is locally finite and that there exist positive
constants c1, ca, 7y and a Borel reqular measure v on K such that c1l(w)Y < v(K,) <
col(w)? for any w € W,.. Also assume that d is a qdistance on K which is adapted
to 8. Then, there exist positive constants cs and cq4 such that

(2.3.1) esHY(A) < v(A) < e/H(A)
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for any Borel set A C K and
(2.3.2) esr? < v(Bp(z,d)) < cgr?
for any x € K and any v > 0. In particular, dimy (K, d) = ~.

PROOF. First we show that v is elliptic. Since 8 satisfies (EL1), there exists
B1 > 0 such that l[(wi) > fil(w) for any w € W, and any ¢ € S. Therefore
V(Kyi) > cll(wi)? > ¢1(B1l(w))”. Hence v is elliptic. By Theorem 1.2.4, we see
that v € M(K). This implies

v(UM () = Y v(Ka).

wGAQz

for any s € (0,1] and any « € K. Since pu is elliptic and § is locally finite, there
exists positive constants cs and cg such that

css” < v(UM(z)) < cgs”

for any s € (0,1] and any = € K. As d is adapted to 8, this immediately shows
(2.3.2). By (2.3.2), using the mass distribution principle (i.e. Frostman’s lemma, see
[28, Lemma 1.5.5]), we conclude that there exists ¢4 > 0 such that v(A4) < ¢y HY(A)
for any Borel set A. Next fix w € W,. For sufficiently small s, define Z,, = {v|v €
As,v < w}. Then K, = Uyez, K,. Note that there exist ¢/ > 0 and ¢’ > 0 such
that diam(K,,d)? < s < 'v(K,) for any s € (0,1] and v € A,. Therefore,
> vez, diam(Ky,d)7 < "> . v(K,) = 'v(Ky) because v € M(K). Since
maxyez, diam((K,,d)) — 0 as s — 0, it follows that H7(K,,) < ¢'v(K,). By [28,

w

Theorem 1.4.10], we obtain (2.3.1). O

In general, it is difficult to find a measure v satisfying the assumption of the
above theorem. However, if § is a scale induced by an elliptic measure p, then
we may let v = p and have v = 1. Also there is an obvious choice of v and 7 in
the case of a self-similar scale. The following corollary corresponds to the classical
Moran-Hutchinson theorem on the Hausdorff dimension of a self-similar set with
the open set condition. See [28, Section 1.5]. Also see [35, 24].

COROLLARY 2.3.7. Let a = (a;)ics € (0,1)%. Assume that 8(a) is locally
finite and that d is a qdistance on K which is adapted to 8(a). Then the results of
Theorem 2.5.6 holds, where 7 is the unique constant which satisfies > . g(a;)Y =1
and v is the self-similar measure with weight ((a;)")ics.

i€S

DEFINITION 2.3.8. (1) Let 8 be a scale on ¥. For n > 1, define
35" (@) = inf{sly € UL (x)}

for any z,y € K.
(2) Let d be a gdistance. We say that d is n-adapted to 8 if and only if there

exist ¢1,c2 > 0 such that ¢;d(x,y) < 5;") (x,y) < cod(z,y) for any z,y € K.

Obviously, a qdistance d is adapted to § if and only if it is n-adapted to 8§ for
some n > 1. If no confusion may occur, we omit 8 in 5én) and write 6(®. The
following proposition is immediate from the definition.

PROPOSITION 2.3.9. Let 8 be a scale on ¥. For anyn > 1 and any z,y € K,
5§ (x,y) = 60 (y,x), 6 (x,y) >0 and the equality holds if and only if x = y.
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LEMMA 2.3.10. Let 8 be a scale on X2. Fizn € N and a > 0. Then the following
three conditions are equivalent:
(A) There exists an a-qdistance which is n-adapted to 8.
(B) Dga is a distance and (Dg )Y is n-adapted to S.
(C) Dsa is a distance and (Dga)'® is m-adapted to 8 for any m > n.

Moreover, let d be an «a-qdistance. Then d is n-adapted to 8 if and only if
(Dse )Y is an a-qdistance which is n-adapted to 8 and d is equivalent to (Dga ).

PrOOF. (A) = (B) Let d be an a-qdistance which is n-adapted to §. Then
d® is a distance and there exist ¢y, co > 0 such that

B01S($7da) c U(?/)a (m) c BCQS(x7 da)

for any x and any s. Applying Proposition 2.1.5, we obtain d(x,y)® < SDga(z,y)
for any x, y, where 8 = co/(n+1). In particular, Dg. is a distance and Bg(x, Dga) C
Bgs(x,d*). Moreover, by Proposition 2.1.4, US(?/)Q () € B(ng1)s(w, Dsa). Hence
(Dga ) is n-adapted to 8.
(B) = (C) By Proposition 2.1.4, U7/ (z) € B(ys1)s(2, Dsa). This along with
the fact that U™ (z) C U™V shows that (Dge )Y@ is m-adapted.
(C) = (A) This is obvious.
The remaining statement is easily verified from the arguments in “(A) = (B)”.
O

THEOREM 2.3.11. Let § be a scale on X and let n € N. The following siz
properties are equivalent:

(A) 6™ is a quasidistance.

(B) There exists a qdistance which is n-adapted to 8.

(C) There exists a > 0 such that Dga is a distance and (Dga )Y is n-adapted to
8.

(D) There exists o > 0 such that Dse is a distance and (Dg«)* is m-adapted to
8 for any m > n.

(E) For any m > n, there exists ¢ > 0 such that c6") (x,y) > 6 (x,y) for any

,y e K.
) There exists ¢ > 0 such that c6@" ) (x,y) > 60 (2,y) for any =,y € K.

PrROOF. (A) = (B) Proposition 2.3.2 suffices this implication.
(B) = (C) = (D) This is immediate by Lemma 2.3.10.
(D) = (E) Let d = (Ds«)"®. Since d is both m and n- adapted to 8, there exist
B1, B2 > 0 such that £160™) (z,y) > fad(z,y) > 60 (x,y) for any ,y.
(E) = (F) This is obvious.
(F) = (A) Let z,y and z belong to K. If t > maxé™ (z,y),5™ (y, 2), then y €
Ut(")(x) and z € Ut(n) (y). Hence z € Ut(2n+1)(z). This shows that 6"+ (z, 2) <
80 (z,y) + 6 (y, 2). By (5), 6" (x,2) < (6™ (z,y) + 6(y, 2)). O

By the above theorem, a qdistance which is adapted to a scale § is essentially
(Dga)l/ @, Also, qgdistances which are adapted to a scale § are all equivalent.

COROLLARY 2.3.12. Let 8 be a scale on X.
(1) There exists a qdistance which is adapted to 8 if and only if (Dg )Y is a
a-qdistance which is adapted to 8 for some a > 0.
(2) Let d be a qdistance. Then d is adapted to S if and only if (Dga)/* is a
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a-qdistance which is adapted to 8 for some o > 0 and d is equivalent to (Dga)l/o‘.
(3) Let dy be a qdistances adapted to 8. Then a qdistance dy is adapted to 8 if and
only if dy is equivalent to dy.

By the above results, if there exists a qdistance which is adapted to §, then
{m/|there exists a qdistance which is m-adapted to 8}
={m|6(™ is a quasidistance} = {n,n+1,...}.

Denote this n by n4(8). Combining Theorems 2.2.6 and Corollary 2.3.12, we have
the following result on existence of an adapted gdistance for an intersection type
finite scale.

THEOREM 2.3.13. Let 8 be a scale on X2 with (EL1). If § is intersection type
finite with respect to L, then there exists a qdistance on K which is adapted to S.
Furthermore, na(8) < 3.

PrOOF. By Theorem 2.2.6, there exists a > 0 such that Dg« is a distance on
K which is 3-adapted to 8. Therefore, if d = (Dg«)'/®, then d is a qdistance on
K which is 3-adapted to S. O

If the self-similar structure is strongly finite, then we have slightly better result.

THEOREM 2.3.14. Assume that the self-similar structure L is strongly finite.
If 8 is intersection type finite and satisfies (EL1), then 6% is a quasidistance. In
particular, na(8) = 1.

PROOF. Let (s,z) € (0,1] x K. For any k > 0 and m > 2, define

CH(z, s, k,m) ={(w(1)v(l),...,w(im)v(m)) € CH|w(i) € As and
v(i) € Wy forany i = 1,...,m, v € Ky)o(1)}-
Also define

Kp(s,z, k) = U ( U KT(¢)>
(r(1),...,7(m))ECH(s,z,k,m) “i=1

Let d be a distance on K which gives the original topology of K. Then the diameter
of K, (s, z, k) with respect to d converges to 0 as k — oco. Since Uy (z) is a neighbor-
hood of z, there exists kg such that K,,(s,z, ko) C Us(x). Since 8 satisfies (EL1),
there exists a; € (0,1) such that A;N A, s = 0. This means that any w € A, s can
be written as w = w'v, where w’ € Ay and |v| > 1. Hence if 3 = (a;)*, then any
w € Ags can be written as w = w'v, where w’ € Ag and |v| > k. This along with
that fact that K, (s, >, ko) C Us(z) yields that U " (x) C Us(x). Note that the
constant 3 is determined by (s,z) and m. In this sense, we write 8 = (s, z, m).

By Theorem 2.2.13, ((0,1] x K)/A{ is a finite set. Suppose that (s, 1) o~
(s2,22). Then there exists an L-isomorphism ¢ between A{, , and A, . Using ¢,
we see that 8(s1,x1,m) = 3(s2, 22, m). Since the equivalence class under v is finite,

we may choose 1 € (0,1) such that Uéﬁ_l)(x) C Us(n)(x) for any (s,z) € (0,1] x K.
This implies that §(™= 1 (z,y) > 8,6 (x,y) for any z,y € K. In the case, m = 4,

we have the condition (F) of Theorem 2.3.11 with n = 1. Therefore 61" is a
quasidistance. O
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In the case of a rationally ramified self-similar structure, Corollary 2.2.8 along
with Theorem 2.2.6 implies the following result.

COROLLARY 2.3.15. Let L be a rationally ramified self-similar structure and let
S be an elliptic scale on 8. If § is locally finite, then na(8) = 1 and there ezists a
qdistance on K which is 1-adapted to S. In particular, if L is post critically finite,
then there exists an adapted qdistance for every elliptic scale on 3.

For self-similar scales, we have the following stronger result.

THEOREM 2.3.16. Assume that Dg(a) is a distance on K, where a € (0, 1)°.
If L is strongly finite and S(a) is intersection type finite, then there exists 1 > 0
such that

Bﬁls(xv DS(a)) c Us(m) C BQS(m; DS(a))
for any s € (0,1] and any = € K.

PROOF. By Proposition 2.1.4, we have U(x) C Bas(z, Dg(a)). Hereafter we
write 8 = 8(a). Let a = (a;);es and define ¢ = min;es a;. Let X be a finite subset
of Wi. If Uyex Ky is connected, we define, for z,y € Uyex Ky,

CH(z,y : X) = {(w()v(1),...,w(m)v(m)) € CH(z,y)|w(l),...,w(im) € X}.
and Ds x(z,y) = inf{37. ar|(r(1),...,7(m)) € CH(z,y : X)}. Note that
Ds x(x,y) > Ds(z,y). Also for (s,z) € (0,1] x K, we define

dsy = inf{Ds’Agym (x1,29)|71 € Ks(x), 22 € Us(g)(x)\Us(x)}
Dy, = inf{Dg(z1,x2)|x1 € Ky(x), 25 € U (2)\Us(z)}.
By Theorem 2.2.13, ((0, 1] x K) /r; is a finite set. Choose one representative (s, )

in a equivalence class. Suppose that (s, ) 3 (S, 2+). Let 1) be an 2-isomorphism

between (s,z) and (s, z.) and let ¢ be the homeomorphism between US(Q)(x) and
Us(z)(x*) associated with 1. For p,q € U(Q)(x)

- Zaw Do) < Z% < (es)™' D aw(in
j=1

for any (w(1)v(1),...,w(m)v(m)) € C'H(p, q:A2,), where w(1),...,w(m) € AZ .
Hence we have csDg 2 (¢(p), 9(q))/s« < Ds,Agyz(p, q). This implies that ds , >

c«S, where ¢, = c(s*)*lds*m. Since the number of equivalence classes is finite,
there exists 8 > 0 such that ds , > 8s for any (s,z) € (0,1] x K.

If dgz > Dsz, then there exists a chain between z and y which gives the
infimum of the definition of D, ,. This chain should contain a word in A, for
s’ > s. Therefore D, , > s. Combining this with the fact that ds, > (s, we see
that Bg,s(z, Dg) C Us(x), where 81 = 3/2. O

Finally we define the notion of “volume doubling with respect to a qdistance”
and consider measures which have volume doubling property.

THEOREM 2.3.17. Let L be a rationally ramified self-similar structure and let
S be an elliptic scale on 3. Also let w € M(K). Then p has the volume doubling
property with respect to 8 (i.e. (VD) is satisfied) if and only if the following condition
(VDA) is satisfied:
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(VDd) There exist a qdistance d on K which is adapted to 8, a € (0,1) and ¢ > 0
such that p(Bs(x,d)) < cpu(Bas(z,d)) for any s € (0,1] and any x € K.

Proor. If (VD) holds, then § is locally finite by Theorem 1.3.5. Hence by
Corollary 2.3.15, there exists a qdistance on K which is adapted to 8. Now (VD)
immediately implies (VDd). Conversely (VDd) implies (VD), for some n. Hence
we obtain (VD). O






CHAPTER 3

Heat Kernel and Volume Doubling Property of
Measures

3.1. Dirichlet forms on self-similar sets

We now begin to study heat kernels derived from “self-similar” Dirichlet forms
on self-similar sets. More precisely, we will establish an equivalence between certain
type of upper heat kernel estimate and the volume doubling property. See the
next section for details. In this section, we will give a framework on “self-similar”
Dirichlet forms. Let £ = (K, S,{F;}ics) be a self-similar structure. Hereafter we
will always assume that K # V and that K is connected.

The following lemma is easy to verify.

LEMMA 3.1.1. Let p be an elliptic probability measure on K. Then, for anyw €
Wi, there exists a unique elliptic probability measure u* on K such that p*(A) =
w(Fyw(A))/u(Ky) for any Borel set A C K. Moreover, define p, : L*(K,pu) —
L2(K, i) by pyu = uoF,. Then py, is a bounded operator.

REMARK. If p is a self-similar measure on K with weight (u;);es, then u* = u
for any w € W,

Now we define the notion of self-similar Dirichlet forms.

DEFINITION 3.1.2. Let p be an elliptic probability measure on K and let (£, F)
be a local regular Dirichlet form on L?(K, ).
(1) We say that (€, F, p) is self-similar, (SSF) for short, if and only if it satisfies
the following two conditions:
(SSF1) wo F; € F for any i € S and any u € F. There exists (7;)ies € (0,00)"
such that

1

(3.1.1) E(u,v) = —E(uoF;, voFy)
for any u,v € F. If g(w) = \/rup(Kw), then g(w) is a gauge function and the scale
8, induced by g is elliptic.
(SSF2) Let I't and I'y; be subsets of W, which are L-similar and let ) be the
associated L-similitude between K (I';) and K(I'z). If v € F, supp(u) C K(I'y)
and uoy|gx(r,) = 0, then there exists v € F such that supp(v) € K(I'z) and
V| g (ry) = uot.

The ratio (r;)ies is called the resistance scaling ratio. If r; < 1 for any i € S,
then (£, F, u) is said to be recurrent.

REMARK. (1) If u is a self-similar measure with weight (u;);cs, then g(w) is
a gauge function if and only if r;u; < 1 for any 7 € S. In this case S, is always
elliptic.

59
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(2) If (€, F, p) is recurrent, then g(w) is always a gauge function and 8, is always
elliptic.

DEFINITION 3.1.3. Let p be an elliptic probability measure on K and let (£, F)
be a local regular Dirichlet form on L?(K, u). We say that (€, F, u) satisfy Poincaré
inequality, (PI) for short, if and only if there exists ¢ > 0 such that

(P1) S > [ (0= (@) du

for any w € W, and any u € p,(F), where (@), = [, udv.

REMARK. If u is a self-similar measure, then p* = u for any w € W,. There-
fore, in this case, (PI) holds if and only if

E(u,u) > c/K(u —a)2dp

for any w € F, where ¢ is a positive constant. Furthermore assume that (€, F)
is conservative, i.e.1 € F and £(1,1) = 0. Let —A be the non-negative self-
adjoint operator associated with the Dirichlet form (€, F) on L?(K,u). Then by
the variational principle, (PI) holds if and only if 0 is the eigenvalue of H whose
multiplicity is one and the spectrum of —A is contained in {0} U [¢, 00) for some
c>0.

Hereafter we always assume that p is an elliptic probability measure on (K, d)
and that (£, F) is a local regular Dirichlet form on L?(K, p1). From the self-similarity
(SSF) and the Poincaré inequality (PI), we can establish the existence of heat
kernels and their diagonal estimates.

THEOREM 3.1.4. Assume that (€, F, 1) satisfy the conditions (SSF) and (PI).
Let {Ty}4=0 be the strongly continuous semigroup on L?(K, ) associated with the
Dirichlet form (€, F). Then {Ti}i>0 is ultracontractive and there exist o > 0 and
c > 0 such that ||Ty||1 0o < ct=%/2 for any t € (0,1]. Moreover, there exists
p:(0,400) x K x K — [0, +00) such that p(t,-,-) € L®°(K x K) and

<nwu%34pwawwmmw>

for anyu € L*(K, ). p(t,x,y) is called the heat kernel associated with the Dirichlet
form (€, F) on L*(K,p). In particular, if (€, F, u) is recurrent, then o € (0,2).

We need the next two lemmas to show the above theorem.

LEMMA 3.1.5. Let A be a partition of ¥. For any u € F, define A(u) = {w|w €
A, KyyNsupp(u) # 0}. Assume that (€, F, u) satisfy the conditions (SSF) and (PI).
Then

c

MmNy, e A (u) T (K

c

2
u )
maXyweA(u) T (K ) el

E(u,u) +

5 lullf >

where c is the constant appearing in (PI).
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PRrOOF. Using (3.1.1) and (PI), we see that

E(u,u) = Z iE,’(UOFM,uOFw)

Tw
weA(u)
> 8 ([ e rran ([ veran?)
weA(u) Tw K K
C c 2
> Z 7/ u?dp — Z 72(/ udu)
weA(u) ’I"w,LL(Kw) Kuw weA(u) Tw'u(Kw) w
C Cc
> llull3 — 7 llullf.

maXye A (u) Twk(Kuw) ming,e A (u) 7w (Kw)

O

LEMMA 3.1.6. Assume that (€, F, 1) satisfy the conditions (SSF) and (PI). Let
8y = {As}sE(O,l]' Then there exist positive constants c¢1 and co such that

C1
52 minwEAs(u) IU(KU))

for any uw € F and any s € (0,1].

(3.1.2) E(u,u) +

c2
lll? > 2]l

PROOF. Since p is elliptic, u(Kuw, .. w,,) > opp(Kuw,. w,,_,) for any wy ... wy, €
Wy, where @ > 0 is independent of w. Hence for any w € A, it follows that
ars? < g(w) < s2, where r = min;cg r;. This along with Lemma 3.1.5 immediately
implies (3.1.2). O

PrROOF OF THEOREM 3.1.4. Since p and 8, is elliptic, there exist d,n € (0, 1),
c1 > 0 and ¢z > 0 such that p(Ky) > c10/®! and g(w) < con!®! for any w € W,.
Therefore, there exist positive constants a and ¢z such that p(K,) > csg(w)® for
any w € W,. This with (3.1.2) implies that

Cy4 Cs
(3.1.3) E(u,u) + WHUH% 2 ?HUH%

for any u € F N LY(K, u). By [30, Theorem 3.2], (3.1.3) turn out to be equivalent
to the Nash inequality (A.1). Using Theorem A.2, we deduce that {T}}¢>o is
ultracontractive and ||Ty||1 oo < ct~%/2. The existence of the heat kernel follows
from Theorems A.2 and A.3.

If (&, F, p) is recurrent, there exist ¢ > 0 and v > 0 such that p(K,) > c(ry)”
for any w € W,. Choose « so that v = («/2)/(1 — («/2)). Then « € (0,2) and
H(Ky) > cag(w)® for any w € W,. O

We also need the following two properties to establish a suitable framework for
heat kernel estimate.

DEFINITION 3.1.7. Assume that (€, F, u) satisfy the conditions (SSF) and (PI).
(1) (&,F,up) is said to have the continuous heat kernel, (CHK) for short, if and if
(CHK) The heat kernel p(¢,z,y) associated with the Dirichlet form (€, F) on
L?(K, i) is jointly continuous, i.e. p: (0,+00) x K x K — [0, 4+00) is continuous.
(2) Let (Q,{X:}t>0, {Pr}zex) be the diffusion process associated with the local
regular Dirichlet form (£, F) on L?(K,u). For any A C K, we define the hitting
time of A, ha, by ha = inf{t > 0|X; € A}. (£,F,p) is said to have uniform
positivity of hitting time, (UPH) for short, if and only if



62 3. HEAT KERNEL AND VOLUME DOUBLING PROPERTY OF MEASURES

(UPH) infyep Ex(ha) > 0 for all closed sets A and B with AN B = 0.

In the subsequent sections, we will study heat kernels associated with a local
regular Dirichlet form (£, F) on L?(K,u) which satisfy (SSF), (PI), (CHK) and
(UPH). A similar set of assumptions on Dirichlet forms on self-similar sets has
given in [8, Assumption 2.3]

In the recurrent case, (SSF) along with (PI) implies (CHK) and (UPH).

THEOREM 3.1.8. Assume (SSF) and (PI). If (€, F, p) is recurrent, then (CHK)
and (UPH) are satisfied.

LEMMA 3.1.9. Assume (SSF), (PI) and that (€,F, ) is recurrent. Then F C
C(K,d). Let U be an open subset of K. Define Fy = {ulu € F,u|lpy = 0}
and Ey = E|ryxry- Also let uly be the Borel reqular measure on U defined by
ulu(A) = u(A) for any Borel subset A of U. Then (Ey,Fu) is a local regular
Dirichlet form on L*(U,u|y). The associated semigroup, {TY }i~0, on L2(U, ulv)
is ultracontractive and the associated heat kernel py : (0, +00) x K x K — [0, 4+00)
18 cONtINUOUS.

The heat kernel py itself is only defined on (0,+00) x U x U by definition.
However, we can extend py(t, z,y) by letting py (¢, x,y) = 0 if  or y belongs to
K\U.

PROOF. By Theorem 3.1.4, it follows that ||T}||1 oo < ct®/?, where a € (0,2).
Hence applying Theorem A.6, we obtain that F C C(K,d). Then (&y,Fv) is a
local regular Dirichlet form on L?(U, u|y) by [15, Theorem 4.4.3]. Starting from
(3.1.3), we follow the same discussion as in the proof of Theorem 3.1.4 and obtain
TV |1 oo < ct~*/2. Hence Theorem A.6 shows that py is continuous. O

PROOF OF THEOREM 3.1.8. We already verify (CHK) in Lemma 3.1.9. Let A
be a non-empty closed subset of K. For x € K,

(3.1.4) Ez(hA):/OOO/Xpy(t,m,y)u(dy)dt,

where Y = A°. Since A # 0, Ey(u,u) = 0 if and only if u = 0. Therefore, if \;
is the smallest eigenvalue of the non-negative self-adjoint operator associated with
the Dirichlet form (Ey,Fy) on L*(Y, uly), —Ay, then A\; > 0. By (A.2), there

exists ¢; > 0 such that

py (ta,y) < cre™™

for any x,y € K and any ¢t > 1. For ¢ € (0, 1], By Lemma 3.1.9, there exists ¢ca > 0
such that p(t,z,y) < cat=*/? for any z,y € K and t € (0, 1]. Therefore, define

F(t) = et~ ift € (0,1],
) et ift > 1.

Then py (t,z,y) < F(t) and fol Jx F(t)u(dy)dt < +oo. Note that py(t,z,y) is
continuous. By the Lebesgue dominated convergence theorem, (3.1.4) implies that
E,(ha) is continuous with respect to x € K. Assume that B is a closed subset
of K and AN B = (). Since the process is a diffusion process, Py(ha = 0) > 0
for any © € B. Hence E;(ha) > 0 for any € B. Therefore, inf,cp E,(ha) =
mingep E;(ha) > 0. Thus we obtain (UPH). O
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PROPOSITION 3.1.10. Assume (SSF), (PI) and (CHK). If (£.F) is conservative,
i.e. 1 € F and E(1,1) =0, then the heat kernel p(t, x,y) is positive, i.e. p(t,x,y) >
0 for any (t,z,y) € (0,+00) x K x K.

PrOOF. By [28, Theorem 1.6.2], K is arcwise connected. Hence the desired
result follows from Theorem A.4. d

3.2. Heat kernel estimate

In this section, we will give our main result on heat kernels associated with self-
similar Dirichlet forms on self-similar sets. Let £ = (K, S, {F;}ics) be a self-similar
structure. Hereafter we will always assume that K # V), that K is connected and
that (K, S,{F;}ics) is rationally ramified with a relation set R. Moreover, y is an
elliptic probability measure on K and (£,F) is a local regular Dirichlet form on
L?(K, p).

DEFINITION 3.2.1. Assume that (€, F, u) satisfy (SSF). The resistance scal-
ing ratio (r;);eg of (€,F) is said to be arithmetic on R;-relations if and only if
log ry/logr, € Q for any ({w}, {v},¢,z,y) € R1.

For the lower off-diagonal estimate of heat kernels, we need a “geodesic” be-
tween a pair of points.

DEFINITION 3.2.2. Let (X,d) be a metric space. For z,y € X, a curve 7 :
[0,d(z,y)] — X is called a geodesic between x and y if and only if y(0) = z,v(1) =y
and d(y(t),v(s)) = |t — s| for any ¢, s € [0,d(x,y)]. We call (z,y) € X? a geodesics
pair for (X, d) if and only if there exists a geodesic between = and y. The distance
d is called a geodesic distance if and only if every pair (x,y) € X? is a geodesic
pair.

THEOREM 3.2.3. Assume that (€, F) is conservative and that (E,F, u) satisfy
(SSF), (PI), (CHK) and (UPH). Let 8. be the scale induced by the gauge function
g(w) = v/rop(Ky). Suppose either that
(I) (&€, F) is recurrent
or that
(1) w is a self-similar measure on K and the resistance scaling ratio (r;);es s
arithmetic on Rq-relations.

Then, the following four conditions (a) - (d) are equivalent.

(a) w is volume doubling with respect to the scale 8..

(b) There exists a qdistance d on K adapted to 8. such that p is volume doubling
with respect to the qdistance d.

(¢) There exist ¢ > 0 such that

c

(DUHK?) p(t,xz,x) < W

for any t € (0,1] and any z € K.
(d) There exist a gdistance d on K which is adapted to 8. and ¢ > 0 such that

for any t € (0,1] and any z € K.



64 3. HEAT KERNEL AND VOLUME DOUBLING PROPERTY OF MEASURES

Moreover, suppose that any of the above conditions holds. Let d be a qdistance
adapted to 8. If d* is a distance on K, then a < 2 and there exist positive constants
c1,ce and c3 such that, for any t € (0,1] and any x,y € K,

c1
(DLHK) 1B d) <p(t z, )

and

(UHK) p(t,z,y) < m exp ( . (d(%“;y)Q ) ﬁ),

where B = 2/a. Also in the recurrent case, there exist positive constants cq and cs
such that

c T, y)?\ 7T
mexp(—%(d( ty) ) )Sp(tal’ay)

for any t € (0,1] and any geodesic pair (z,y) € K? for (K,d®).

(LHK)

REMARK. At a glance, it seems that the inequalities (DUHK), (DLHK) and
(UHK) may depend on the choice of a qdistance d. Using U,(z) and 6(V)(z,v),
however, we may rewrite those inequalities. Namely, if §()(z,7)® is equivalent to
a distance on K, then

B!

— T,T 2
) R T

(U ()
and W ,
72 o (2,y)*\ 71
p(t,a,y) < ——=———=exp ( —73(7) )
(U () t
where 5 = 2/a. Note that 1 and s are independent of «. The constant s is the
only place where the value of o may be involved.

We will give a proof of Theorem 3.2.3 in Section 3.5.

There are two classes of self-similar sets, p. c.fself-similar sets and Sierpinski
carpets, where a local regular Dirichlet form with (SSF), (PI), (CHK) and (UPH)
has been constructed. We will apply the above theorem to those classes in the next
two sections.

3.3. P.c.f. self-similar sets

In this section, we will consider post critically finite self-similar structures. In
this case, one can easily determine when the assumptions of Theorem 3.2.3 hold.
Throughout this section, £ = (K, S,{F;}ics) is a post critically finite self-similar
structure whose relation set is {({w(?)}, {v(9)}, pi, (7),y(9))]i = 1,...,m}, where
w(i), v(i), 2(i), y(i) € Wy and @,(w(i)) = v(i).

There is an established way of constructing self-similar Dirichlet forms on a
post critically finite self-similar sets in [28]. It starts from a harmonic structure
(D,r), where D is a “Laplacian” on Vj, which is a finite set for a p. c. . self-similar
set, and r = (r;);es € (0,00)°. From (D,r), we obtain a quadratic form (€, F)
which satisfies u o F; € F for any i € S and

1
g = — : :
(u,u) E TiS(uoE,quJ
i€s
for any u € F. See [28] for details.
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We assume that p is an elliptic probability measure on K for the rest of this
section.

PROPOSITION 3.3.1. Assume either that (D,r) is recurrent, i.e. v € (0,1), or
that p is a self-similar measure with weight (p;);es which satisfies rip; < 1 for any
i € S. Then (€,F) is an local reqular Dirichlet form on L*(K,u) which satisfies
(SSF), (PI), (CHK) and (UPH).

PRrROOF. If (D, r) is recurrent, then the conditions (RFA1), (RFA2) and (RFA3)
are immediately verified. Hence the statement follows by Theorem B.3. Next
assume that p is a self-similar measure with weight (u;);es which satisfies r;u; < 1
for any ¢ € S. Then we have (SSF) by the method of construction of F. See [28,
Sections 3.1 and 3.2] for details. Also by [28, Theorem 3.4.6], (£, F) is a local regular
Dirichlet form on L?(K, ;1) and the associated non-negative self-adjoint operator H
has compact resolvent. Also the kernel of H is equal to constants. Therefore, by
the remark after Definition 3.1.3, we obtain (PHI). By [28, Prposition 5.1.2], we
also have (CHK). Finally, we show (UPH). Let A and B be closed subsets of K with
ANB=10. Set Ay, = K(W(W,,,A)). Then A, N B = { for sufficiently large m.
Since A C A,,,, we have E,(ha,, ) < E;(ha). Therefore, we may replace A by A,,
to show (UPH). In other word, we may regard A as Uy erK,, for some finite subset
T" of W,. In such a case, QA is a finite subset of V. and hy = hya for any path
starting from B. By [28, Section A.2], the heat kernel pga (¢, x,y) corresponding to
the Dirichlet form (€, Fa) on L?(K, p) is jointly continuous on (0, 00) x K2. Also,
we have

K\A Jo
for any x € K\ A. Define

F(x) :/K\A /OoopaA(t,m,y)dt,u(dy).

By definition, 0 < F(z) < E;(ha) for any x € B. By [28, Theorem A.2.1], the
nonnegative self-adjoint operator —Ay4 associated with (€, Fpa) on L?(K, i) has
compact resolvent. Let A\, be the smallest eigenvalue of —Ag4. If £(u, u) = 0, then
u is constant and u|lgpa = 0. This implies that A\, > 0. Hence there exists C' > 0
such that
poa(t,z,y) < Ce ™!

for any (t,7,y) € [1,00) x K2. Hence F(z) is continuous on K\ A by the Lebesgue
dominated convergence theorem. Moreover by [28, Theorem A.2.19], we have
poa(t,x,z) > 0 for any x € K\A. Hence F(z) > 0 for any x € K\A. Since
B is compact, we deduce that 0 < inf,ep F(x) < infyep Ey(ha). Thus we obtain
(UPH). O

From now on, we confine ourselves to the second case in the above proposition,
namely, p is a self-similar measure with weight (u;);cs which satisfies r;u; < 1 for
any i € S. Note that if (D, r) is recurrent, then the assumption (I) of Theorem 3.2.3
is satisfied. If not, the resistance scaling ratio r should be arithmetic on R;-relations
in order to satisfy the assumption (II) of Theorem 3.2. Note that every relation is
an Rq-relation for p.c.f. self-similar structure.

PROPOSITION 3.3.2. The assumption (II) of Theorem 3.2.3 holds if and only
if log Ty (i) / log Ty € Q for anyi=1,...,m.
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ProoF. This is immediate by Definition 3.2.1. t

We have the following simple condition which is equivalent to the statement
(a) of Theorem 3.2.3

PROPOSITION 3.3.3. Let 8, be the scale induces by the gauge function g(w) =
Twlhw- Then p has the volume doubling property with respect to 8. if and only if
log 7y () B log 7,
log iy 108 po(i

foranyi=1,...,m.
ProoF. Corollary 1.6.13 suffices to show the desired statement. O

If i has the volume doubling property with respect to 8., we can apply Theo-
rem 3.2.3 and obtain heat kernel estimates. As is seen in the last section, if

(3.3.1) max{a|D~e is a distance on K}

exists, then it plays an important role in off-diagonal heat kernel estimates like
(UHK) and (LHK). Next we study how to calculate the value of maximum in
(3.3.1).

DEFINITION 3.3.4. (1) Define

CHm(z,y) = {(w(i))j=1,...kl(w(5))j=1....k € CH(z,y),

w(j) € Wy, forany j=1,...,k},
for z,y € K and m > 0. We regard CH1(z,y) as a subset of Wy by identifying
(w(4))j=1,....k € CHi(z,y) with w(l)w(2)... w(k) € Wx.

(2) (A, 7) is called a recursive system of paths if A is a non-empty finite subset of

U {(vaaQ)vwecHl(p7Q)}a

P,q€Vo:p#q

and 7 : A — U,>1.A" satisfies the following condition: 7((w,p,q)) € Al*l for any
(wapa q) € “4 If T((U)]_ o Wiy Py Q)) = ((w(J)apja qj))j:L...,ka then p= Fw1 (pl)a q =
Fu,(qr) and Fy,(qj) = Fuw,,,(pj+1) forany j =1,... . k- 1.

(3) Let (A,7) be a recursive system of paths. (A,7) is called irreducible if and
only if B = A whenever B C A and (B, 7|) is a recursive recursive system of paths.
(4) Let (A, 7) be recursive and let a = (a;);jes € (0,1)°. Then the relation matrix
M = M rais a #A x #A-matrix defined by

Mw,w’ = § QA

jiw(@) =w’
where w = (wy ... wg, p,q) and 7(w) = (w, ... wk)).
In some cases, the following results are useful in determining whether D, is

a distance or not. In fact, later in this section, we will make use of them to
characterize the value (3.3.1) for an example.

PROPOSITION 3.3.5. Let a = (a;)jes € (0,1)%.
k . ,
1) If Zj:l aw; > 1 for any wi ... wi € UpgeviipzaCH1(D, q), then Da is a dis-
tance on K.
(2) If there exists a recursive (A, 7) such that the mazimum eigenvalue of the
relation matriz Mo - a s less than one, then Dy is not a distance.
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The following notations are convenient in proving the above proposition.

NOTATION. Let w = (w(j));=1,...x € CH(x,y).
(1) For v = (v(j))j=1,....1 € CH(y,z), we use w V v to denote the chain between
z and z defined by ((w(1),...,w(k),v(1),...,v(l)). In the same manner, we define
VI w; € CH(z1, xp) if wy € CH(zi, 2541) i =1,...,n— 1.
(2) For v € W, define vw = (vw(j));j=1,... .k, which is a chain between F,(z) and
Fy(y)-
(3) Fora= (a;)jes € (0,1)° and w = (w(j)),=

k
Ayw — Z aw(j).
j=1

PRrROOF. (1) Assume that p,q € V) and p # q. Let (w(j));=1,...n. € CH(p, q).
We will show that

(3.3.2) D a1
=1

r € CH, define

.....

by using induction on n. If n = 1, then w(1) = @. Since ag = 1, (3.3.2) holds.
Also if (w(§))j=1,....n € CH1(p,q), then (3.3.2) also holds by the assumption of the
proposition. Otherwise, there exist w € Wy, j. € {1,...,n} and 41,...,4; € S
such that w(j. + k — 1) = wiy for k = 1,...,1 and (ig)k=1,.1 € CH1(p',q’) for
some p',q¢" € Vp with p’ # ¢'. Let (w'(1),...,0'(n —1+1)) = (w(l),...,w(j. —
Dyw,w(js +1),...,w(n)). Then (w'(1),...,w'(n —1+1)) € CH(p,q). Using the
assumption of the proposition and induction, we obtain

n Jx—1 n—Il+1
Zaw Z oy (5 + Qo Zalk Z Qo () > Z Aoy’ (m) > 1.
Jj=1 J=j«+l m=1

Therefore, (3.3.2) holds for any element of CH(p, ¢). This immediately implies that
Da(p,q) > ay for any w € W, and any p,q € F,,(Vy) with p # q.

Next, define K,,(z) = Uyew,, .wek, Kw. For any z,y € K with  # y, we
may choose m > 1 such that K, (z) N Ky, (y) = 0. Then for any (w(j));=1,..n €
CH(x,y), there exist j.,l and p,q € V;,, with p # ¢ such that (w(j.),...,w(j« +1—
1)) € CH(p,q). This shows that Da(z,y) > min, gev,,.p£q Da(p, q) > 0 Thus D,
is a distance.

(2) Let (A,7) be a recursive system of paths. First define 7,,,(w,p,q) €
CHum(p,q) for (w,p,q) € A inductively as follows. Set 7 (w,p,q) = w for any
(w,p,q) € A. If 7(w,p,q) = (w(4),p5,45))j=1,....k, then we define 7, (w,p,q) =
vé?:leTm,l(w(j),pj, g;j), where w = w; ... wy.

Let a = (a;)jes € (0,1)%. Then a,, (ypq = (M™€)(wpq for any (w,p,q) €
A, where M = M4 . a and e € ((A) is the transpose of (1,...,1). Assume that
the maximum eigenvalue of M is less than one. It follows that the maximum
eigenvalue of Mp ;| a is less than one if B C A and (B, 7|s) is a recursive system
of paths. On the other hand, there exists an irreducible recursive system of paths
(B,7') where B C A and 7/ = 7|g. Therefore, A may be assumed to be irreducible
without loss of generality. Let A be the maximum eigenvalue of M Then by the
Perron-Frobenius theorem, 0 < A < 1 and we can choose a positive vector f as an
associated eigenvector. Since e < ¢f for some ¢ > 0, M"e < cA\" f as n — oco. Hence
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b1

Ps Ds

D2 yZ D3

FIGURE 3.1. the modified Sierpinski gasket

lim,, o0 @r,, (w,p,q) = 0. This implies that Da(p,q) = 0 if (w,p, q) € A. Therefore
D, is not a distance. |

Finally, we apply the above results to a particular example.

DEFINITION 3.3.6. Set p; = eV~ 17/6 py = 0,p3 = 1,ps = (p2 + p3)/2,p5 =
(ps +p1)/2 and pg = (p1 + p2)/2. Define F; : C — C by Fi(z) = (2 — pi)/3 + pi
fori =1,...,6. Let K be the unique non-empty compact set that satisfies K =
UiesFi(K), where S = {1,...,6}. K is called the modified Sierpinski gasket.

In the rest of this section, K is assumed to be the modified Sierpinski gas-
ket and £ = (K, S, {F;}ics) is the associated self-similar structure defined above.
Immediately by the above definition, we obtain the following.

PRrOPOSITION 3.3.7. The relation set of L is

{1342}, 12,1, 5)1(6, ) = (6,1),(2,6), (4,5)}
U{({2}, {3}, 23,4, )I(i,5) = (4,2),(3,4),(5,6)}

U {3} {1} 51,4, )1 (0, 5) = (1,5), (5,3), (6,4)},
where pr (k) =1 for (k,1) = (1,2),(2,3),(3,1). In particular, L is post critically
finite, P ={(1)*,(2)>, (3)*°) and Vo = {p1,p2,p3}-

PROPOSITION 3.3.8. Let D = (22 —12 i) and letr = (1%, ... 1%).

(1) (D,r) is a recurrent harmonic structure on (K, S, {F;}ics)-
(2) Let p be a self-similar measure on K with weight (u;)ies and let 8. be a
self-similar scale with weight {~;}ics, where v; = \/i;ri. Then p has the volume
doubling property with respect to S, if and only if uy = po = us.

PROOF. (1) This can be shown by the A-Y transform. See [28] for details.
(2) Apply Proposition 3.3.3. O
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P1

Ps Ds

H6 H5

P2 P4 p3
oo = H1 = fl2 = 43

FIGURE 3.2. Self-similar volume doubling measures on the modi-
fied Sierpinski gasket

Hereafter, we fix (D,r) and 8, as in the above proposition. Also p is assumed
to be a self-similar measure which satisfies 1 = po = ps. See Figure 3.2. Note
that we may assume that py < us < pug without loss of generality.

ProroOSITION 3.3.9. Assume that g < ps < pg. Let a be the unique o which
satisfies

(3.3.3) 2(7)* + ()* = 1.
Then
a, = max{a|D,e is a distance on K},

where v¢ = ((7i)“)i=1,....6-
Note that v; = /7u;/15 for any 1.

PROOF. Let w = (243, p2, p3). Note that 243 € CH1(p2, ps). Set A = {w} and
define 7 : A — A3 by 7(w) = (w,w,w). Then (A, 7) is a recursive system of paths
and M4 o = (2(71)* 4+ (72)®). If @ > v, the maximum eigenvalue of M4 ; e is
less than one. Hence Proposition 3.3.5-(2) implies that D« is not a distance. On
the other hand, for o = a,., we may verify the assumption of Proposition 3.3.5-(1)
and show that D,« is a distance. O

THEOREM 3.3.10. Assume that pg, < ps < pg. Let (E,F) be the Dirichlet
form associated with (D,r) on L*(K, ) and let p(t,z,y) be the corresponding heat
kernel. Also define d = (Do. )Y/ % where a. is the unique solution of (3.3.3).

(1) Suppose that pg < ps. Then, (UHK) and (DLHK) holds for any x,y € K
and any t € (0,1] with 8 = B.. Moreover, (LHK) holds if the line segment Ty is
contained in K and is parallel to the real axis.
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(2) If pa = ps, then (UHK) and (LHK) holds for any z,y € K and any t € (0,1]
with B = Ps.

PROOF. In both cases, Theorem 3.2.3 immediately implies (UHK). Assume
that the line segment Ty is contained in K and is parallel to the real axis. Then
we see that (z,y) is a geodesic pair for (K, Dyo.). Hence by Theorem 3.2.3, we
have (LHK) for such a pair. In the case (2), it follows that Da. is equivalent to a
geodesic distance. Hence (LHK) holds for any z,y € K. O

3.4. Sierpinski carpets

In this section, we discuss another class of self-similar sets, the generalized
Sierpinski carpets. The following definition is given by Barlow-Bass[7].

DEFINITION 3.4.1. Let Hy = [0,1]", where n € N, and let | € N with [ > 2.
Set Q@ = {1 [(ki — 1)/, kU] | (k1, ..., k) € {1,...,1}"}. For any Q € Q, define
Fqo : Hy — Hy by Fg(x) = z/l + ag, where we choose ag so that Fo(Hy) = Q.
Let S C Q and let GSC(n,!,S) be the self-similar set with respect to {Fp}ges,
ie. GSC(n,l,S) is the unique nonempty compact set satisfying GSC(n,l,S) =
UgesFo(GSC(n,l,S)). Set Hi(S) = UgesFg(Hp). GSC(n,l,5) is called a gener-
alized Sierpinski carpet if and only if the following four conditions (GSC1), ...,
(GSC4) are satisfied:
(GSC1) (Symmetry) Hy(S) is preserved be all the isometries of the unit cube Hy.
(GSC2) (Connected) H1(S) is connected.
(GSC3) (Non-diagonality) For any =z € H;(S), there exists 7o > 0 such that
int(Hy(S) N By(x)) is nonempty and connected for any r € (0,79), where B,(z) =
{yly e R™, |z —y| <r}.
(GSC4) (Border included) The line segment between 0 and (1,0, .. .,0) is contained
in H1 (S)

The Sierpinski carpet (Example 1.7.4) is equal to GSC(2,3,S), where S =
Q —{[1/3,2/3])%}. Also [0,1]" = GSC(n,, Q) for any | > 2.

In the rest of this section, we fix a generalized Sierpinski carpet GSC(n,,.S)
and write K = GSC(n, !, S). Also L is the self-similar structure associated with K,
ie. L= (GSC(n,l,8),S {Fg}oes). Let v be a self-similar measure with weight
(1/N,...,1/N), where N = #(5).

DEFINITION 3.4.2. For k € {1,...,n} and s € [0,1], define Sy, = {Q|Q €
S,Q NPy s}, where @y, 5 is a hyperplane in R™ defined by

Op s = {(x1,...,2n)|xK = s}

Also let Wy, ; be the parallel translation in k-direction by 1/1; Wy i(21,...,25) =
(y1,---,Yn), where y; = x; if i # k and yp = 2 + 1/1. For Q1,Q2 € S, @1 and Q2
are called k-neighbors if and only if Uy ;(Q1) = Q2 or ¥y (Q2) = Q1.

Let rfi : R" — R" be the reflection in the hyperplane ®; /5. The symmetry
condition (GSC1) ensures that rfy(Q) € S for any @ € S 1. In this sense, we
regard rfy as a map from Sy o to Si,1. Note that rfy is a bijection between Sy, o and
Sk.1.
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PROPOSITION 3.4.3. The self-similar structure L associated with a generalized
Sierpinski carpet is rationally ramified with a relation set

Ry = {(Sk,0, Sk,1,1i, Q1,Q2) [k € {1,...,n},
Q1,Q2 € S and they are k-neighbors.}

Combining the above proposition with Theorem 1.6.1, we obtain the following
fact.

PROPOSITION 3.4.4. A self-similar scale $(a) is locally finite with respect to L.
if and only if a () = ag for any k=1,...,n and any Q € Sko-

In the series of papers [2, 3, 4, 5, 6, 7], Barlow and Bass have constructed a
diffusion process on a generalized Sierpinski carpet and studied it extensively. For
example, they have obtained elliptic and parabolic Harnack inequalities, Poincaré
inequality and sub-Gaussian heat kernel estimate. Unfortunately, the Dirichlet form
on L?(K, v) associated with their diffusion process is not necessarily self-similar. On
the other hand, in [34], Kusuoka and Zhou have given a prescription of construction
a self-similar Dirichlet form on a generalized Sierpinski carpet.

Combining the methods and results in [7] and [34] as in [22], we obtain a
local regular Dirichlet form (€, F) on L?(K,v) which has the self-similarity in the
following sense: for any v € F and any @) € S, uoFg € F and there exists r > 0
such that

E(u,u) = E Z E(uoFg,uokFy)
" Qes

for any u € Q. In fact, from Kusuoka-Zhou’s method, we have (SSF). Moreover, the
corresponding diffusion process enjoys the same inequalities and estimates as the
original one studied by Barlow and Bass. See [7, Remark 5.11] and the discussion
after it. In particular, the associated heat kernel satisfies UHK and LHK for any
x,y € K, where 8 > 2, p = v and a distance d is the Euclidean distance. Note that
v(By(x,d)) = cr™ for any r > 0.

Barlow-Kumagai have studied a time change of this process in [8]. Let u be a
self-similar measure on £ with weight (u;);es. Define

F, = {ulu € L*(K, p), there exists f € F, such that u = f for p-a.e. v € K}

and set &,(u,u) = E(Haf, Haf) for u € Fu, where f € F. and u = f for p-a.e.
z € K, Ais the quasi support of p and (Hau)(x) = Ey(u(Xp,)). (See [15, Section
6.2] for details on time changes of a diffusion process associated with a Dirichlet
form in general. Also see [8, p. 9].) In [8], they have shown that if pgr < 1 for
any Q € S, then (€,,F,) is a local regular Dirichlet form on L?(K,p) and the
associated diffusion process is a time change of the diffusion associated with (€, F).
By their discussion, we can verify (SSF), (PI), (CHK) and (UPH).

Here after, we fix a self-similar measure p with weight (1g)ges and assume
that pgr < 1 for any @ € S. The following lemma is immediate by Theorems 1.3.5,
1.6.6 and Proposition 3.4.4.

THEOREM 3.4.5. Define 8, = 8(7), where v = /Hqr for any Q € S and
v = (vQ)ges- Then p has the volume doubling property with respect to 8. if and
only if pg = s, (q) for any k=1,...,n and any Q € Sko-
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a b a
a =[] = |3 = M5 = U7
C C b=z = g
C= {4 = Hg
a b a

FIGURE 3.3. Self-similar volume doubling measures on the Sier-
pinski carpet

This theorem shows when the condition (a) of Theorem 3.2.3 holds. Conse-
quently, the claims of Theorem 3.2.3 follows if ug = py, (q) for any k =1,...,n
and any @ € Sk,o. In particular, if Dy« is a distance, set § = 2/« and d(z,y) =
Do (x,y)Y*. Then

¢

1(B sz, d))

C2

<p(t,z,x) < m

and

plts20) < e (—ea(A200) 7
T (B i, d)) t
for any t € (0,1] and any x,y € K, where p(t,x,y) is the heat kernel associated
with the Dirichlet form (€, F,,) on L*(K, u). Moreover, we have the elliptic Har-
nack inequality by [7]. (Note that harmonic functions associated with (&, F,,) on
L?(K, ) are the same as those associated with (£,F) on L?(K,v).) Also we have
the exit time estimate (E) by Lemma 3.5.13. Using the arguments in [17], we have
the near diagonal lower estimate (3.5.8). Hence, if D« is equivalent to a geodesic
distance, then the classical arguments in [1, 8, 18, 30| imply the lower off-diagonal
Li-Yau estimate (LHK).
Finally we present two examples.

EXAMPLE 3.4.6 (the Sierpinski carpet). Let £ = (K, S, {F;}ics) be the self-
similar structure associated with the Sierpinski carpet appearing in Examples 1.5.12
and 1.7.4. By [2, 3] and [34], the resistance scaling ratio r is less than one and hence
we are in the recurrent case. By Theorem 3.4.5, the condition (a) of Theorem 3.2.3
follows if and only if p1 = ps = ps = pr, po = pe and pg = pg. See Figure 3.3.
Furthermore, if po = pg and pq < pg as well, then

(0, ] = {a|D+e is a distance},
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A= (par)=/?

B B B = (par)™/?
A<B

2A+ B =1

FIGURE 3.4. Geodesic distances on the Sierpinski carpet

where o, is given by 2(u17r)®*/2 + (uar)®+/2 = 1, and Do, is equivalent to a
geodesic distance. See Figure 3.4. Details on the construction of geodesic distances
on the Sierpinski carpet can be found in [32]. In this case, we have the upper and
lower off-diagonal Li-Yau estimates (UHK) and (LHK):

071)) exXp < — C2 (M) 1/([3*_1)) S p(f, z, y)

t
c3 d(z,y)*\1/(B=1)
= WB @ d) P <_ (=) )

for any 2,y € K and any t € (0,1], where d(x,y) = (D4yex )/ and B. = 2/a..

EXAMPLE 3.4.7 (Cubes). Let I = 3 and let S = Q. Then K = [0,1]". In this
case, v is the restriction of the Lebesgue measure,

F =Hi(K)={f|f: K — R,all the partial derivatives of f
in the sense of distribution belong to L?(K,v)}

ou 6@
u U Z/ 8xk 8xk
where du/0z; is the derivative in the sense of distribution. The diffusion process
associated with the Dirichlet form (£,F) on L?(K,v) is the reflected Brownian
motion. In this case, for any u,v € F,
E(u,v) =327" Z E(uoFg,voFg).
QeSs

and
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Hence r = 3"2. Hence we are not in the recurrent case unless n = 1. If pg < 37"
for any @ € S, then we have a local regular Dirichlet form (&,,F,) on L*(K, u),
where p is the self-similar measure with weight (110)ges. The corresponding diffu-
sion process is the time change of the reflected Brownian motion on n-dimensional
cube [0, 1]". In particular, if n = 2, then r = 1 and (£, F,,) is a local regular Dirich-
let form on L?(K,u) for any self-similar measure u. Applying Theorem 3.4.5, we
obtain Theorem 0.2.5.

3.5. Proof of Theorem 3.2.3

As in Section 3.2, (K,S,{F;}ics) is a rationally finite self-similar structure
and (&, F) is a local regular Dirichlet form on L?(K, u) which is conservative and
satisfies (SSF), (PI), (CHK) and (UPH). Also 8. is the scale induced by the gauge

function g(w) = /rwp(Ky). We write 8, = {As}o<s<1-

First note that Theorem 2.3.17 implies the following equivalence.
LEMMA 3.5.1. (a) is equivalent to (b).

DEFINITION 3.5.2. Let U be a nonempty open subset of K. Define Dy =
{ulu € FNCO(K),u|g\v =0} and

S

)

5 -
2

A(U) = imf £
uw€Dy ||u|

Also define Fyy by the closure of Dy with respect to the inner product & (u,v) =
E(u,v) + [ wvdp.

PROPOSITION 3.5.3. Let U be a nonempty open subset of K. If Ey = Exyxry
then (v, Fu) is a local reqular Dirichlet form on L?(K, u) (or L2(U, ulv)). If —Au
is the self-adjoint operator on L?(K,p) associated with (Ey,Fu), then —Ay has
compact resolvent and A (U) is the minimal eigenvalue of —Ay. Also if pu(t, z,y)
is the heat kernel associated with the Dirichlet form (Ey, Fu), then. for anyt > 0,

0<pu(t,z,y) <pt zy)
for p x p-a.e. (z,y) € K2.
LEMMA 3.5.4. There exists ¢ > 0 such that, for any w € W,

C
)\* Bw S - \
(Bu) < &)

where By = K, \Fy (Vo).

PRrOOF. Choose v € W, so that K, C K\Vy. Since (£, F) is a regular Dirichlet
form, there exists ¢ € C(K) N F such that supp(¢) C K\Vy and ¢(x) > 1 for any
z € K,. Define ¢,, by

_e((Fo)7H (@) ifz € Ky,
Pul®) = {0 otherwise.

Then by (SSF), ¢, € Fp, and E(¢w, pw) = (rw) 1E(p, ). Since u is elliptic,

w

w3 > u(Kuy) > ' u(Ky), where ¢ is independent of w. Therefore,

E(pw, puw) __E(@r9) .
||90w||% _clrw/‘(kw)

A(By) <
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LEMMA 3.5.5. (d) implies (b).

PRrROOF. Choose a > 0 so that d* is a distance. Let D(z,y) = d(x,y)* and let
B =2/a. Then by (d),
a1
(B (x, D))’
Since d is adapted to the scale 8., there exists ca > 0 such that Ue,s(z) C Bs(x,
for any « € K and any s € (0,1]. Hence for any r» > 0, Ug,s(z) C Bs(z,d) =
B, (x, D), where s = rt/e Let w e Agys,o- Then by Lemma 3.5.4,

Ae(B(r; D)) < A(Buw) <

p(t,z,x) <

QL

C3 -8
——— <y ",
TwN(Kw)
Using Theorem C.3, we have the volume doubling property of p with respect to the
distance D. This immediately implies (b). O

LEMMA 3.5.6. If there exist positive constants ¢y and ca such that
C1

#U,,z(@))

for any x € X and any t € (0,1], then p has the volume doubling property with
respect to S.. In particular, (c) implies (a).

p(t,z,z) <

REMARK. In the following proof, we don’t need the assumption (I) neither (II).

PROOF. Let s = cov/tand let x € K. If w € Ag ., then Us(y) = Us(w) C Us(x)
for any y € B,,, where Us(w) = K(W (A5, Ky)). By (¢) and Proposition 3.5.3,
P, (ty,y) < plty,y) < ——
B\ Y, s IR = T 7 /N
1(Us(y))

Integrating this over B,,, we see that

_ c1p( Ky
e **(B“”té/ pB. (Y, y)u(dy) < %

By Lemma 3.5.4, it follows that ¢, < e~ *+(Bw)t where ¢, is independent of z, ¢ and
w € Ag 5. Hence,
cp(Us(w)) < erp(Ko)
for any w € Ay . Since Uyen, ,Us(w) = Ug(x),
auUs@) e Y nUsw) e Y plKe) = cap(Ka(x)).

WEAs ¢ WEAs &
This is the condition (A); in Section 1.3. Since both p and 8, are elliptic, Theo-
rem 1.3.10 implies the condition (VD)o. Hence by Theorem 1.3.5, we have (a). O

LEMMA 3.5.7. (d) implies (c).

PRrOOF. Note that by the previous lemmas, we have (b) and (a). Since d is
adapted to the scale 8., there exist n > 1 and ¢; > 0 such that Uc(fs) (z) C Bs(z,d)
for any « € X and any s € (0,1]. Therefore by (d),

c

(z)) = u(U,, ()

(t ) < —
p ) x? X —

(n)

M(Ucl\/g

Now the volume doubling property of p with respect to the scale 8, immediately

implies (c). O
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LEMMA 3.5.8. If (a) is satisfied, then there exists ¢ > 0 such that r, < cr, for
any s € (0,1] and any w,v € Ay with K, N K, # 0.

ProoOF. By Theorem 1.3.5, i1 is gentle with respect to §.. Hence there exists
¢1 > 0 such that p(K,) < cu(K,) and ryu(Ky) < c1rypu(K,) for any s € (0, 1] and
any w,v € Ay with K,, N K, # 0. This shows that 7, < (c1)?r,. O

PROPOSITION 3.5.9. Assume that (£,F) is recurrent. For any closed subset B
of K, there exists gp : K x K — [0,00) which has the following properties:
(GF1) g¢gp(z,y) = gB(y,z) < gp(x,x) for any z,y € K.For any x € K, define g%,
by 95(y) = g(x,y). Then g € Fx\p and E(9%,u) = u(x) for any x € K and
any u € Fx\B-
(GF2) |gp(z,y) — g(z,2)| < R(y, 2) for any y,z € K.
(GF3) For x ¢ B, define

R(z, B) = (min{€(u,u)|u € Fx\p,u(z) = 1})_1.

Then gp(x,x) = R(z,B) > 0.
(GF4) Forx ¢ B,

Bthe) = [ an(e.p)n(ay).
gp is called the B-Green function.

PRrROOF. Since (£, F) is recurrent, (£,F) is a resistance form on K. If B is
a finite set, the above results are shown in [29]. Generalization to a closed set is
straight forward. See [27] for details. O

LEMMA 3.5.10. Assume (a). Set AR (z) = int(U§n) (x)) for any (s,z) € (0,1]x
K and define E; 5(-,-) by

Es x(u,u) = Z E(uoF,,uokFy,)

UEAQJC
foru e fV(n>(x).Then there exist c1,co > 0 such that

C1 C2
—_ < n < — s,z \ Wy

wgs,w(uau) > ng( )(I)(uau) = ng ) (’LL u)
for any (s,z) € (0,1] x K and any u € Ty ()

T )

Proor. By (SSH), if u € .7-'V<n>( )

1
5V3(">(x)(“’u): Z —&(uoFy,uokF,)

vEAT . v
Using Lemma 3.5.8, we immediately deduce the desired inequality. O

LEMMA 3.5.11. Assume (a) and that (€, F) is recurrent. For (s,z) € (0,1]x K,
define

ES@: sup Rsz(y) and R,,= inf Rs.(y),
yeK(z) ' yEK ()

where .
Rs.2(y) = (inf{& »(u, u)lu € Tvg(m(gg),u(y) =1}) .
Then, 0 < R, , < R, < +oo and

(c2) 'rwR, . < R(z, VI (2)%) < (c1) 'rwRea

s
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for any w € Ag 5, where ¢ and ca are the same constants as in Lemma 3.5.10
ProoF. By Lemma 3.5.10, for any w € A; 4,

(3.5.1) (e2) "' rwRsa(y) < Ry, VI (@)%) < (1) ru Rea(y).

Since R(y, Vi™ (2)°) = Iy (e (Y1), it follows that

clgVS(")(r)C (yay) S 7‘sz7$(9) S CQQVS(H)(z)c(ya y)
Note that Gy m (I)C(y,y) is continuous with respect to y and is positive for any

y € Kq(x) C v (z). Therefore we see that 0 < R, , < R < 400 because K()
is compact. Now the desired result is straight forward from (3.5.1). O

LEMMA 3.5.12. Assume that (£, F) is recurrent. If (a) holds, then there exist
positive constants cz and c4 such that

(RES) 3t < R(x, VI (2)°) < eqr
for any x € K, any s € (0,1] and any w € Ay .

PROOF. Suppose that (s, z) o (t,y). Let 9 be the n+ 1-isomorphism between

n

(s,z) and (t,y) and let ¢ be the associated L-similitude between Us(nﬂ)(a:) and

U (y). Note that w(AR,) = AF, for k = 0,1,...,n+ 1, o(US (2)) = U™ (y)
and ¢(Ks(z)) = Ks(y). Since ¢(8Us(n) () = 8Ut(n)(y)7 it follows from (SSH) that

by FV(")(y) = Ty () defined by ¢.(u) = uo¢ is bijective. Moreover,

Eoa(Pu(), e () = D E(u(u) 0 Fyy pu(u) 0 F)

UEAQJC

= Z E(u o Fyry,uo Fyy) = Eyu,u).

vEAT .

Hence R .(z) = Ryy(¢(2)). So Rs. and R, , depend only on the equivalence
classes under ~ . By Theorem 1.3.5, (a) implies that 8, is locally finite. Hence by

n+1
Theorems 2.2.7 and 2.2.13, the number of equivalence classes under ~ is finite.
Now Lemma 3.5.11 suffices to deduce the lemma. O

LEMMA 3.5.13. Assume that (£, F) is recurrent. If (a) holds, then there exists
cs,c6 > 0 such that

(E) css2 < Eg(h ) < 8>

Vi (@)e
for any (s,z) € (0,1] x K.

PRrROOF. First we show the upper estimate. By Proposition 3.5.9,

Bultyio) = [ 000 e ) < B VIO @)WV ),

Since u is gentle with respect to 8. and 8, is locally finite, u(Vs(n) (x)) < cpiyy for
w € Ag 5, where ¢ is independent of s, z and w.This along with Lemma 3.5.12 yields

E.(h 2

Vi (gye) S CCaTwhl < Co8”.
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For the lower estimate, note that (SSH) implies
(3.5.2) R(F,(y), Fy(2)) <ryR(y,2)

for any y,2 € K and any v € W,. (See [28, Lemma 3.3.5] for details.) Hence
sup, ek, F(y, 2) < Mr, for any v € W, where M = sup,, ;e R(p,q). Choose m
so that M (max;es 7)™ < c3/2. Then, for any w € A, 5, there exists v € W, such
that @ € Ky, and R(x,y) < c3ry,/2 for any y € K,,,. By (GF2) and Lemma 3.5.12,

Gy (e (T, Y) Z Gy (e (T, ) — R(2,y) = caru /2
for any y € Ky,. Therefore,
Bulhyiorye) = [ o @) > coraps(Kon) 2
Since p is elliptic, p(Kyy) > bu(Ky), where b is independent of s,z and w. There-
fore we obtain the lower estimate. O

LEMMA 3.5.14. Assume (a). For any (s,x) € (0,1] x K, define ps o by
Hs,z = Z /L(Fq;l(A NKy))
UEA?,I
for any Borel set A C K. If p is self-similar, then there exist c5,cg > 0 such that
C5Nw,us,r(A) < ,U(A) < CGNwNS,z(A)

for any (s,z) € (0,1] x K, any w € A, , and any Borel set A C Ug(x).

LEMMA 3.5.15. For (s,z,w) € (0,1] x K X Mgz, let {Ep®Y ()} o, be
the expectation with respect to the diffusion process associated with the local reqular

Dirichlet form (ngv(n)(z)’fV(n)(r)) on L*(K, psz). Define
B = By ond T s By )

If (a) is satisfied, then 0 < E5®" < EYY < 400 and

T, 2 5T, W 9
cr B2 < Ep(hyon,).) < csB770s7,

where ¢z and cg are independents of (s, x,w).

PrOOF. Use h(t,y, z) to denote the heat kernel associated with the Dirichlet
form (rwé’v(n)(z), '7:\/(")@)) on L?(K, s z). Recall that py, () (¢, y, z) is the heat ker-
nel associated with the Dirichlet form (& .7-'V<n)(w)) on L?(K, ). Therefore,
by Lemma 3.5.14,

t
< n
/vs("><x>h(cwwrw’y’z)us’w(dz) - /x/;n)(m) Py o) (&Y, 2)p(dz)

t
S / h( 7y,Z)MS’w(dZ),
V™ (z)

Vs(n)(w)’

Co hwTw

where ¢5 and cg are the same constants as in Lemma 3.5.14. Integrating this on
[0, 00) with respect to ¢, we obtain

(3.5.3) cspiwTw By ™" (hp) < Ey(hp) < coprwrw Ey ™" (hp),

where B = V(™ (z)¢. Note that h(t,y,2) has uniform exponential decay for suf-
ficiently large ¢, i.e. there exist ¢, A > 0 and ¢, > 0 such that h(t,y, z) < ce™™
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—=5,T,Ww

for any y,z and t > t.. Hence E < +oo. By (UPH), fyeKs(r) Ey(hg) > 0
Hence (3.5.3) implies that £ > 0. Again using (3.5.3), we obtain the desired

inequality. t
LEMMA 3.5.16. For any (s,z), (t,y) € (0,1] x K, we write (s,x) ~ (t,y) if
and only if (s,x) ~ (t,y) and there exists ¢ > 0 such that ry,) = cry for any

", where ¢ : ATTY — A"Jrl is the n + l-isomorphism between (s,z) and
(t,y). Assume (a). If (H) is satzsﬁed i.e. p is self-similar and the resistance
scaling ratio is arithmetic on Rq-relations, then (0,1] x K/~ is finite.

w € A"

Proor. By Theorem 1.3.5, 8, is locally finite and 8, ~ 8#, where §, is the

scale induced by p. Hence by Theorem 1.4.3-(1), §, is locally finite as well. Let
(X,Y, ¢, x,y) € Ro, where R is the relation set of £. If (X,Y, ¢, x,y) € R, then
Theorem 1.6.1 yields that rypw = Ty (w)hpw) A fpw) = Hew) for any w € X.
Hence 1y = 7,(y) for any w € X.

Next we show that {r,/r.|(w,v) € TP(L,8)} is a finite set. At first, let
(w,v) € TP(L,8,R2). Then the above discussion along with Lemma 3.5.8 implies
that the choice of the values ry,/r, is finite.If (w,v) € ZP(L,8, Ry, then we also
have finite number of choices of r,, /1, because (r;);cs is arithmetic on R;-relation.
Hence {ry/ry|(w,v) € TP(L,8,R)} is a finite set. Now let (w,v) € ZP(L,S). As
in the proof of Theorem 2.2.7, we have {w(i)}i=1,..m+1 which satisfies w(1)
w,w(im+1) =v and (w(i),w(i + 1)) € ZP(L,S R) for any ¢. Note that m + 1
inf e #(m71(p)) < oo. This fact along with the finiteness of {r, /r,|(w,v)
IP(L,8,R)} implies that {ry/r,|(w,v) € TP(L,8)} is a finite set.

Now by Theorems 2.2.7 and 2.2.13, the number of equivalence classes under
ol is finite. Since we only have finite number of choices of r/r, for (w,v) €

m IA Il

IP(L,8,), one equivalent class of o contains finite number of equivalent classes
n

of ~. Therefore, (0,1]/~ is a finite set. O

LEMMA 3.5.17. Under the assumption (1I), (a) implies (E).
PROOF. Let (s,z) ~ (t,y), let 1 : ATE! — AP be the associated n + 1-

isomorphism and let ¢ : Us(n+1)(x) — Ut("H)(y) be the associated similitude.
Choose w € A; ;. Then ¢ gives a natural correspondence between the Dirichlet
forms (rwé’vsm)(z)) on L2(V(n)(x) tsz) and (Tw(w)th(")(y)) on Lz(‘/;(")(y),ut,y).
Therefore, E>*" = EWY YW and B> = — Fre), Hence Lemmas 3.5.15 com-
bined with 3.5.16 suffices for (E). O

LEMMA 3.5.18. Assume (b). Then (DLHK) and (UHK) holds with 8 > 1. In
particular, (b) implies (d).

PrOOF. Note that we have (a) as well due to Theorem 2.3.17. Since d is
adapted to S, Ui () € Br(z,d) C UC(,"T) (x). Hence by Lemmas 3.5.13 and 3.5.17,
cs?r? < Ey(hp,(s,a)c) < c6’*r2. Let D(-,-) = d(-,-)*.Recall that 8 = 2/a. Then,
we have the exit time estimate with respect to the distance D:

(3.5.4) ar® < E.(hB,(z,p)c) < asr”.
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Since p is gentle with respect to S, and 8, is locally finite, there exists v > 0 such
that

(3:55) V(UM (@) < p(Kw) < p(UM ()
for any (s,z) € (0,1] x K and any w € A, .. Recall that Ag(u) = {wjw € Ag, Ky N
supp(u) # 0} for u € F. By (3.5.5),

v min pUM@) < min p(K,) < min (U (@),

x€supp(u) wEA,(u) cesupp(u)  °
Combining this with (3.1.2), we obtain the local Nash inequality:
a
2 infyesupp(u) #(Br (2, D))

for any u € F and any r € (0, 1], where a and b are independent of w.
Now using [30, Theorem 2.9 and Theorem 2.13], we see that § > 1 and obtain
(DLHK) and (UHK). (]

E(u,u) +

b
lullt = 5 llull3

By the above lemmas, we see that (a), (b), (¢) and (d) are all equivalent.
Now the remaining part of a proof is to show (LHK) under given assumptions.

LEMMA 3.5.19. Assume (a). For any ¢ > 0, there exists v > 0 such that
Rz, y)u( (n) (z)) <es® foranyz € K, any y € U§’;) (x) and any s € (0,1].

PRrOOF. Write V(s,z) = p(U™ (2)). By (a), S, is locally finite and y is gentle
with respect to 8. Let (s,z) € (0,1] x K and let w € As 5. Then V (s, z) < cu(Ky)
and s2 > cr,u(Ky), where c is independent of (s, z,w). Hence,

R@)V(s.2) _ ,R(xy)

2 - Tw :

(3.5.6)

s
Now since 8, is elliptic, for any m > 1, we can choose v € (0,1) so that |v] > m
if w € Ay and w'v € Ay5. For any y € U,(/;) (z), there exists {w(i)v(i)}iy € AL,
such that w(0) = w,w(k) € A7, and Ky,g—1)v(k—1) N K@) 7 0 for any k =
1,...,n. Since 1 < ar, for any w’ € Us(n) (z), where a is independent of s,z and
w, (3.5.2) shows that

R(xa y) < R. Z Tw(k)Tv(k) < a(n + 1)MT‘w(T‘*)m7
k=0
where M = sup,, ,c R(p,q) and r, = max;es ;. Choosing a sufficiently large m,
we verify the statement of the lemma from (3.5.6). O

LEMMA 3.5.20. Assume (a). In the recurrent case, (LHK) holds for any geo-
desic pair for d*.

PROOF. Let pt®(y) = p(t, z,y) for any ¢, x,y. Then p** belongs to the domain
of the self-adjoint operator associated with the Dirichlet from (€, F) on L?(K, ).
By the definition (RF4),

(3.5.7) |p(t,x,y) — p(t,z,2)|* < EP"*, p"")R(x,y)

< P ey < HEDIRED),
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(This inequality has been obtained in [14, Lemma 6.4] and [21, Lemma 5.2].)
Combining (3.5.7) with (DLHK) and (c), we obtain

p(t,z,y) > p(t,z,x) <1 — M)

tp(t, x, )

c oy Ry ()
= (B () (l \/ / )

By Lemma 3.5.19, there exists v > 0 such that R(x,y)u(U\(/nz) (z))/t < (/2)? for

n)

any y € Ui\/{(x). Since d is adapted to 8.,

c/l
p(t,z,y) = —————
w(B sz, d))
for any y € By ;(z,d). Let D = s*. Rewriting this in terms of D, we have

/11

(3.5.8) Pbay) = DY

for any y € Bsa/s(x, D). This is so called the near diagonal lower estimate. Note
that we also have the exit time estimate (3.5.4) and the volume doubling property.
By the argument of the proof of [30, Theorem 2.13], we obtain (LHK) for geodesic
pairs. U

REMARK. In [30, Theorem 2.13], it is assumed that the distance is a geodesic
distance. However, the discussion of the proof of [30, Theorem 2.13] can get through
if there exists a geodesic between given two points. The constants are determined
by those appeared in the near diagonal estimate and the volume doubling property,
and hence they do not depends on the points.






Appendix

A. Existence and continuity of a heat kernel

Let (X, d) be a locally compact metric space and let x4 be a Radon measure on
(X,d). Let (£,F) be a regular Dirichlet form on L?*(X, ). We use H to denote
the non-negative self-adjoint operator from L?(X, p) to itself. Also let {T}}~0 be
the strongly continuous semigroup associated with H, i.e.T; = e tH

DEFINITION A.1. The semigroup {7}}+>0 is said to be ultracontractive if and
only if Ty can be extended to a bounded operator from L2(X, u) to L>(X, u) for
any ¢t > 0.

Note that T} is self-adjoint. Using the duality, T can be extended to a bounded
operator from L!(X, ) to L= (X, ) as well if {T}};~0 is ultracontractive.
One of the conditions implying the ultracontractivity is the Nash inequality.

NOTATION. ||-||p is the LP-norm of LP(X, ) Also.||A||p,—q is the operator norm
of a bounded linear operator A : LP(X, u) — L1U(X, u).

THEOREM A.2. For a > 0, the following conditions (1), (2) and (3) are equiv-
alent.
(1) There exist positive constants ¢1 and casuch that

(A1) (E(uyu) + erlJul2)ul |/ > calfull5 ™

for anyu € FNLY(X,d)NF.

(2) Ty can be extended to a bounded operator from L*(X, u) to L>°(X, ) and there
exist ¢ > 0 such that ||Ty||1—oo < ct=%/? for any t € (0,1].

(3) {Ti}i>o is ultracontractive and there exists ¢ > 0 such that ||Ti||a—oo < ct™/%
for any t € (0,1].

(A.1) is called the Nash inequality which was introduced in [36]. See [10, 11,
28] for the proof of Theorem A.2.

If p(X) < +o0, then it is known that the ultracontractivity implies the existence
of the heat kernel. The next theorem follows from the results in [11, Section 2.1].

THEOREM A.3. Assume that (1(X) < +o0o and that {T;}i>0 is ultracontractive.
Then there exists p: (0,00) x X x X — [0,+00) such that p € L>(X? u x u) and

(Tyu)(x) = /X p(t, 2, y)u(y)ldy)

foranyt >0,z € X andu € L*(X,u). p(t,x,y) is called the heat kernel associated
with the Dirichlet form (€, F) on L*(X,u). Moreover, H has compact resolvent,
i.e. (H+ I)7' is a compact operator. Let (¢r)r>1 be a complete orthonormal
system of L?(X, ) consisting of the eigenvalues of H. Assume that Hop = A\
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and 0 < A < Xgy1 for any k > 1 and A, — o0 as k — oco. Then ¢ € L=(X, 1)
for any k and

(A.2) pltw,y) =D e o (@)en(v),

where the infinite sum is uniformly convergent on [T, +00)x X x X for anyT > 0. In
particular, if o, € C(X,d), then p(t, z,y) is jointly continuous, i.e. p: (0,1]x X xX
18 continuous.

The next theorem gives a sufficient condition for the heat kernel being positive.

THEOREM A.4. Assume that 1(X) < 400, that {T;}i~0 is ultracontractive and
that (X, d) is arcwise connected. If the heat kernel is jointly continuous and (€, F)
is conservative, then p(t,x,y) > 0 for any (t,z,y) € (0,400) x X x X.

PROOF. Since £(1,1) = 0, 1 is an eigenfunction of H. Hence by (A.2),
p(t,xz,x) >0 for any z € X. Fix z,y € X. Note that if ¢ > s, then

(A3) p(t, z,1) = /X p(s, 2, 2)p(t — 5, 2, y)u(dy).

Assume that p(s,z,y) > 0. Since p(s,z,y)p(t — s,y,y) > 0, (A.3) implies that
p(t,z,y) > 0. Hence there exists t, € [0,400] such that p(¢,z,y) = 0 for any t €
(0,t,] and p(t,z,y) > 0 for any ¢ € (¢, +00). Next we show that ¢, < +oo. Since
(X, d) is arcwise connected, there exists v : [0,1] — X such that + is continuous,
~v(0) = z and (1) = y. For any s € [0, 1], we have an open neighborhood Oy of
~(s) that satisfies, p(1, z,w) > 0 for any z,w € O,. Since ([0, 1]) is compact, there
exits {s;}, such that 0 =59 < $1 < ... < Syp—1 < 8y, = 1 and x; € Oy,,, for any
1=0,1,...,m— 1, where z; = v(s;). By (A.3),

i+1

p(m, z,y) = /X /X (L2, y)p(L g1, 92). (L Y1y ) pa(dys) - - idma1)-

Since p(1,x;,x;y1) > 0 for any ¢ = 0,1,...,m — 1, it follows that p(m,z,y) > 0.
Therefore, t,. < m. Now let Hp = {z|z € C,Re(z) > 0}. Then the infinite sum

Z e M0 () n (y)

is uniformly convergent on Hp. Hence p(z,z,y) is extended to a holomorphic
function on Hg. If ¢, > 0, then p(t,z,y) = 0 for any ¢ € (0,¢«]. This implies that
p(z,z,y) = 0 for any z € Hg. This obviously contradicts the fact that t. < +oo.
Hence t, = 0. O

DEFINITION A.5. Let X be a set. A pair (£,F) is called a resistance form on
X if it satisfies the following conditions (RF1) through (RF5).
(RF1) F is a linear subspace of £(X) containing constants and £ is a non-negative
symmetric quadratic form on F. &(u,u) = 0 if and only if w is constant on X.
(RF2) Let ~ be an equivalent relation on F defined by u ~ v if and only if u — v
is constant on X. Then (F/~, &) is a Hilbert space.
(RF3) For any finite subset V' C X and for any v € £(V), there exists u € F such
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that u|y = v.
(RF4) For any p,q € X,

. lu(p) — u(q)|?
bp{ € (u, u)

is finite. The above supremum is denoted by R(p, q).
(RF5) If u € F, then 4 € F and &(u,u) < E(u,u), where

u€ F,E(u,u) >0}

1 if u(z) > 1,
w(z) = qu(z) if0<u(z)<l,
0 if u(z) < 0.

R(p, q) in the above definition is called the effective resistance between p and
g. It is known that R(:,-) is a distance on X. We call R(-,-) the resistance metric
associated with the resistance form (£,F). See [28] and [29] for more details on
resistance forms.

THEOREM A.6. Assume that 1(X) < 400, that {T;}i~0 is ultracontractive and
that there exist o € (0,2) and ¢ > 0 such that

(A.4) ITel 100 < et ™2
for any t € (0,1]. Then, we may choose M > 0 so that
(A5) £ (u,u) > M]Jul|2,

for any u € F, where E(u,u) = E(u,u) + ||ul|3. In particular, F C C(X,d) and
the heat kernel p(t,x,y) associated with the Dirichlet form (€,F) on L*(X,p) is
jointly continuous. Moreover if (€,F) is conservative and there exists ¢’ > 0 such
that

(A.6) E(uyu) > /X(u —a)%du

for any u € F, where u = (X))~ [ udp, then (€, F) is a resistance form on X.
Also if R is the resistance metric associated with (€, F), then (X, R) is bounded.

PROOF. Define G,u = [;° e 'Tyudu. By (A4), [ e t||Ty[1—o0dt < +o0.
Hence G, : L*(X,u) — L%(X,u) is a bounded operator. Since G.pr = (A, +
1)~Ygy for any k > 1, we have Gy |p2(x ) = (H +1)~!. Note that &, (G.u, Gyu) =
(u, Gyu) for any u € L?(X, uu). Hence,

1Gull? < Mull1[|Grulloe < MlJull3,

where ||[v||. = v/E«(v,v) and M = ||Gi|l1—c0- Now Ei(u,Gyv) = (u,v) for any
u € F and any v € L*(X, ). Therefore

(v, w)] < |E(u, Gav)| < M[ull]|Guull < VM||ull|[v]]s-

Since L?(X, p) is dense in L'(X, i), we have u € L>(X, i) and (A.5).Since (£, F)
is regular, there exist a core C' C F N Cy(X,d) such that C is dense in Cy(X,d)
with respect to || - |[|oo and in F with respect to || - ||«. By (A.5), it follows that
F C C(X,d). Now that ¢ € C(X,d), Theorem A.3 shows the continuity of the
heat kernel.
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Next we will verify the conditions (RF1) - (RF5) to show that (£,F) is a
resistance form of X. (RF1) is immediate from the fact that 1 € F, £(1,1) = 0
and (A.6). By (A.6) and (A.5),

(A7) L+ NE(uu) 2 Eu—a,u—a)+ |lu—alf3 = [lu—alf = M|lu—al|
If 7 = {uju € F,u = 0}, then (A.7) says that £ and &, are equivalent on F,.
Since (F, &,) is complete, (Fy, E) is complete. This implies (RF2). Again by (A.7),
there exists ¢; > 0 such that
c1&(u,u) > e||u — al|%,
for any u € F. Therefore, for any p,q € X and any v € F,
u(p) —u(@)* < (Ju(p) —al + u(q) — al)?* < 2¢1€ (u, u).

Hence

|u(p) — u(a)?
A. —_—
- o {

for any p,q € X. So we have (RF4). (RF3) holds because F is dense in Cy(X,d).
(RF5) is immediate from the Markov property of (£,F). Thus we obtain the
conditions (RF1) through (RF5). Finally by (A.8), sup, ,cx R(p,q) < 2c1. O

E(u,u) > O} < 2¢

B. Recurrent case and resistance form

Let (K, S, {F;}ics) be a self-similar structure and let d be a metric on K which
gives the natural topology of K associated with the self-similar structure. We
will consider a resistance from (£, F) on K which satisfies the following conditions
(RFA1), (RFA2) and (RFA3):

(RFA1) wuoF; € F for any i € S. Moreover there exists (;)ics € (0,1)” such that

1
£ = — ; ;
(u,v) Z T‘ig(UOF“UOE)
€S
for any u,v € F.
(RFA2) Let R be the resistance metric on K associated with (£, F). Then (K, R)

is bounded.
(RFA3) F C C(K,d) and F is dense in C(K,d).

ProrosiTION B.1. Under the above situation, R gives the same topology as the
one given by d.

PROOF. Using the same arguments as in [28, Lemma 3.3.5], we have

(B.1) rwR(p,q) > R(Fy(p), Fu(q))

for any w € W, and any p,q € K.

Let R(xy,z) — 0 as n — oo. Since (K, d) is compact, there exists ., € K such
that d(z,,,z.) — 0 as i — oo for some {n;};. Since f € C(K,d) NC(K, R) for any
f € F, we see that f(z) = limjeco f(xn,) = f(x.). Hence x = x, because (£, F) is
a resistance form. This implies that d(z,,z) — 0 as n — oc.

Conversely, assume lim,,_,oc d(z,,z) = 0. Define K,,,(z) = Upew,, zck., Kuw-
Then for any m > 0, z, € K,,(x) for sufficiently large n. Hence (B.1) along with
(RFA2) implies that R(z,,7) < 7w (sup, ,ex R(p,q)) if w € Wy, and z € K,y.
Therefore R(zp,x) — 0 as n — oo. O
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LEMMA B.2. Assume (RFAL), (RFA2) and (RFA3). There exists ¢ > 0 such
that

(B.2) Slu) 2 e [ (u (@, dn
K
for any uw € F and any elliptic probability measure 1 on K, where (4), = fX udys.
Proor. (RFA2) implies that M = sup,, ,cx R(p, q) is finite. Then,
ME(u,u) = R(p, q)€ (u, u) > |u(p) — u(q)|?

for any v € F and any p,q € K. Integrating this with respect to p and ¢, we
immediately obtain (B.2). O

THEOREM B.3. Let u be an admissible measure on (K,d). The following two
conditions (RE1) and (RE2) are equivalent.
(REL) u is elliptic. (E,F) is a resistance form on K which satisfies (RFA1),
(RFA2) and (RFA3).
(RE2) (&,F) is a local regular Dirichlet form on L*(K,u). 1 € F and £(1,1) = 0.
(€, F, p) satisfies (SSF) and (PI) and is recurrent.

Moreover if (RE1) or (RE2) holds, then (CHK) and (UPH) are satisfied.

PrOOF. Note that both (RE1) and (RE2) implies 0 < r; < 1 for any i € S..
Therefore, if p is elliptic, than §, is elliptic as well.

First we assume (RE1). By [28, Theorem 2.4.2], (€, F) is a regular Dirichlet
from on L?(K, u). To show the local property, suppose that u,v € F and supp(u)N
supp(v) = 0. Then we may choose m so that K,, N supp(u) Nsupp(v) = @ for any
w € Wy,. Then by (RFA1), E(u,v) = Y e, (rw) " E(uo Fy,voF,) = 0. Hence
(€, F) has the local property. (SSF) is immediate form (RFA1). (PI) follows from
Lemma B.2.

Conversely, assume (RE2). Then by Theorem 3.1.4, we have all the properties
required in Theorem A.6. Therefore, we have (RE1).

Finally if (RE2) holds, then by Theorem 3.1.8, we have (CHK) and (UPH). O

C. Heat kernel estimate to the volume doubling property

In this section, (X, d) is a locally compact metric space where every bounded set
is precompact, p is a Radon measure on (X, d) and (€, F) is a local regular Dirichlet
form on L?(X,p). Let H be the non-negative self-adjoint operator on L2(X, )
associated with (€, F) and let {T;}+~0 be the strongly continuous semigroup on
L?(X, i) associated with H.Also let ({X;}=0,{P:}zex) be the diffusion process
associated with (€, F). We assume that {7} };~¢ is ultracontractive.

Let U be a nonempty open subset of X and let uy be the restriction of u on
U. Define Dy = {u|lu € F N C(X),u|x\yv = 0}. Let Fy be the closure of Dy with
respect to the inner product & (u,v) = E(u,v) + [y uvdp and let &y = E| 7, x 7 -
By [15, Theorem 4.3], (y,Fy) is a local regular Dirichlet form on L2(U, ug).
Moreover, if ({ X[ }i>0, {PY }zcv) is the diffusion process associated with (€, Fr)
and 7y = inf{¢|X; ¢ U}, then

(C.1) PUXV € A) = P(X; € A1y > t}.

PROPOSITION C.1. Let {TV};~0 be the strongly continuous semigroup associ-
ated with (€, F). Then {TV }i=0 is ultracontractive.
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PrOOF. By (C.1),if u > 0, then
(C.2) (T u)(2) < (Tyu)(x)
for p-a.e. x € X. This immediately shows the desired statement. O

DEFINITION C.2. Let U be a nonempty open subset of X .Define A, (U) be

&
AU = i Y
ueFuut0  ||ull3
By the variational formula, A\.(U) is the bottom of the spectrum of —Ay,
where —Ay is the non-negative self-adjoint operator on L?(U, uyr) associated with

(Eu, Fu).
THEOREM C.3. Assume that the heat kernel p(t,x,y) associated with (€,F) is
jointly continuous. Suppose that the following two conditions (RFK) and (DUHK)

are satisfied for some 3 > 0:
(RFK) There exist r« > 0 and ¢; > 0 such that

Me(Br(z)) < err P

for any r € (0,7,] and any z € X.

(DUHK) There exist positive constants t.,co and cs such that
(t,z,z) < 2

PSS = (B s (@)

for any t € (0,t.] and any z € X.

Then for any r € (0, min{c3(t.)'/?/3,7.}],

(Bar (7)) < cp(Br(2)),
where ¢ > 0 is a constant which is independent of x and r.

PROOF. Let r € (0, min{cs(t.)'/?/3,r.}]. For any y € B,(x), (DUHK) implies
that

(C.3) pler’ y) < = =

< 3
Bar(y)) — w(Bar(z))
where ¢, = (3/c3)?. Note that u(B,(z)) < +oo. Hence by Theorem A.3, there

exists a heat kernel pp, (,)(t,¥, 2) associated with (g (), FB, (2))-Using (C.2), we
see that

PB,.(z) (tv Y, Z) < p(ta Y, Z)
for u x p-a.e. (y,2) € X2 Therefore,

e—)\*(Br(z))t S Ze_Ait — L . pBr(z) (t/27y,z)2ﬂ(dy)ﬂ(dz)
i>1 iz

</ (P22 i) = [ et

B, (x)
where {\;};>1 be the eigenvalues of —Ay. This and (C.3) along with (RFK) show
that
e C1Cx < 67)\*(370(93))0)&/i < Ca M(Br(x)) )
- — T p(Bar(x)
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ASSUMPTIONS, CONDITIONS AND PROPERTIES IN PARENTHESES

Assumptions, Conditions and Properties in Parentheses

A)p, 17 (S1), 10
AS1), 28 (S2), 10
AS2), 28 (SC1), 36
AS3), 28 (SC2), 36
CHK), 61 (SSF), 59
D1), 45 (SSF1), 59
D2), 45 (SSF2), 59
DLHK), 64 (UHK), 64
DUHK), 63, 88 (UPH), 61
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List of Notations

AX@(U)), 28
Cw, 10
Ds, 44
GSC(n,1,s), 70
hy, 61
K(T), 16
K[X], 23
K™(T, A), 16
Ks(z), 16
K,[X], 23
L, 10
MA7T7a7 66
nA(S), 59
NX@(’U}), 29
Ozo,w(w), 25
pu(t,z,y), 62, 74
Qm, 24
R(w,v,R), 48
rfy, 70
Ry, 10
Sk,s; 70
Us(x), 16
M(z), 16
Vo, 13
W(,A), 16
WI(T, A), 16
wh 2(K), 7
W.(9), 9
W (S), 9
W#(S)7 9
#()7 13
&y, 62, 74
Fu, 62,74
V), 9
A, 47
CH, 43
CHum(z,y), 66
CH(x,y), 43
Cr, 13
£8(%), 22
IP(,C)
IP(L, )
IP(L,S R)
77(
77(
77(

)

P(L,
£),4
L,
E)

M(K), 14
My (K), 14

Myp(L,8), 22

Pr, 13
R, 33
Ra, 33
Re, 25
S(a), 13

SLr(%, L), 33

6(%2), 13
5 ("), 53
Ay, 62,74
L, 24
Ag(a), 13
As o, 16
Afw, 30
Asm, 16
AT, 16
Dy, 70
Wy, 70
P> 23
Pm,ns 24
3(5), 9
Yu[X], 23
Y[X], 23
iy 9

~, 22
GE’

( )V7 9
~, 50



Index

adapted, 52
n-, 53
arithmetic, 63

chain, 43
conservative, 60
corresponding pair, 25
critical set, 13

diamond fractal, 39

effective resistance, 85
elliptic
measure, 14
scale, 12
empty word, 9

gauge function, 11

induced by measure, 16

of scale, 11

self-similar, 13
generalized Sierpinski carpet, 70
generator

of relations, 26
gentle, 17

among scales, 21
geodesic, 63

distance, 63

pair, 63
Green function, 76

hitting time, 61

independent, 23
intersection pair, 47
intersection type, 47
finite, 47
irreducible, 66

k-neighbors, 70

length of a word, 9
L-isomorphism, 49
locally finite, 17
L-similar, 50
L-similitude, 50

modified Sierpinski gasket, 68

INDEX

n-adapted, 53
Nash inequality, 83
near diagonal lower estimate, 81

partition, 9
Poincaré inequality, 60
post critical set, 13
post critically finite, 34
pseudodistance, 43
associated with a scale, 44

qdistance, 51
quasidistance, 51

rationally ramified, 26
recurrent, 59

harmonic structure, 65
recursive system, 66
refinement, 10
relation, 25

generated by, 26
relation matrix, 66
relation set, 26
resistance form, 84
resistance metric, 85
resistance scaling ratio, 59
right continuous scale, 11

scale, 10
elliptic, 12

induced by gauge function, 11

right continuous, 11
self-similar, 13
self-similar
Dirichlet form, 59
gauge function, 13
measure, 15
scale, 13
set, 13
self-similar structure, 13
strongly finite, 13
shift
map, 9
space, 9
Sierpinski carpet
generalized, 70
Sierpinski cross, 37
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Sierpinski gasket, 26
sub-relation, 26

ultracontractive, 83
uniform positivity of hitting time, 61

volume doubling property
with respect to scale, 17

weakly symmetric, 6
word

empty, 9

length of, 9
word space, 9





