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Abstract

This paper studies the following three problems.
1. When does a measure on a self-similar set have the volume doubling property
with respect to a given distance?
2. Is there any distance on a self-similar set under which the contraction mappings
have the prescribed values of contractions ratios?
3. When does a heat kernel on a self-similar set associated with a self-similar Dirich-
let form satisfy the Li-Yau type sub-Gaussian diagonal estimate?
Those three problems turns out to be closely related. We introduce a new class
of self-similar set, called rationally ramified self-similar sets containing both the
Sierpinski gasket and the (higher dimensional) Sierpinski carpet and give complete
solutions of the above three problems for this class. In particular, the volume dou-
bling property is shown to be equivalent to the upper Li-Yau type sub-Gaussian
diagonal estimate of a heat kernel.
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Prologue

0.1. Introduction

This paper has originated from two naive questions about a self-similar set K.
The first one is when a (self-similar) measure µ on K has the volume doubling
property ((VD) for short) with respect to a given distance d. Let Br(x, d) =
{y|d(x, y) < r} and let V (x, r) be the volume of the ball Br(x, d), i.e. V (x, r) =
µ(Br(x, d)). We say that µ has (VD) if and only if

V (x, 2r) ≤ cV (x, r)

for any x and r, where c is independent of x and r. The simplest situation is
when V (x, r) = crn for any r and any x as we can observe in the case of the
Lebesgue measures on the Euclidean spaces. Note that in such a case, V (x, r) is
homogeneous in space. The next best situation is to have (VD). Under it, we may
allow inhomogeneity in space and, at the same time, still have good control of the
volume by the distance. (VD) plays an important role in many area of analysis
and geometry, for example, harmonic analysis, geometric measure theory, global
analysis and so on.

The second question is when a heat kernel p(t, x, y) on a self-similar set satisfies
the following type of on-diagonal estimate

(0.1.1)
c1

V (x, t1/β)
≤ p(t, x, x) ≤ c2

V (x, t1/β)
,

for t ∈ (0, 1]. The estimate (0.1.1) immediately implies

lim
t→0
− log p(t, x, x)

log t
= lim

r→0

1

β

logµ(Br(x, d))

log r
.

This relates the asymptotic behavior of the heat kernel to the multifractal analysis
on the measure. (See Falconer [12, 13] about multifractal analysis.) Such a relation
has been observed in [20] for post critically finite sets and in [8] for Sierpinski
carpets.

Since Barlow and Perkins [9], there have been extensive results on heat kernels
on self-similar sets. Mainly those works have focused on sub-Gaussian estimate

(0.1.2) p(t, x, y) ≈ c1t−ds/2 exp

(
− c2

(d(x, y)β
t

)1/(β−1)
)
,

where ds is a positive constant called the spectral dimension, d(·, ·) is a distance
and β is a constant with β ≥ 2. This type of estimate has been first established for
the “Brownian motion” on the Sierpinski gasket in [9]. Then it has been proven
for nested fractals in [33], affine nested fractals in [14] and the Sierpinski carpets
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2 PROLOGUE

in [7]. Note that (0.1.2) gives a homogeneous on-diagonal estimate

(0.1.3) c1t
−ds/2 ≤ p(t, x, x) ≤ c2t−ds/2

The homogeneous estimate (0.1.3) is known to require exact match between
the measure µ and the form (E ,F). To be more precise, let K be the self-similar
set associated with a family of contractions {Fi}i=1,...,N , i.e., K = ∪Ni=1Fi(K). We
consider heat kernels associated with a self-similar Dirichlet form (E ,F), where E
is the form and F is the domain of the form, under a self-similar measure µ with
weight {µi}i∈S , where S = {1, . . . , N}. (E ,F) is said to have self-similarity if

E(u, v) =
N∑

i=1

1

ri
E(u◦Fi, v◦Fi)

for any u, v ∈ F , where (r1, . . . , rN ) is a positive vector called resistance scaling
ratio. Also a probability measure on K is called a self-similar measure on K with
weight {µi}i∈S if

µ(A) =

N∑

i=1

µiµ(F−1
i (A))

for any measurable set A. By the results in [20, 28, 8], the homogeneous on-
diagonal estimate (0.1.3) holds if the ratio between log ri and logµi is independent
of i. Otherwise, we may only expect inhomogeneous estimate (0.1.1) at the best.

The first and the second questions may look completely independent at a glance.
They are, however, closely related. One of the main result in this paper is that the
volume doubling property is equivalent to the upper inhomogeneous on-diagonal
heat kernel estimate

(0.1.4) p(t, x, x) ≤ c

V (x, t1/β)
.

for t ∈ (0, 1]. Moreover, it turns out that the upper estimate (0.1.4) implies the up-
per and lower estimate (0.1.1). As a consequence, the first and the second questions
are virtually the same. In fact, it has been known that (VD) combined with other
properties is equivalent to the following Li-Yau type estimate of a heat kernel,

(0.1.5) p(t, x, y) ≈ c1
V (x, t1/β)

exp

(
− c2

(d(x, y)β
t

)1/(β−1)
)
.

For example, in the case of Riemannian manifolds, Grigor’yan [16] and Saloff-
Coste [38] have shown that (0.1.5) is equivalent to (VD) and the Poincaré inequality.
See [19, 17] for other settings. In our case, the self-similarity of the space and the
form allow (VD) itself to be equivalent to the heat kernel estimate (0.1.4).

At this point, a careful reader might notice that something is missing. Indeed,
we have not mentioned what kind of distance we use in (0.1.1). In the course of
our study, the natural distance for a heat kernel estimate like (0.1.1) should be a
distance under which the system of contractions {Fi}i∈S has an asymptotic con-
traction ratio {(riµi)α/2}i∈S for some α, i.e. d(Fw1...wm(x), Fw1...wm(y)) is asymp-
totically (γw1 · · ·γwm)αd(x, y), where γi =

√
riµi and Fw1...wm = Fw1 ◦ . . . ◦Fwm for

w1, . . . , wm ∈ S. Does such a distance really exist or not? Generalizing this, we
have the third question. For a given ratio a = (ai)i∈S , is there any distance under
which {Fi}i∈S has the asymptotic contraction ratio a? A similar problem has been
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studied in [25] for post critically finite self-similar sets. We will consider broader
class of self-similar set with a different approach.

The key idea to study the third question is the notion of a scale, which essen-
tially gives the size of Kw1...wm = Fw1...wm(K). For a given ratio a = (a1, . . . , aN ),
we think of aw1...wm = aw1 · · ·awm as the size of Kw1...wm . (Note that we do not
suppose the existence of any distance at this point. If there were a distance which
satisfies d(Fi(x), Fi(y)) = aid(x, y), then the size of Kw1...wm had to be aw1...wm .)
Starting from the scale (i.e. the size of Kw1...wm), we will construct a system of
fundamental neighborhoods {Us(x)}s∈(0,1], which is the counterpart of balls with
radius s and center x under a distance. See Section 1.3 for details. Now the problem
is the existence of a distance whose balls match the virtual balls {Us(x)}, or to be
more exact, there is a distance d which satisfies

(0.1.6) Bc1s(x, d) ⊆ Us(x) ⊆ Bc2s(x, d)

for any s and any x or not, where c1 and c2 are independent of s and x. We say
that a distance d is adapted to a scale if (0.1.6) holds.

As a whole, we will study three problems in this paper. Introduced in accor-
dance with the appearance in this paper, they are
(P1) When does a (self-similar) measure have the volume doubling property with
respect to a scale? The volume doubling property with respect to a scale means
that

µ(U2s(x)) ≤ cµ(Us(x))

for any s ∈ (0, 1/2] and any x ∈ K.
(P2) Is there a good distance which is adapted to a given scale?
(P3) When does (0.1.1) hold for the heat kernel associated with a self-similar
Dirichlet form and a (self-similar) measure?

(P1), (P2) and (P3) will be studied in Chapter 1, 2 and 3 respectively. Also
those three questions are shown to be closely related in the course of discussion. In
Chapter 1, we are going to introduce three properties, namely, an elliptic measure
(EL), a locally finite scale (LF) and a gentle measure (GE). In short, (VD) turns out
to be equivalent to the combination of (EL), (LF) and (GE). See Theorem 1.3.5. In
the following sections, we will try to get simpler and effective description of (EL),
(LF) and (GE) respectively for a restricted class of self-similar sets called rationally
ramified self-similar sets. This class includes post critically finite self-similar sets,
the cubes in Rn and the (higher dimensional) Sierpinski carpets. Also, for this class,
we will give a complete answer to (P2) in Corollary 2.2.8, saying that, for a given
ratio a = (a1, . . . , aN ), the scale associated with a satisfies (LF) if and only if there
exists a distance which matches to the scale associated with the ratio ((ai)

α)i∈S
for some α > 0. Based on those results, close relation between (P1), (P2) and (P3)
will be revealed in Chapter 3. In particular, in Theorem 3.2.3, the following three
conditions (a), (c) and (d) will be shown to be equivalent for rationally ramified
self-similar sets:
(a) µ is (VD) with respect to the scale associated with the ratio (γi)i∈S .

(c) p(t, x, x) ≤ c

µ(U√
t(x))

for t ∈ (0, 1].

(d) There exist α > 0 and a distance d which is adapted to the scale associated
with the ratio ((γi)

α)i∈S such that (0.1.4) holds, where β = 2/α.
Moreover, if any of the above condition is satisfied, then we have full diagonal
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estimate (0.1.1) and the upper Li-Yau type estimate

(0.1.7) p(t, x, y) ≤ c1
V (x, t1/β)

exp

(
− c2

(d(x, y)β
t

)1/(β−1)
)
.

for t ∈ (0, 1]. Combining this results with the conclusion on (P2), we can easily
determine self-similar measures for which (0.1.4) holds.

The organization of this paper is as follows. In Section 1.1, we introduce the no-
tion of scales and establish several fundamental facts on this notion. In Section 1.2,
we study self-similar structures and self-similar measures under the assumption that
K 6= V0. This section gives bases of the discussions in the following sections. Sec-
tion 1.3 is devoted to showing the equivalence between (VD) and the combination
of (EL), (LF) and (GE) as we mentioned above. In Section 1.4, the properties (LF)
and (GE) are closely examined. In particular, it is shown that (GE) is a equiva-
lence relation among elliptic scales and (LF) is inherited by the equivalence relation
(GE). The notion of rationally ramified self-similar set is introduced in Section 1.5.
For this class of self-similar sets, we will find an effective and simple criteria for
(LF) and (GE) in Section 1.6. We apply them to examples including post critically
self-similar sets and the Sierpinski gasket in Section 1.7. The search of a distance
which matches a scale starts at Section 2.1, where we define a pseudodistance as-
sociated with a scale. In Section 2.2, the notion of intersection type is introduced
to give an answer to the existence problem of a distance adapted to a scale. Using
the notion of qdistance, we will simplify the results in the previous two sections
in Section 2.3. We will finally encounter with heat kernels in Section 3.1, which is
completely devoted to setting up a reasonable framework of self-similar Dirichlet
forms and the heat kernel associated with them. In Section 3.2, we establish a
theorem to answer (P3), which will be the most important result in this paper. In
Sections 3.3 and 3.4, we apply our main theorem to the post critically finite self-
similar set and the Sierpinski carpets respectively. We need the entire Section 3.5
to complete the main theorem. In Appendixes, we mainly discuss relations between
the properties of the heat kernel associated with a local regular Dirichlet from on
a general measure-metric space.

0.2. the Unit square

Let us illustrate our main results by applying them to the unit square [0, 1]2,
which is naturally self-similar. We denote the square by K and think of it as a
subset of C. Namely, K = {x + y

√
−1|x, y ∈ [0, 1]}. The unit square can be

regarded as a self-similar set in many ways. First, let f1(z) = z/2, f2(z) = z/2+1/2,
f3(z) = z/2+ (1 +

√
−1)/2 and f4(z) = z/2+

√
−1/2. Then K = f1(K)∪ f2(K)∪

f3(K)∪ f4(K). According to the terminology in [28], K is the self-similar set with
respect to {f1, f2, f3, f4}. K is not post critically finite but, so called, infinitely
ramified self-similar set. Roughly speaking if any of fi(K) ∩ fj(K) is not a finite
set, then K is called infinitely ramified self-similar set. In this case, K1 ∩K2 is a
line, where Ki = fi(K).

Now let us explain the notion of “rationally ramified” self-similar sets by the
unit square, which is the simplest (non trivial) rationally ramified self-similar set.
There exists a natural map π from {1, 2, 3, 4}N→ K which is defined by π(i1i2 . . .) =
∩m≥1fi1...im(K). This map π determines the structure of K as a self-similar set.
Note that the four line segments in the boundary of K is also self-similar sets. To
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1 2

1 2

4 3

1 2

34

4 3

←→

←→

f1(M23) = f2(M14)

M14 M23

φ(1) = 2

φ(4) = 3

π(2i1i2 . . .) = π(1φ(i1)φ(i2) . . .)

∈ f2(M14) = f1(M23) = K1 ∩K2

where i1, i2, . . . ∈ {1, 4}N

Figure 0.1. the square as a self-similar set

see this, set M14 = {
√
−1t|t ∈ [0, 1]} and M23 = {1 +

√
−1t|t ∈ [0, 1]} for example.

Then M14 = f1(M14)∪f4(M14) and M23 = f2(M23)∪f3(M23) and hence Mij is the
self-similar set with respect to {fi, fj}. In other words, Mij = π({i, j}N). Those
two self-similar sets M14 and M23 meet each other at K1 ∩K2 under the action of
f1 and f2. More precisely, let x ∈ K1 ∩ K2. Then there exists i1i2 . . . ∈ {1, 4}N
such that x = π(2i1i2 . . .) = π(1φ(i1)φ(i2) . . .), where φ : {1, 4} → {2, 3} is defined
by φ(1) = 2, φ(4) = 3. See Figure 0.1.

Note that other intersectionsKi∩Kj have similar descriptions. This is a typical
example of rationally ramified self-similar set defined in 1.5, where an intersection
of fi(K) ∩ fj(K) itself is a self-similar set and two different expressions (started
from i and j respectively) by infinite sequences of symbols can be translated by a
simple rewriting rules.

Next, applying the results in Chapter 1, we present the answer to the problem
(P1) in this case. In particular, we can determine the class of self-similar measures
which have the volume doubling property with respect to the Euclidean distance.

Theorem 0.2.1. A self-similar measure with weight (µ1, µ2, µ3, µ4) has the
volume doubling property with respect to the Euclidean distance if and only if µ1 =
µ2 = µ3 = µ4 = 1/4.

If µi = 1/4 for all i, then µ is the restriction of the Lebesgue measure on K.
So, the situation is very rigid and not quite interesting. In general, however, we
can find richer structure of the volume doubling (self-similar) measures (even in the
case of unit square). To see this, we are going to change the self-similar structure
of the unit square.

From now on, K is regarded as a self-similar set with respect to nine contrac-
tions {Fi}i=1,...,9 in stead of four contractions {fi}i=1,...,4 as above. Set p1 = 0, p2 =

1/2, p3 = 1, p4 = 1+
√
−1/2, p5 = 1+

√
−1, p6 = 1/2+

√
−1, p7 =

√
−1, p8 =

√
−1/2
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a b a

c d c

a b a

a = a1 = a3 = a5 = a7

b = a2 = a6

c = a4 = a8

d = a9

Figure 0.2. Weakly symmetric ratio

and p9 = 1/2 +
√
−1/2. Define Fi(z) = (z − pi)/3 + pi for i = 1, . . . , 9. Then the

square K is the self-similar set with respect to {Fi}i∈S , where S = {1, . . . , 9},
i.e. K = ∪i∈SFi(K). In this case, we also have the natural map π from SN =
{w1w2 . . . |wi ∈ S} to K defined by π(w1w2 . . .) = ∩m≥0Fw1...wm(K). Examining
the intersection of F1(K) and F2(K), one may notice that x = π(1w1w2 . . .) =
π(2ϕ(w1)ϕ(w2) . . .) for any x ∈ F1(K) ∩ F2(K), where w1w2 . . . ∈ {3, 4, 5}N and
ϕ : {3, 4, 5} → {1, 8, 7} is given by ϕ(3) = 1, ϕ(4) = 8 and ϕ(5) = 7. Also for
any y ∈ F1(K) ∩ F8(K), we have y = π(8v1v2 . . .) = π(1ψ(v1)ψ(v2) . . .), where
v1v2 . . . ∈ {1, 2, 3}N and ψ : {1, 2, 3} → {7, 6, 5} is given by ψ(1) = 7, ψ(2) = 6 and
ψ(3) = 5. This is again a typical example of a rationally ramified self-similar set.

Under this self-similar structure, self-similar volume doubling measures are
much richer than before. The following condition will play an important role to
solve all the three problems (P1), (P2) and (P3).

Definition 0.2.2. A ratio (ai)i∈S ∈ (0, 1)S is called weakly symmetric if and
only if ai = aϕ(i) for any i ∈ {3, 4, 5} and aj = aψ(j) for any j ∈ {1, 2, 3}.

Note that a ratio (ai)i∈S is weakly symmetric if and only if

a1 = a3 = a5 = a7, a2 = a6 and a4 = a8,

See Figure 0.2. First our results on (P1) in Chapter 1 yields the following char-
acterization of the class of self-similar measures which are volume doubling with
respect to the Euclidean distance.

Theorem 0.2.3. A self-similar measure with weight (µi)i∈S has the volume
doubling property with respect to the Euclidean distance if and only if (µi)i∈S is
weakly symmetric.

As we have explained in the introduction, the main result of this paper is
roughly the equivalence of the three properties: the volume doubling property of a
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measure, the existence of “asymptotically self-similar” distance and the upper and
lower on-diagonal heat kernel estimate (0.1.1). In accordance with this spirit, being
weakly symmetric gives an answer to (P2) as well. More precisely, the results in
Chapter 2 gives the following theorem.

Theorem 0.2.4. Let (ai)i∈S ∈ (0, 1)S. (ai)i∈S is weakly symmetric if and only
if there exists a distance d which is adapted to the scale associated with a ratio
((ai)

α)i∈S for some α > 0.

Naturally, weakly symmetric ratios appear again in our result on the problem
(P3). To consider heat kernels, we regard K as a subset of R2 in the natural
manner. Let ν be the restriction of the Lebesgue measure and let F = W 1,2(K).
W 1,2(K) is the Sobolev space defined by

W 1,2(K) = {f |f ∈ L2(K, ν),
∂f

∂x
,
∂f

∂y
∈ L2(K, ν)},

where ∂f
∂x and ∂f

∂y are the partial derivatives in the sense of distribution. Note that

ν is the self-similar measure with weight (1/9, . . . , 1/9). For any f, g ∈ F , set

E(f, g) =

∫

K

(∂f
∂x

∂g

∂x
+
∂f

∂y

∂g

∂y

)
dxdy.

Then (E ,F) is a local regular Dirichlet form on L2(K, ν) and the corresponding
diffusion process is the Brownian motion which is reflected at the boundary of K.
Moreover, the associated heat kernel satisfy the Gaussian type estimate

p(t, x, y) ≈ c1
t

exp
(
− c2
|x− y|2

t

)

for t ∈ (0, 1]. This form (E ,F) has the self-similarity with the resistance scaling
ratio (1, . . . , 1), i.e.

E(f, g) =
∑

i∈S
E(f ◦ Fi, g ◦ Fi).

for any f, g ∈ F . Let µ be a self-similar measure with weight (µi)i∈S . Then by [8],
making slight modifications, we may regard (E ,F) as a local regular Dirichlet form
on L2(K,µ). At this time, the corresponding diffusion process is the time change
of the Brownian motion. Let pµ(t, x, y) be the associated heat kernel. (The heat
kernel does exists and is jointly continuous in this case.) Then the results on (P3)
implies the following.

Theorem 0.2.5. There exist α ∈ (0, 1] and a distance d such that d is adapted to
the scale associated with the ratio ((µi)

α/2)i∈S and the upper Li-Yau estimate (0.1.7)
for pµ(t, x, y) holds with β = 2/α, if and only if (

√
µi)i∈S is weakly symmetric.

Moreover, either of the above conditions suffices the upper and the lower on-diagonal
estimate (0.1.1) for pµ(t, x, y).





CHAPTER 1

Scales and Volume Doubling Property of Measures

1.1. Scale

In this section, we introduce a notion of scales. A scale gives a fundamental
system of neighborhoods of the shift space, which is the collection of infinite se-
quences of finite symbols. Later in Section 1.3, we will define a family of “balls” of
a self-similar set through a scale.

Notation. For a set V , we define ℓ(V ) = {f |f : V → R}. If V is a finite set,
ℓ(V ) is considered to be equipped with the standard inner product (·, ·)V defined

by (u, v)V =
∑
p∈V u(p)v(p) for any u, v ∈ ℓ(V ). Also |u|V =

√
(u, u)V for any

u ∈ ℓ(V ).

Now we define basic notions on the word spaces and the shift space. Let S be
a finite set.

Definition 1.1.1. (1) For m ≥ 0, the word space of length m, Wm(S), is
defined by

Wm(S) = Sm = {w|w = w1 . . . wm, wi ∈ S for any i = 1, . . . ,m}.
In particular W0(S) = {∅}, where ∅ is called the empty word. Also W∗(S) =
∪m≥0Wm(S) and W#(S) = ∪m≥1Wm(S). For w ∈Wm(S), we define |w| = m and
call it the length of the word w.
(2) For w, v ∈ W∗(S), we define wv ∈ W∗(S) by wv = w1 . . . wmv1 . . . vn, where
w = w1 . . . wm and v = v1 . . . vn. Also for w1, w2 ∈ W∗(S), we write w1 ≤ w2 if
and only if w1 = w2v for some v ∈ W∗(S).
(3) The (one sided) shift space Σ(S) is defined by

Σ(S) = SN = {ω|ω = ω1ω2 . . . , ωi ∈ S for any i ≥ 1}.
The shift map σ : Σ(S) → Σ(S) is defined by σ(ω1ω2 . . .) = ω2ω3 . . .. For each
i ∈ S, we define σi : Σ(S) → Σ(S) by σi(ω) = iω1ω2 . . ., where ω = ω1ω2 . . ..
For w = w1 . . . wm ∈ W∗(S), σw = σw1 ◦ . . . ◦ σwm and Σw(S) = σw(Σ(S)).
(4) The extended shift map σ : W∗(S) → W∗(S) is defined by σ(∅) = ∅ and
σ(w1 . . . wm) = w2 . . . wm for any w ∈ W#. Also we extend σi : W∗(S) → W∗(S)
by σi(w1 . . . wm) = iw1 . . . wm.

Note that ≤ is a partial order of W∗(S). We write w1 < w2 if and only
if w1 ≤ w2 and w1 6= w2. If no confusion can occur, we omit S in the above
notations. For example, we write Wm in stead of Wm(S).

The shift space Σ has a product topology as an infinite product of a finite set
S. Under this topology, Σ is compact and metrizable. See [28] for details.

Definition 1.1.2. (1) Let Λ ⊂ W∗ be a finite set. Λ is called a partition of
Σ if and only if Σ = ∪w∈ΛΣw and Σw ∩ Σv = ∅ for any w 6= v ∈ Λ.

9



10 1. SCALES AND VOLUME DOUBLING PROPERTY OF MEASURES

(2) Let Λ1 and Λ2 be partitions of Σ. Λ1 is said to be a refinement of Λ2 if and
only for any w1 ∈ Λ1, there exists w2 ∈ Λ2 such that w1 ≤ w2. We write Λ1 ≤ Λ2

if Λ1 is a refinement of Λ2.

For a partition Λ, {Σw}w∈Λ is a division of Σ and may be thought of as an
approximation of Σ. Note that “≤” is a partial order of the collection of partitions.
If Λ1 ≤ Λ2, then {Σw}w∈Λ1 contains finer structure of Σ than {Σw}w∈Λ2 .

Next we introduce the notion of a scale, which is a monotonically decreasing
family of partitions.

Definition 1.1.3 (Scales). A family of partitions of Σ, {Λs}0<s≤1, is called a
scale on Σ if and only if it satisfies (S1) and (S2):
(S1) Λ1 = W0. Λs1 ≤ Λs2 for any 0 < s1 ≤ s2 ≤ 1.
(S2) min{|w||w ∈ Λs} → +∞ as s ↓ 0.

Let {Λs}0<s≤1 be a scale on Σ. For any ω ∈ Σ and any s ∈ (0, 1], choose
w ∈ Λs so that ω ∈ Σw, (such a w uniquely exists), and set Us(ω) = Σw. Then
{Us(ω)}s∈(0,1] is a system of fundamental neighborhoods of ω. We will think of
Us(ω) as a “ball” with radius s and center ω even if there may not be a corresponding
distance.

In the rest of this section, we will try to understand the basics on scales. First
problem is how to describe the structure of a scale.

Definition 1.1.4. Let S = {Λs}0<s≤1 be a scale on Σ. For w ∈W∗. We define

Rw(S) = {s|s ∈ (0, 1], there exists w′ ∈ W∗ such that w < w′ and w′ ∈ Λs},
Cw(S) = {s|s ∈ (0, 1], w ∈ Λs},
Lw(S) = {s|s ∈ (0, 1], there exists w′ ∈ W∗ such that w′ < w and w′ ∈ Λs}.

For ease of notation, we use Rw, Cw and Lw instead of Rw(S), Cw(S) and Lw(S)
if no confusion can occur. Note that R∅ = ∅ and that C∅ contains 1.

Lemma 1.1.5. Let S = {Λs}0<s≤1 be a scale on Σ. For w ∈W∗.
(1) There exist r : W# → (0, 1] and l : W∗ → (0, 1] such that, for any w, l(w) ≤
r(w) and Rw ⊇ (r(w), 1], Cw ⊇ (l(w), r(w)) and Lw ⊇ (0, l(w)).
(2) For any w ∈ W∗ and any i ∈ S, Cwi ∪ Lwi = Lw. In particular, r(wi) = l(w)
and l(wi) ≤ l(w).
(3) max{l(w)|w ∈ Wm} → 0 as m→∞.

Proof. (1) Since 1 ∈ L∅, Rw 6= ∅ for w ∈ W#. Also by (S2), Lw 6= ∅
for any w ∈ W∗. Using (S1), we see that x < y for any x ∈ Lw ∪ Cw and any
y ∈ Rw. Therefore the Dedekind theorem implies that there exists r(w) such that
(0, r(w)) ⊆ Lw ∪ Cw and (r(w), 1] ⊆ Rw. In the same manner, we have l(w).
(2) Note that s ∈ Lwi ∪Cwi if and only if there exists w′ ∈W∗ such that w′ ≤ wi
and w′ ∈ Λs. This immediately implies that Lwi ∪ Cwi ⊆ Lw. Suppose s ∈ Lw.
There exists w′ ∈ Λs such that wii . . . ∈ Σw′ . Since w′′ /∈ Λs if w ≤ w′′, it follows
that w′ ≤ wi. Therefore s ∈ Lwi ∪ Cwi. The rest of the statement is obvious.
(3) Let am = max{l(w)|w ∈ Wm}. Then am ≥ am+1 for any m ≥ 1. Set
α = limm→∞ am. Suppose α > 0. Choosing wm ∈ Wm so that l(wm) ≥ α, we see
that Λα/2 contains w′ ≤ wm for any m ≥ 1. Therefore, Λα/2 is an infinite set. This
contradiction implies that α = 0. �



1.1. SCALE 11

In general, Rw can be either (r(w), 1] or [r(w), 1]. To remove this ambiguity,
we introduce the notion of a right continuous scale.

Definition 1.1.6. A scale {Λs}0<s≤1 on Σ is called right continuous if and
only if Rw = [r(w), 1] for any w ∈ W∗.

Lemma 1.1.5 implies that if {Λs}0<s≤1 is right continuous then Lw = (0, l(w))
and Cw = [l(w), r(w)).

Proposition 1.1.7. A scale {Λs}0<s≤1 on Σ is right continuous if and only
if, for any s, there exists ǫ > 0 such that Λs′ = Λs for any s′ ∈ [s, s+ ǫ).

Right continuous scales are completely determined by l : W∗ → (0, 1], which
will be called the gauge function of the scale. See Theorem 1.1.10 for details.

Definition 1.1.8. A function g : W∗ → (0, 1] is called a gauge function on W∗
if it satisfies (G1) and (G2):
(G1) g(wi) ≤ g(w) for any w ∈ W∗ and any i ∈ S.
(G2) max{g(w)|w ∈Wm} → 0 as m→∞.

The following proposition is immediate by Lemma 1.1.5.

Proposition 1.1.9. Let S be a scale on Σ. Then the function l : W∗ → (0, 1]
defined in Lemma 1.1.5 is a gauge function on W∗. We call l the gauge function of
the scale S.

Naturally there exists a one to one correspondence between the (right contin-
uous) scales and the gauge functions.

Theorem 1.1.10. Let g be a gauge function on W∗. Define Λs(g) by

(1.1.8) Λs(g) = {w|w = w1 . . . wm ∈W∗, g(w1 . . . wm−1) > s ≥ g(w)}
for any s ∈ (0, 1]. (We regard g(w1 . . . wm−1) as 2 for w = ∅.) Then {Λs(g)}0<s≤1

is a right continuous scale on Σ. {Λs(g)}0<s≤1 is called the scale induced by the
gauge function g. Conversely, let S = {Λs}0<s≤1 be a right continuous scale on
Σ and let l be its gauge function. Then the scale induced by the gauge function l
coincides with S.

Proof. We write Λs = Λs(g) for ease of notation. First we show that Λs is a
finite set for any s. By (G2), there existsm ≥ 1 such that s ≥ g(w) for any w ∈ Wm.
Now if g(v1 . . . vn−1) > s ≥ g(v1 . . . vn), then n ≤ m. Therefore Λs ⊂ ∪mm=0Wm.
Hence Λs is a finite set.

Next we show that Λs is a partition. Let ω = ω1ω2 . . . ∈ Σ. (G2) implies
that g(ω1 . . . ωm) → 0 as m → ∞. Hence there exists a unique m such that
g(ω1 . . . ωm−1) > s ≥ g(ω1 . . . ωm). Therefore ∪w∈ΛsΣw = Σ. Also the uniqueness
of m implies that Σw1 ∩ Σw2 = ∅ if w1 6= w2 ∈ Λs. So Λs is a partition.

To show (S1), since g(∅) ≤ 1, we have Λ1 = W0. Let s1 < s2 and let w =
w1 . . . wm ∈ Λs1 . Then g(w1 . . . wk−1) > s2 ≥ g(w1 . . . wk) for some k ≤ m. This
implies that w1 . . . wk ∈ Λs2 . Therefore Λs1 ≤ Λs2 .

If s < minw∈Wm g(w), then min{|w||w ∈ Λs} ≥ m. This shows (S2).
Since Rw = [g(w1 . . . wm−1), 1] for w = w1 . . . wm, {Λs}0<s≤1 is right continu-

ous.
Finally, let l be the gauge function of a scale S = {Λs}0<s≤1. Then Λs = {w|s ∈

Cw} = Λs(l). This completes the proof of the theorem. �
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Hereafter, we only consider right continuous scales.

Definition 1.1.11. A right continuous scale S = {Λs}0<s≤1 on Σ is called
elliptic if and only if it satisfies the following two conditions (EL1) and (EL2):
(EL1) Λs ∩ Λα1s = ∅ for any s ∈ (0, 1], where α1 is independent of s.
(EL2) There exist α2 ∈ (0, 1) and n ≥ 1 such that

max{|v||v ∈W∗, wv ∈ Λα2s} ≤ n
for any s ∈ (0, 1] and any w ∈ Λs.

Roughly speaking, a scale is elliptic if the differences between Λs and Λαs are
uniform with respect to s. This become clearer when we describe (EL1) and (EL2)
in terms of gauge functions.

Proposition 1.1.12. Let S = {Λs}0<s≤1 be a right continuous scale on Σ and
let l be its gauge function.
(1) S satisfies (EL1) if and only if there exists β1 ∈ (0, 1) such that l(wi) ≥ β1l(w)
for any w ∈W∗ and any i ∈ S.
(2) S satisfies (EL2) if and only if there exist β2 ∈ (0, 1) and n ≥ 1 such that
l(wv) ≤ β2l(w) for any w ∈ W∗ and any v ∈Wn.

Proof. (1) First suppose for any β1 ∈ (0, 1) there exist w ∈ W∗ and i ∈ S
such that l(wi) < β1l(w). In particular, we assume that β1 < 1/2. Note that
wi ∈ Λs for s ∈ [l(wi), l(w)). If s1 = l(w)/2, then Λs1 ∩ Λαs1 contains wi for any
α ∈ [2β1, 1]. Hence S does not satisfy (EL1).

Conversely, assume that there exists β1 ∈ (0, 1) such that l(wi) ≥ β1l(w) for
any w ∈ W∗ and any i ∈ S. Let w = w1 . . . wm ∈ Λs. Then l(w1 . . . wm−1) > t ≥
l(w) ≥ β1l(w1 . . . wm−1). Therefore l(w) > β1s. This implies that w /∈ Λβ1s. Hence
Λs ∩ Λβ1s is empty for any s ∈ (0, 1].
(2) Assume that there exist β2 ∈ (0, 1) and n ≥ 1 such that l(wv) ≤ β2l(w) for
any w ∈W∗ and any v ∈ Wn. If w ∈ Λs, then s ≥ l(w). Therefore, β2s ≥ β2l(w) ≥
l(wv) for any v ∈ Wn. Hence if wv′ ∈ Λβ2s, then |v|′ ≤ n. Thus we obtain (EL2)
with α2 = β2.

Conversely, suppose that, for any β ∈ (0, 1) and any k ≥ 1, there exist w ∈ W∗
and v ∈ Wk such that βl(w) ≤ l(wv). Let s = l(w). Here, if necessary, replacing
w = w1 . . . wi by w = w1 . . . wj for some 0 ≤ j ≤ i, we may assume that w ∈ Λs.
(Then, in general, |v| ≥ k.) Now choose β > α2 and k ≥ n. Then α2s < βs =
βl(w) ≤ l(wv). Therefore there exists v′ ∈ W∗ such that wvv′ ∈ α2s. By (EL2),
|vv′| ≤ n. This contradicts to the fact that |v| ≥ k. �

The following fact will be used later in many places.

Lemma 1.1.13. Let S = {Λs}0<s≤1 be a scale on Σ satisfying (EL1) and let l
be its gauge function on W∗. Then there exists a constant c > 0 such that l(w) ≤
s ≤ cl(w) for any s ∈ (0, 1] and any w ∈ Λs.

Proof. Let w = w1 . . . wm ∈ Λs. Then l(w1 . . . wm−1) > s ≥ l(w). By
Proposition 1.1.12-(1), l(w) ≥ β1l(w1 . . . wm−1). Therefore, if c = 1/β1, then
cl(w) ≥ s ≥ l(w). �

Next we define a multiplication of two scales and a power of a scale.
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Definition 1.1.14. (1) For i = 1, 2, let Sj be a scale on Σ and let lj be its
gauge function. Then we use S1 ·S2 to denote the sale induced by the gauge function
l1l2.
(2) Let S be a scale on Σ. Then for α > 0, the scale induced by the gauge function
lα is denoted by S

α.

If S = {Λs}0<s≤1, then Sα = {Λs1/α}0<s≤1.

Lemma 1.1.15. (1) If S1 and S2 are elliptic scales on Σ, then S1 · S2 is elliptic.
(2) Let S be a scale on Σ and let α > 0. Then S is elliptic if and only if Sα is
elliptic.

Finally we introduce an important class of scales.

Definition 1.1.16. Let a = (ai)i∈S ∈ (0, 1)S . Define ga : W∗ → (0, 1] by
ga(w) = aw = aw1aw2 . . . awm for w = w1 . . . wm ∈ W∗. ga is called the self-similar
gauge function on W∗ with weight a. Also the scale induced by ga is called the self-
similar scale with weight a and is denoted by S(a). We also write Λs(ga) = Λs(a).
We use S(Σ) to denote the collection of self-similar scales on Σ.

We often identify S(Σ) with (0, 1)S through the natural correspondence a →
S(a). Note that a self-similar scale is elliptic.

1.2. Self-similar structures and measures

The notion of self-similar structure is a purely topological formulation of self-
similar sets.

Definition 1.2.1. (1) Let K be a compact metrizable topological space and
let S be a finite set. Also, let Fi, for i ∈ S, be a continuous injection from K
to itself. Then, (K,S, {Fi}i∈S) is called a self-similar structure if there exists a
continuous surjection π : Σ→ K such that Fi ◦ π = π ◦ σi for every i ∈ S.
(2) Let L = (K,S, {Fi}i∈S) be a self-similar structure. Define the critical set CL
and the post critical set PL by CL = π−1(∪i6=j∈S(Fi(K) ∩ Fj(K))) and PL =
∪n≥1σ

n(CL). Also define V0 = π(PL).
(3) A self-similar structure L = (K,S, {Fi}i∈S) is said to be strongly finite if and
only if supx∈K #(π−1(x)) < +∞, where #(A) is the number of elements of a set
A.

Notation. Let L = (K,S, {Fi}i∈S) be a self-similar structure. For w =
w1 . . . wm ∈ W∗, we define Fw = Fw1 ◦ . . . ◦ Fwm and Kw = Fw(K). In partic-
ular, if w = ∅ ∈W0, then Fw is thought of as the identity map of K and Kw = K.

If (K,S, {Fi}i∈S) is a self-similar structure, then

K =
⋃

i∈S
Fi(K).

In other words, K is the self-similar set with respect to maps {Fi}i∈S . The set
V0 is a kind of “boundary” of K. Indeed, for any w, v ∈ W∗ with Σw ∩ Σv = ∅,
Kw ∩ Kv = Fw(V0) ∩ Fv(V0). Moreover, V0 = ∅ if and only if π is bijective and
K is identified with Σ. V0 is thought of as a characteristic of “complexity” of the
self-similar structure.

Throughout this section, we fix a self-similar structure L = (K,S, {Fi}i∈S).
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Theorem 1.2.2. K 6= V 0 if and only if int(V 0) = ∅.
Proof. Assume that int(V 0) 6= ∅. Then V 0 ⊇ Kw for some w ∈ W∗. Let

|w| = m. Let x ∈ Kw. If x ∈ Kw ∩ (∪v∈Wm,v 6=wKv), then x ∈ Fw(V0) by [28,

Proposition 1.3.5]. Hence (Fw)−1(x) ∈ V 0. Next we assume that x /∈ Kw ∩
(∪v∈Wm,v 6=wKv). This assumption is equivalent to that π−1(x) ⊂ Σw. Since x ∈
V 0, there exist ω(1), ω(2), . . . ∈ P such that π(ω(i)) → x as i → ∞. Choosing a
subsequence, we may assume that there exists ω ∈ Σ such that ω(i)→ ω as i→∞.
The continuity of π implies that π(ω) = x. Hence ω ∈ Σw. Now σmω(i)→ σmω as
i → ∞ and (Fw)−1(x) = π(σmω). Since σmω(i) ∈ P , it follows that (Fw)−1(x) ∈
V 0. Thus we see that (Fw)−1(x) ∈ V 0 for any x ∈ Kw. This immediately implies
that V 0 = K. The converse is obvious. �

Next we introduce a class of non-degenerate measures on a self-similar structure.

Definition 1.2.3. M(K) is defined to be the collection of Borel regular mea-
sures on K satisfying the following conditions (M1), (M2) and (M3):
(M1) µ is a finite Borel regular measure on K.
(M2) For any w ∈W∗, µ(Kw) > 0 and µ(Fw(V0)) = 0.
(M3) µ({x}) = 0 for any x ∈ K.
AlsoM1(K) = {µ|µ ∈ M(K), µ(K) = 1}.

Theorem 1.2.4. Assume that K 6= V 0. Let µ be a finite Borel regular measure
on K with µ(K) > 0. Then µ ∈ M(K) if the following condition (ELm) holds:
(ELm) there exists γ > 0 such that µ(Kwi) ≥ γµ(Kw) for any w ∈ W∗ and any
i ∈ S.

Definition 1.2.5. A finite Borel regular measure µ on K is called an elliptic
measure if and only if it satisfies (ELm).

Remark. In [28, Section 3.4], a Borel regular measure µ satisfying (ELm) is
called a γ-elliptic measure. By the proof of [28, Lemma 3.4.1], it follows that if µ
is elliptic then there exists δ ∈ (0, 1) and m ≥ 1 such that µ(Kwv) ≤ δµ(Kw) for
any w ∈ W∗ and any v ∈ Wm.

Proof. (M1) is immediate. Since K 6= V 0, there exist k ∈ N and v ∈ Wk

such that Kv ∩ V 0 = ∅. Since µ is a finite Borel regular measure, for any ǫ > 0,
we find an open set O which satisfies Fw(V0) ⊂ O and µ(O) ≤ µ(Fw(V0)) + ǫ. Set
Q = {τ |τ ∈ W∗,Kτ ⊂ O |τ | ≥ |w|}. As O is open, O = ∪τ∈QKτ . Define Q∗ =
{τ |τ ∈ Q, there exists no τ ′ ∈ Q such that τ < τ ′}. Then {Kτv}τ∈Q∗

is mutually
disjoint. Also, for any τ ∈ Q∗, since Kτv ∩ V|w| = ∅, we see that Fw(V0)∩Kτv = ∅.
Therefore, by the fact that µ is elliptic,

µ(Fw(V0)) ≤ µ(O\ ∪τ∈Q∗
Kτv) = µ(O) −

∑

τ∈Q∗

µ(Kτv)

≤ µ(O)− γk
∑

τ∈Q∗

µ(Kτ ) ≤ (1− γk)µ(O) ≤ (1− γk)(µ(Fw(V0)) + ǫ)

Since this holds for any ǫ > 0, it follows that µ(Fw(V0)) = 0. Thus we obtain (M2).
To show (M3), let x = π(ω) for ω ∈ Σ. By the above remark, we see that

µ(Kω1...ωmn) ≤ δn for any n. Therefore, µ({x}) = µ(∩n≥1Kω1...ωmn) = 0. �

A immediate example of a elliptic measure is a self-similar measure.
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Definition 1.2.6. Let (µi)i∈S ∈ (0, 1)S satisfy
∑
i∈S µi = 1. A Borel regular

probability measure µ is called a self-similar measure with weight (µi)i∈S if and
only if

(1.2.1) µ(A) =
∑

i∈S
µiµ((Fi)

−1(A))

for any Borel set A.

It is known that, for any weight (µi)i∈S , there exists a unique Borel regular
probability measure on k that satisfies (1.2.1). See [28, Section 1.4]. In our case,
we have the following theorem.

Theorem 1.2.7. Assume that K 6= V 0. Let µ be a self-similar measure with
weight (µi)i∈S ∈ (0, 1)S with

∑
i∈S µi = 1. Then, µ(Kw) = µw for any w ∈ W∗,

where µw = µw1 · · ·µwm for w = w1 . . . wm. In particular, µ is elliptic and µ ∈
M1(K).

Proof. Let O = K\V 0. For any w ∈ Wm, Kw = Fw(O) ∪ Fw(V 0) and
Fw(O) ∩ Fw(V 0) = ∅. By [28, Proposition 1.3.5], Fw(O) ∩Kv = ∅ for any v ∈Wm

with w 6= v. Therefore, Fw(O) is open. Moreover, since V0 ⊆ Vm = ∪v∈WmFw(V0),
it follows that Fw(O)∩V0 = ∅. This implies that Fw(O)∩V 0 = ∅. Hence Fw(O) ⊆
O.

On the other hand, by (1.2.1),

µ(Fw(O)) = ∪v∈Wmµvµ((Fv)
−1Fw(O)) = µwµ(O).

Therefore, if Om = ∪w∈WmFw(O), we obtain µ(Om) =
∑
w∈Wm

µ(Fw(O)) = µ(O).
Note that Om ⊆ O. For sufficiently large m, there exists w ∈ Wm such that
Kw ⊂ O. Since Fw(V 0) ∩ Om = ∅, Fw(V 0) ∈ O\Om. Therefore µ(Fw(V 0)) = 0.
By (1.2.1), µ(V 0) = 0 and therefore µ(O) = µ(Ok) = 0 for any k ≥ 1. This
implies that µ(∪w∈Wk

Fw(V 0)) = 0 for any k ≥ 1. Hence for any w ∈ W∗, µ(Kw) =
µ(Fw(O)) = µwµ(O) = µw. This immediately shows that µ is elliptic. Now by
Theorem 1.2.4, we verify µ ∈M1(K). �

Remark. In the above proof, it was shown that if K 6= V 0, then L satisfy
an “intrinsic” open set condition: there exists a nonempty intrinsic open subset
O ⊂ K (i.e.O is open with respect to the topology of K) such that Fi(O) ⊆ O and
Fi(O) ∩ Fj(O) = ∅ for any i 6= j ∈ S.

Remark. We conjecture that the converse of the above theorem is true: if
every self-similar measure µ belongs to M1(K) (and hence µ(Kw) = µw for any
w ∈ W∗, where (µi)i∈S is the weight of µ), then K 6= V 0.

We may define a natural gauge function associated with a measure as follows.

Proposition 1.2.8. Let µ ∈ M1(K). Define gµ : W∗ → (0, 1] by gµ(w) =
µ(Kw). Then gµ is a gauge function on W∗.

Proof. (G1) is immediate. To prove (G2), assume that there exists α > 0 such
that max{µ(Kw)|w ∈ Wm} ≥ 2α for any m ≥ 1. Then A = {w|w ∈ W∗, µ(Kw) ≥
α} is an infinite set. Let T = {w|w ∈ A, {v|v ∈ A, v < w} = ∅}. If w1, · · · , wk ∈ T
and wi 6= wj for any i 6= j, then (M2) implies that µ(∪ki=1Kwi) =

∑k
i=1 µ(Kwi) ≥

kα. Hence k ≤ 1/α. So T is a finite set. Set M = maxw∈T |w| and choose
w ∈ A with |w| > M . Then there exists a sequence {w(i)}i=1,2,... ⊂ A such that
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w(1) = w and w(1) ≥ w(2) ≥ w(3) ≥ . . .. Let x = π(ω), where π : Σ → K is
given in Definition 1.2.1 and ω ∈ Σ is the unique infinite sequence contained in
∩i=1,2,...Σw(i). Then µ({x}) = limi→∞ µ(Kw(i)) ≥ α. This contradicts to (M3).
Hence we have verified (G2). �

Definition 1.2.9. Let µ ∈ M(K) and denote µ̄ = µ/µ(K). Then gµ̄ defined
in Proposition 1.2.8 is called the gauge function on W∗ induced by the measure
µ. If no confusion can occur, we use µ to denote gµ̄ and write Λs(µ) = Λs(gµ̄).
{Λs(µ)}0<s≤1 is called a scale on Σ induced by the measure µ.

The following two facts are immediate from the definition.

Proposition 1.2.10. Let µ be a self-similar measure. Then the scale induced
by µ is an self-similar scale with the same weight as µ.

Proposition 1.2.11. Let µ ∈M(K). Then the scale induced by µ is elliptic if
and only if µ is elliptic.

1.3. Volume doubling property

In this section, S is a finite set, L = (K,S, {Fi}i∈S) is a self-similar structure
with K 6= V 0. Also S = {Λs}0<s≤1 is a right-continuous scale on Σ and µ is always
assumed to be a Borel regular finite measure on K which belongs to M(K). We

will introduce a system of neighborhoods {U (n)
s (x)} of x ∈ K associated with the

scale Σ and consider the counterpart of “volume doubling measures” on K.
Ordinarily, if (X, d) is a metric space and µ is a Borel measure on (X, d),

then µ is said to have the volume doubling property (or µ is volume doubling in
short) if µ(B2r(x)) ≤ Cµ(Br(x)) for any x ∈ X and r > 0, where Br(x) is a ball
Br(x) = {y|d(x, y) < r} and C is a constant which is independent of x and r.

We will think of U
(n)
s (x) as a ball and introduce the notion corresponding to the

volume doubling property. The main goal of this section, which is Theorem 1.3.5,
is to establish conditions which are equivalent to the volume doubling property in
our framework.

To start with, we associate subsets of words with those of self-similar sets.

Definition 1.3.1. Let Γ ⊆W∗ and let A ⊆ K.
(1) W (Γ, A) = {w|w ∈ Γ,Kw ∩A 6= ∅}.
(2) K(Γ) = ∪w∈ΓKw.
(3) Define W (n)(Γ, A) and K(n)(Γ, A) by W (0)(Γ, A) = W (Γ, A), K(n)(Γ, A) =
K(W (n)(Γ, A)) and W (n+1)(Γ, A) = W (Γ,K(n)(Γ, A)) for n = 0, 1, . . ..
(4) We use ∂A be the topological boundary of A, i.e. ∂A = Ac ∩A.

Under a scale S = {Λs}0<s≤1, the “radius” of Kw is thought of as s if w ∈ Λs.
In this way we may define a ball of radius s with respect to a scale in the following
way.

Definition 1.3.2. Let S = {Λs}0<s≤1 be a scale on Σ. For x ∈ K, we write

Λns,x = W (n)(Λs, {x}) and U
(n)
s (x) = K(n)(Λs, {x}) for n ≥ 0. In particular, we use

Λs,x = Λ0
s,x,Ks(x) = U

(0)
s (x) and Us(x) = U

(1)
s (x). Also set Λs,w = W (Λs,Kw)

for w ∈ W∗.
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U
(n)
s (x) is a neighborhood of x for any n. In the case n = 0, however, Ks(x) =

U
(0)
s (x) is not a good ball with center x since x may be very close to the boundary of

Ks(x) i.e. ∂Ks(x). (Note that if x ∈ Kw\Fw(V0) and w ∈ Λs, then Ks(x) = Kw.)

This will make a crucial difference between the role of {U (n)
s (x)}x∈K,s>0 for n = 0

and that for n ≥ 1.

Definition 1.3.3. Let S = {Λs}0<s≤1 be a scale on Σ and let µ ∈M(K). For
n ≥ 0, we define a property (VD)n on (S, µ) as follows.

(VD)n There exist α ∈ (0, 1) and cV > 0 such that µ(U
(n)
s (x)) ≤ cV µ(U

(n)
αs (x)) for

any s ∈ (0, 1] and any x ∈ K.

If (S, µ) satisfy (VD)n for some n ≥ 1, we say that µ has the volume doubling
property (or (VD) for short) with respect to S.

If S satisfies (EL1), then (VD)n will be shown to be equivalent to (VD)1 for
any n ≥ 1 in Theorem 1.3.11. Therefore, µ has (VD) with respect to S if and only
if (VD)n holds for all n ≥ 1.

We introduce several notions to describe the conditions which is equivalent to
the volume doubling property.

Definition 1.3.4. (1) Let ϕ : W∗ → [0,∞). We say that ϕ is gentle with
respect to (L, S) if and only if it satisfies the following condition (GE):

(GE) There exists cG > 0 such that ϕ(w) ≤ cGϕ(v) for any s ∈ (0, 1] and any
w, v ∈ Λs with Kw ∩Kv 6= ∅.
µ is said to be gentle with respect to S if and only if ϕµ is gentle with respect to
(L, S), where ϕµ is defined by ϕ(w) = µ(Kw).
(2) S is said to be locally finite with respect to L if and only if it satisfies the
following condition (LF):

(LF) sup{#(Λ1
s,x)|s ∈ (0, 1], x ∈ K} < +∞,

(3) Let n ∈ N. We define properties (A)n on (S, µ) as follows.

(A)n There exists cA > 0 such that µ(U
(n)
s (x)) ≤ cAµ(Ks(x)) for any s ∈ (0, 1] and

any x ∈ K.

Note that the notion of “gentle measure” concerns both a scale and a measure
while the condition (LF) is determined solely by a scale.

Theorem 1.3.5. Assume that S = {Λs}0<s≤1 is elliptic. Let n ≥ 1. Then the
following three conditions are equivalent.
(1) S is locally finite and µ is elliptic and gentle with respect to S. In short,
(LF) ∧ (ELm) ∧ (GE).
(2) (S, µ) has properties (A)n and (VD)0. In short, (A)n ∧ (VD)0.
(3) (S, µ) satisfies (VD)n.

In particular, (VD)n is equivalent to (VD)1 for any n ∈ N and (VD) ⇔ (LF)
∧ (ELm) ∧ (GE).

Remark. We will show stronger statement on the equivalence between (1) and
(2). In fact, by Theorems 1.3.8 and 1.3.10, (LF) ∧ (GE) ⇔ (A)n and (ELm) ⇔
(VD)0.

The main purpose of the rest of this section is to prove the above theorem.
First we examine the condition (LF).
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Lemma 1.3.6. The following three conditions are equivalent:
(1) S is locally finite with respect to L.
(2) sup{#(Λs,w)|s ∈ (0, 1], w ∈ Λs} < +∞.
(3) sup{#(Λns,x)|s ∈ (0, 1], x ∈ K} < +∞ for any n ≥ 1.

Moreover, if S is locally finite with respect to L, then L is strongly finite.

Proof. (1) ⇒ (2): Let s ∈ (0, 1] and let w ∈ Λs. Choose x ∈ Kw. Then
Λs,w ⊆ Λ1

s,x. This immediately implies (2).
(2)⇒ (3): Set M = sup{#(Λs,w)|s ∈ (0, 1], w ∈ Λs}. First we show that (2) implies
that L is strongly finite. For any x ∈ K, if #(π−1(x)) ≥ m, then #(Λs,x) ≥ m
for sufficiently small s. Choose w ∈ Λs,x, then #(Λs,w) ≥ m. Therefore (2)
implies that #(π−1(x)) ≤M and #(Λs,x) ≤M . Note Λns,x = ∪w∈Λn−1

s,x
Λs,w. Hence

#(Λns,x) ≤Mn+1 for any n ≥ 1.
(3) ⇒ (1): Obvious. �

If µ satisfy (VD)n, then µ(U
(n)
s (x)) ≤ (cV )mµ(U

(n)
αms(x)) for any m ≥ 1. This

fact lead us to the following proposition.

Proposition 1.3.7. Let n ≥ 0. (VD)n is equivalent to the following stronger
condition:
For any α ∈ (0, 1), there exists c > 0 such that µ(U

(n)
s (x)) ≤ cµ(U

(n)
αs (x)) for any

s ∈ (0, 1] and any x ∈ K.

Now we give the first piece of a proof of Theorem 1.3.5.

Theorem 1.3.8. Let n ∈ N. Then µ is gentle with respect to the scale S and
S is locally finite if and only if the property (A)n is satisfied. In short, (GE) ∧
(LF) ⇔ (A)n. In particular, (A)n and (A)m are equivalent to each other for any
n,m ∈ N.

Proof. (GE) ∧ (LF) ⇒ (A)n: For any w ∈ Λns,x, there exist w0, w1, . . . , wn ∈
Λs such that w0 ∈ Λs,x, w

n = w and Kwj−1 ∩Kwj 6= ∅ for j = 1, . . . , n. Hence by
(GE),

µ(U (n)
s (x)) =

∑

w∈Λn
s,x

µ(Kw) ≤

(cG)n#(Λns,x) max
w∈Λs,x

µ(Kw) ≤ (cG)n#(Λns,x)µ(Ks(x)).

Therefore by Lemma 1.3.6, (LF) implies (A)n.
(A)n ⇒ (GE): Note that (A)n implies (A)1. Let w, v ∈ Λs satisfy Kw ∩Kv 6= ∅.
Since K\V 0 6= ∅, Kw\Fw(V0) 6= ∅. Choose x ∈ Kw\Fw(V0). Then Ks(x) = Kw.
By (A)1, cAµ(Kw) = cAµ(Ks(x)) ≥ µ(Us(x)) ≥ µ(Kv).
(A)n ∧ (GE) ⇒ (LF): Let w ∈ Λs. Choosing x ∈ Kw\Fw(V0), we see that
Ks(x) = Kw and Λ1

s,x = Λs,w. By (A)1 and (GE),

cAµ(Ks(x)) ≥ µ(Us(x)) ≥ cG#(Λ1
s,x)µ(Kw) = cG#(Λ1

s,x)µ(Ks(x)).

Dividing this by µ(Ks(x)), we obtain (LF). �

The second piece of Theorem 1.3.5 is the equivalence between (VD)0 and
(ELm). To give an exact statement, we need a definition.
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Definition 1.3.9. (L, S, µ) is said to have the property (ELmg) if and only if
the following condition is satisfied:
There exist α ∈ (0, 1) and cE > 0 such that µ(Kwv) ≥ cEµ(Kw) for any s ∈ (0, 1],
any w ∈ Λs and any v ∈W∗ with wv ∈ Λαs.

Remark. If (ELmg) is satisfied, then, for any β ∈ (0, 1), there exists c > 0
such that µ(Kwv) ≥ cµ(Kw) for any s ∈ (0, 1), any w ∈ Λs and any v ∈ W∗ with
wv ∈ Λβs. Indeed, for any k > 0, µ(Kwv) ≥ αkµ(Kw) for any s ∈ Λs, any w ∈ Λs
and any v ∈ W∗ with wv ∈ Λαks.

Theorem 1.3.10. (VD)0 ⇔ (ELmg) ⇔ (ELm) ∧ (EL2). In particular, if S is
elliptic, then (VD)0 is equivalent to (ELm).

Proof. (VD)0 ⇒ (ELmg): Let w ∈ Λs and let wv ∈ Λαs. Choose x ∈
Kwv\Fwv(V0). ThenKαs(x) = Kwv. Hence by (VD)0, cBµ(Kwv) = cBµ(Kαs(x)) ≥
µ(Ks(x)). Since Ks(x) ⊇ Kw, cBµ(Kwv) ≥ µ(Kw). This shows (ELmg).
(ELmg) ⇒ (ELm) ∧ (EL2): Let g be the gauge function of the scale S. For
any w = w1 . . . wm ∈ W∗, there exists n ≥ 0 such that g(w) = g(w1 . . . wm−n) <
g(w1 . . . wm−n−1). Set w′ = w1 . . . wm−n. Let s = g(w). Note that w′ ∈ Λs. For
any i ∈ S, we can find v ∈W∗ which satisfies wiv ∈ Λαs. By (ELmg),

µ(Kwi) ≥ µ(Kwiv) ≥ cµ(Kw′) ≥ cµ(Kw).

This shows (ELm). Recall the remark after Definition 1.2.5. Under (ELm), there
exist δ ∈ (0, 1) and k ≥ 1 such that µ(Kwv) ≤ δµ(Kw) for any w ∈ W∗ and any
v ∈Wk. Therefore (ELmg) implies

cEµ(Kw) ≤ µ(Kwv) ≤ δ[|v|/k]µ(Kw).

for any s ∈ (0, 1], any w ∈ Λs and any v ∈ W∗ with wv ∈ Λαs, where [x] is the
integral part of x. Dividing this by µ(Kw), we have uniform upper estimate of |v|.
This shows (EL2).
(ELm) ∧ (EL2)⇒ (VD)0: Let x ∈ K. For any w ∈ Λs,x, we may choose v(w) ∈ W∗
so that wv(w) ∈ Λαs. By (EL2), we have |v(w)| ≤ m, where m is independent of
x, s and w. Using (ELm), we obtain µ(Kwv(w)) ≥ cmµ(Kw). Hence,

µ(Kαs(x)) ≥
∑

w∈Λs,x

µ(Kwv(w)) ≥
∑

w∈Λs,x

cmµ(Kw) = cmµ(Ks(x)).

Therefore we have (VD)0. �

The next theorem is a generalized version of Theorem 1.3.5.

Theorem 1.3.11. Let n ≥ 1. Assume that S satisfies (EL1). Then the following
three conditions are equivalent:
(1) S is locally finite, µ is gentle with respect to S and satisfy (VD)0. In short,
(LF) ∧ (GE) ∧ (VD)0.
(2) (S, µ) has properties (A)n and (VD)0.
(3) (S, µ) satisfies (VD)n.

In particular, (VD)n is equivalent to (VD)1 for any n ∈ N and (VD) ⇔ (LF)
∧ (GE) ∧ (VD)0.

To prove the above theorem, we need the following lemma.

Lemma 1.3.12. Let n ∈ N. If S satisfy (EL1), then there exist α ∈ (0, 1) and

z ∈ K such that Kw ⊇ U (n)
αs (Fw(z)) for any s ∈ (0, 1] and any w ∈ Λs.
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Proof. Choose z ∈ K\V 0. Since K\V 0 is open, there exists β ∈ (0, 1) such

that U
(n)
β (z) ⊆ K\V 0. Set m = maxv∈Λβ

|v|. Let w ∈ Λs. Note that (EL1)

implies that |v| ≥ m for any wv ∈ Λ(α1)ms, where α1 is the constant appeared
in Definition 1.1.11. Denote x = Fw(z) and α = (α1)

m. For any τ ∈ Λnαs,x,

there exist w0, w1, . . . , wk ∈ Λnαs,x such that k ≤ n, wk = τ , wj ∈ Λjαs,x for

j = 0, 1, . . . , k, where Λ0
αs,x = Λαs,x, and Kwj−1 ∩ Kwj 6= ∅ for any j = 1, . . . , k.

Let p = max{j|wj ≤ w}. Then, wj = wvj for j = 0, 1, . . . , p. Since |vj | ≥ m,
there exists uj ∈ Λβ such that vj ≤ uj . It follows that z ∈ Kv0 ⊆ Ku0 and that

Kuj−1 ∩ Kuj 6= ∅ for any j = 1, . . . , p. Therefore, uj ∈ Λjβ,z for j = 1, . . . , p.

This implies that Kwj ⊆ Fw(U jβ(z)) for j = 1, . . . , p. Hence Kwp ∩ Fw(V 0) = ∅.
If p < k, then there exists w′ ∈ Λs such that w′ 6= w and wp+1 ≤ w′. Since
Kw ∩Kw′ = Fw(V0) ∩Fw′(V0), we have Kwp ∩ Fw(V0) 6= ∅. This is a contradiction

and hence we have p = k. Hence Kτ ⊆ Kw. Therefore, U
(n)
αs (x) ⊆ Kw. �

Proof of Theorem 1.3.11. (LF) ∧ (GE) ∧ (VD)0 ⇒ (A)n ∧ (VD)0: This
is obvious by Theorem 1.3.8.
(A)n ∧ (VD)0 ⇒ (VD)n: For s ∈ (0, 1] and x ∈ K,

µ(U (n)
s (x)) ≤ cAµ(Ks(x)) ≤ cAcBµ(Kαs(x)) ≤ cAcBµ(U (n)

αs (x)).

(VD)n ⇒ (GE): By Lemma 1.3.12, there exist α ∈ (0, 1) and z ∈ K such that

Kw ⊇ U
(n)
αs (Fw(z)) for any s ∈ (0, 1] and any w ∈ Λs. Proposition 1.3.7 implies

that µ(U
(n)
s (x)) ≤ cµ(U

(n)
αs (x)). Now assume that w 6= v ∈ Λs and Kw ∩Kv 6= ∅.

Set x = Fw(z). Then

(1.3.1) µ(Kv) ≤ µ(U (n)
s (x)) ≤ cµ(U (n)

αs (x)) ≤ cµ(Kw).

Hence, µ is gentle.

(VD)n ⇒ (VD)0: Fix β ∈ (0, 1). Let w ∈ Λs. By Lemma 1.3.12, Kwv ⊃ U
(n)
αβs(x)

for any wv ∈ Λβs, where x = Fwv(z). Note that Kw ⊂ U
(n)
s (x). By Proposi-

tion 1.3.7, there exists c > 0 such that µ(U
(n)
s (x)) ≤ cµ(U

(n)
αβs(x)). Hence cµ(Kwv) ≥

cµ(U
(n)
αβs(x) ≥ µ(U

(n)
s (x)) ≥ µ(Kw). By Theorem 1.3.10, we have (VD)0.

(VD)n ⇒ (LF): Let s ∈ (0, 1] and let w ∈ Λs. Choose x = Fw(z), where z is given
in Lemma 1.3.12. Then by (1.3.1), using the similar argument as in the proof of
Theorem 1.3.8, we see that µ(Kv) ≥ c−nµ(Kw) for any v ∈ Λns,x. Hence

cµ(Kw) ≥ cµ(U (n)
αs (x)) ≥ µ(U (n)

s (x)) =
∑

v∈Λn
s,x

µ(Kv) ≥ c−n#(Λns,x)µ(Kw).

Dividing this by µ(Kw), we obtain (LF) by Lemma 1.3.6. �

Finally combining Theorems 1.3.10 and 1.3.11, we immediately obtain Theo-
rem 1.3.5.

1.4. Locally finiteness and gentleness

In this section, we will define the notion of a scale being gentle with respect to
another scale. It will turn out that the relation of “being gentle with respect to” is
an equivalence relation among elliptic scales and the locally finiteness is inherited
from a scale to another scale by this equivalence relation. As in the previous section,
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we fix a self-similar structure L = (K,S, {Fi}i∈S) with K 6= V0. Also all the scales
are assumed to be right continuous.

Definition 1.4.1. Let S1 and S2 be scales on Σ. S2 is said to be gentle with
respect to S1 if and only if the gauge function of S2 is gentle with respect to (L, S1).

Remark. Note that we need information on the self-similar structure L to
determine whether S2 is gentle with respect to S1 or not.

Naturally we have the next proposition.

Proposition 1.4.2. Let S be a scale and let µ ∈M(K). Then µ is gentle with
respect to S if and only if {Λs(µ)}0<s≤1 is gentle with respect to S.

Here is the main results of this section.

Theorem 1.4.3. Let S1 and S2 be elliptic scales on Σ. Assume that S2 is gentle
with respect to S1.
(1) S1 is gentle with respect to S1.
(2) If S1 is locally finite, then S2 is locally finite.
(3) S1 is gentle with respect to S2.
(4) Let S3 be an elliptic scale on Σ. Suppose S3 is gentle with respect to S2, then
S3 is gentle with respect to S1.

Proof. Let S1 = {Λs}0<s≤1 and let S2 = {Γs}0<s≤1. Let l and g be the gauge
functions of S1 and S2 respectively. First we show (1). Recall that w = w1 . . . wm ∈
Λs if and only if l(w) ≤ s < l(w1 . . . wm−1). By Proposition 1.1.12-(1), there exists
c > 0 such that l(w) ≥ cl(w1 . . . wm−1) for any w ∈ W∗. Hence if w ∈ Λs, then
l(w) ≤ s < l(w)/c. This shows that cl(w) ≤ l(v) for any w, v ∈ Λs. Hence we
obtain (1).

Proofs of (2), (3) and (4) are based on the same idea. If w = w1 . . . wm ∈ Γs,
then

g(w1 . . . wm−1) > s ≥ g(w).

On the other hand, there exists a unique k ≤ m such that l(w1 . . . wk−1) >
l(w1 . . . wk) = l(w1 . . . wm). By (EL2), m − k ≤ n, where n ∈ N is independent
of w. Let a = l(w) and let w′ = w1 . . . wk. Since S2 is gentle with respect to S1,
g(v) ≤ cg(w′) for any v ∈ Λa,w′. If S1 is elliptic, g(w′) ≤ (β1)

−ng(w), where β1

is the constant appearing in Proposition 1.1.12-(1). Therefore there exists c′ > 0
such that g(v) ≤ c′g(w) for any v ∈ Λa,w′. Using Proposition 1.1.12-(2), we see
that there exists p ∈ N such that g(vτ) ≤ g(w) ≤ s for any τ ∈ Wp. (Note that p
in independent of s and w.) This shows that, for any τ ∈ Wp and any v ∈ Λa,w′,
there exists a unique v′ such that vτ ≤ v′ and v′ ∈ Γs. Define π(vτ) = v′. Then
π : Λa,w′ × Wp → Γs. Note that Γs,w is included in the image of π. Hence
#(Γs,w) ≤ #(Λa,w′)Np, where N = #(S). By Lemma 1.3.6, if S1 is locally finite,
then so is S2. This proves (2). Next we show (3). For any v′ ∈ Γs,w, choose
v ∈ Λa,w′ and τ ∈ Wp so that π(vτ) = v′. Then l(vτ) ≤ l(v′). Since S1 satisfies
(EL1), there exists γ > 0 such that l(wi) ≥ γl(w) for any w ∈ W∗ and any i ∈ S.
Therefore,

l(v′) ≥ l(vτ) ≥ γpl(v) ≥ γpa = γpl(w).

Hence S1 is gentle with respect to S2.
To prove (4), we write S3 = {Ωs}0<s≤1. Let w ∈ Ωs. There exist k, j ∈ N such

that j ≤ k ≤ m = |w|, g(w1 . . . wk−1) > g(w1 . . . wk) = g(w) and l(w1 . . . wj−1) >
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l(w1 . . . wj) = l(w1 . . . wk). Now using the same construction as π above, we have
maps π1 : Λa,w′′ ×Wp → Γb and π2 : Γb,w′ ×Wq → Ωs, where w′′ = w1 . . . wj , a =
l(w′′), w′ = w1 . . . wk and b = g(w′), satisfying the same properties as π. Now for
any v ∈ Ωs,w, there exist v′ ∈ Γb,w′ , τ ′ ∈ Wq, v

′′ ∈ Λa,w′′ and τ ′′ ∈ Wp such that
π2(v

′τ ′) = v and π1(v
′′τ ′′) = v′. Note that v′τ ′ ≤ v and v′′τ ′′ ≤ v′. This implies

l(v) ≥ l(v′τ ′) ≥ γql(v′) ≥ γql(v′′τ ′′) ≥ γp+ql(v′′) ≥ γp+qa ≥ γp+ql(w)

This shows that S1 is gentle with respect to S3. Applying (3), we obtain the desired
result. �

By the above theorem, the relation “gentle with respect to” is an equivalence
relation on elliptic scales.

Definition 1.4.4. (1) Let S1 and S2 be elliptic scales. We write S1 ∼
GE

S2 if

and only if S1 is gentle with respect to S2.
(2) Let S be a scale. We define

MVD(L, S) = {µ|µ ∈ M(K), µ has (VD) with respect to S}.

Proposition 1.4.5. (1) Let S be an elliptic scale on Σ. If MVD(L, S) 6= ∅,
then S is locally finite.
(2) Let S1 and S2 be elliptic scales. Then

MVD(L, S1) ∩MVD(L, S2) 6= ∅ ⇒ S1 ∼
GE

S2 ⇒MVD(L, S1) =MVD(L, S2).

Proof. (1) This is immediate by Theorem 1.3.5.
(2) Let µ ∈ MVD(L, S1) ∩ MVD(L, S2). If S3 is the scale induced by µ, then
S1 ∼

GE
S3 and S2 ∼

GE
S3 by Proposition 1.4.2. Hence S1 ∼

GE
S2. Next assume

S1 ∼
GE

S2 and let µ ∈ MVD(L, S1). Let S3 be the scale induced by µ. Then

S1 ∼
GE

S3 by Proposition 1.4.2. Hence S2 ∼
GE

S3. Again by Proposition 1.4.2,

µ ∈ MVD(L, S2). Hence MVD(L, S1) ⊆ MVD(L, S2). Exchanging S1 and S2, we
seeMVD(L, S1) =MVD(L, S2). �

Denote the collection of elliptic scales on Σ by ES(Σ). Then, by the above
results, an equivalence class of ES(Σ)/∼

GE
tells us whether a scale S is locally finite

or not and determines MVD(L, S), the family of volume doubling measures with
respect to S. Those facts raises our curiosity on the structure of ES(Σ)/∼

GE
. In the

following sections, we will study this problem in a restricted situation.
We conclude this section by giving an important necessary condition for two

self-similar scales being gentle.

Notation. For w ∈ W# and any n ∈ N, we define (w)n = w . . .w︸ ︷︷ ︸
n times

∈W∗. Also

(w)∞ = www . . . ∈ Σ.

Lemma 1.4.6. Let a = (ai)i∈S ∈ (0, 1)S and let b = (bi)i∈S ∈ (0, 1)S. Assume

that S(a) ∼
GE

S(b). If w,w′, v, v′ ∈W# and π(v(w)∞) = π(v′(w′)∞), then
log aw
log bw

=

log aw′

log bw′

.
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Proof. For sufficiently small s, there exist i(s), j(s) ∈ N and w(s), w′(s) ∈ W∗
such that w < w(s), w′ < w′(s), v(w)i(s)w(s), v′(w′)j(s)w′(s) ∈ Λs(a) Set v(s) =
v(w)i(s)w(s) and v′(s) = v′(w′)j(s)w′(s). By Lemma 1.1.13, av(s)/av′(s) is uniformly
bounded with respect to s. Since avaw(s)/(av′aw′(s)) is uniformly bounded, we see

that (aw)i(s)/(aw′)j(s) is uniformly bounded with respect to s. As S(a) ∼
GE

S(b),

we see that bv(s)/bv′(s) is uniformly bounded as well. Note that bvbw(s)/(bv′bw′(s))
is uniformly bounded. Hence

(bw)i(s)

(bw′)j(s)
= (aw)i(s)(α−β) (aw)i(s)β

(aw′)j(s)β
,

where α = log bw/ log aw and β = log bw′/ log aw′ , is uniformly bounded. Since
i(s)→ +∞ as s ↓ 0, it follows that α = β. �

1.5. Rationally ramified self-similar sets 1

In this section, we will introduce a special class of self-similar structures called
“rationally ramified self-similar structures”. L = (K,S, {Fi}i∈S) is assumed to
be a self-similar structure throughout this section. Roughly speaking, L is called
rationally ramified if Ki∩Kj is again a self-similar set. This class of self-similar sets
include post critically finite self-similar sets, for example, the Sierpinski gasket, as
well as so called “infinitely ramified” self-similar sets like the Sierpinski carpet and
the Menger sponge. The advantage of a rationally ramified self-similar structure is
that one can give simple characterizations for the locally finiteness of a scale and the
gentleness of two scales. Using such results, we can explicitly determine the class
of self-similar measures which have the volume doubling property with respect to a
given scale for rationally ramified self-similar sets. See the next section for details

To start with, we need several notions and results on the shift space.

Definition 1.5.1. Let X be a non-empty finite subset of W#. For w ∈ W#,
we denote w = (w)1 . . . (w)|w|, where (w)i ∈ S for i = 1, . . . , |w|. We define a map

ιX from Σ(X) = {x1x2 . . . |xi ∈ X for any i ∈ N} to Σ(S) by

ιX(x1x2 . . .) = (x1)1 . . . (x1)|x1|(x2)1 . . . (x2)|x2| . . . .

Define Σ[X ] = ιX(Σ(X)), K[X ] = π(Σ[X ]), Σw[X ] = σw
(
ιX(Σ(X))

)
and Kw[X ] =

Fw(K[X ])(= π(Σw[X ])) for w ∈ W#. X is called independent if and only if ιX is
injective. When X is independent, we sometimes identify Σ(X) with Σ[X ].

For example, let S = {1, 2} and let X = {1, 12, 21} Then X is not independent.
In fact,

2112(1)∞ = ιX(cb(a)∞) = ιX(cac(a)∞).

where a = 1, b = 12, c = 21.
Since ιX : Σ(X)→ Σ[X ] and π : Σ→ K are continuous, we have the following

lemma.

Lemma 1.5.2. If X is a nonempty finite subset of W∗, then Σ[X ] and K[X ]
are compact.

Now we study how to characterize the independence of X .

Definition 1.5.3. Let X be a nonempty subset of W#.
(1) For m ≥ 0, define ρm : Σ→Wm by ρm(ω) = ω1 . . . ωm for ω = ω1ω2 . . ..
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(2) For m ≥ n, define ρm,n : Wm →Wn by ρm,n(w1 . . . wm) = w1 . . . wn.
(3) For x1, x2, . . . , xm ∈ X , recalling that each xi ∈W∗, we may regard x1 . . . xm ∈
W∗(X) as an element of W∗. We use ιwX(x1 . . . xm) to denote x1 . . . xm as an element
of W∗ to avoid confusion. In other word, ιwX : W∗(X)→W∗ is defined by

ιwX(x1 . . . xm) = x1(1) . . . x1(n1) . . . xm(1) . . . xm(nm),

where ni = |xi| and xi = xi(1)xi(2) . . . xi(ni) ∈Wni for i = 1, . . . ,m.
(4) For m ≥ 0, we define

Qm(X) =
⋃

w,v∈X,w 6=v

(
ρm(Σw[X ])) ∩ ρm(Σv[X ])

)
.

The following fact is immediate from the above definition. It says that an
element of Qm(X) can be expressed by two different words of X whose first symbols
are different. X is assumed to be a nonempty finite subset of W#.

Lemma 1.5.4. Let w ∈ Wm. Then w ∈ Qm(X) if and only if there ex-
ist x1 . . . xk and x′1 . . . x′n ∈ W∗(X) such that x1 6= x′1, ι

w
X(x1 . . . xk) ≤ w <

ιwX(x1 . . . xk−1) and ιwX(x′1 . . . x′n) ≤ w < ιwX(x′1 . . . x′n−1). Moreover, if m ≥ n,
then ρm,n(Qm(X)) ⊆ Qn(X).

Lemma 1.5.5. Let ω ∈ Σ. Suppose that there exist w ∈ X and m1 < m2 < . . .
such that ρmi(ω) ∈ ρmi(Σw[X ]). Then ω = ιX(wx2 . . .) for some x2, x3, . . . ∈ X.

Proof. For sufficiently large i, we may find x(i) ∈ X such that ρmi(ω) ∈
Σwx(i). Since X is a finite set, we may find x2 ∈ X and a subsequence {m2,i}i≥1 of
{mi}i≥1 such that ρm2,i(ω) ∈ Σwx2 for any i. Repeating the same procedure, we
may inductively obtain xj ∈ X and {mj,i}i≥1 for j ≥ 2. Now, ω = ιX(wx2x3 . . .).

�

We have a simple characterization of the independence ofX in terms of Qm(X).

Theorem 1.5.6. Let X be a nonempty finite subset of W#. Then X is inde-
pendent if and only if Qm(X) = ∅ for some m ∈ N.

Remark. By Lemma 1.5.4, if Qm(X) = ∅, then Qn(X) = ∅ for any n ≥ m.

Proof. If X is not independent, then there exist x1x2 . . . , x
′
1x

′
2 . . . ∈ Σ(X)

such that ιX(x1x2 . . .) = ιX(x′1x
′
2 . . .). We may assume that x1 6= x′1 without loss

of generality. Now, ρm(ιX(x1x2 . . .)) ∈ Qm(X) for any m ≥ 0.
Conversely suppose that Qm(X) 6= ∅ for any m ≥ 0. Set

Q∗
m,n(X) = ρm+n,m(Qm+n(X)).

Then {Q∗
m,n(X)}n≥0 is a decreasing sequence of nonempty finite sets. Therefore,

Q∗
m(X) = ∩n≥0Q

∗
m,n(X) is not empty. Also it follows that ρk,l(Q

∗
k(X)) = Q∗

l (X)
for any k, l ∈ N with k ≥ l. Therefore, there exists ω = ω1ω2 . . . ∈ Σ such that
ρm(ω) ∈ Q∗

m(X) for any m ≥ 0. For each m, there exist w(m), v(m) ∈ X such that
w(m) 6= v(m) and ρm(ω) ∈ ρm(ιX(Σ(X)))∩Σw(m) ∩Σv(m). Since X is a finite set,
there exist w, v ∈ X and {mi}i≥1 such that w 6= v, w(mi) = w and v(mi) = v.
Now using Lemma 1.5.5, we see that ω = ιX(wx2x3 . . .) = ιX(vx′2x

′
3 . . .) for some

{xi}, {x′i} ∈ X . Hence ιX is not injective and therefore X is not independent. �
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Hereafter, if a nonempty finite subset X of W# is independent, we think of
x1 . . . xm ∈ W∗(X) (where xi ∈ X for any i) as an element of W∗ in the natural
manner.

Before getting to the definition of rationally ramified self-similar structure, we
still need several notions.

Definition 1.5.7. Let Σ0 be a nonempty subset of Σ and let x ∈ W∗. We
define OΣ0,x(ω)

OΣ0,x(ω) = #({m|m ≥ 0, σmω ∈ σx(Σ0)})
for any ω ∈ Σ. We allow ∞ as a value of OΣ0,x(ω).

The following two lemmas are basic facts on OΣ[X],x(ω).

Lemma 1.5.8. Let X be a nonempty finite subset of W∗ and let x ∈W∗. If

sup
ω∈Σ

OΣ[X],x(ω) = +∞,

then there exists τ ∈ Σ such that OΣ[X],x(τ) =∞.

Proof. Set k = maxw∈X |w| and define M = |x|(k2 + 3). By the above
assumption, we may choose ω ∈ Σx[X ] so that #({m|σm(ω) ∈ Σx[X ]}) ≥ M . Let
ω = xιX(x1x2 . . .), where x1, x2, . . . ∈ X . There exists a sequence {mi}0=1,...,k2+2

such that m0 = 0, mi + |x| ≤ mi+1 for any i = 1, . . . , k2 + 1 and σmi(ω) ∈ Σx[X ]
for any i = 1, . . . , k2 + 2. Choose n so that mk2+2 + |x| < |xx1 . . . xn−1|. Then
|xn+1 . . . xn+k| ≥ k and so, for any i = 1, . . . , k2 + 2, there exists {xij}j=1,...,n(i) ⊂
X such that xx1 . . . xnxn+1 . . . xn+k < ω1 . . . ωmixx

i
1 . . . x

i
n(i) ≤ xx1 . . . xn. Since

k2 +2 > |xn+1 . . . xn+k|+1, we see ω1 . . . ωmpxx
p
1 . . . x

p
n(p) = ω1 . . . ωmqxx

q
1 . . . x

q
n(q)

for some 0 ≤ p < q ≤ k. (We set x0
i = xi and n(0) = n.) Note that mp + |x| ≤ mq.

Hence we have l which satisfies σl(xp1 . . . x
p
n(p)) = xxq1 . . . x

q
n(q). Set w = xp1 . . . xn(p)

p

and define τ = (w)∞. Then τ = (w)iw1 . . . wlxx
q
1 . . . x

q
n(q)(w)∞ for any i. Therefore,

σ|w|i+lτ ∈ Σx[X ] for any i. �

Remark. In the proof, we have shown the following statement:
Let k = maxw∈X |w|. If OΣ[X],x(ω) ≥ M = |x|(k2 + 3) for some ω ∈ Σ, then there
exists τ ∈ Σ such that OΣ[X],x(τ) = +∞.

As a final step to the definition of rationally ramified self-similar structures, we
need several definitions.

Definition 1.5.9. Let Ω = (X,Y, ϕ, x, y), where X and Y are a non-empty
independent finite subsets of W#, ϕ is a bijective map between X and Y and
x, y ∈W#.
(1) We define ϕ∗ : Σx[X ] → Σy[Y ] by ϕ∗(xx1x2 . . .) = yϕ(x1)ϕ(x2) . . . for any
x1, x2, . . . ∈ X .
(2) A pair (ω, τ) ∈ Σ(S) × Σ(S) with ω 6= τ is called a corresponding pair with
respect to Ω if and only if ω = vω′ and τ = vϕ∗(ω′) for some v ∈ W∗ and some
ω′ ∈ Σx[X ].
(3) Ω is called a relation of L if and only if the first symbol of x is different from
that of y, OΣ[X],x(ω) and OΣ[Y ],y(ω) are finite for any ω ∈ Σ and π(ω) = π(τ) for
any corresponding pair (ω, τ) with respect to Ω. The collection of relations of L is
denoted by RL.
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(4) Let Ω = (X,Y, ϕ, x, y) be a relation of L. Ω′ = (X ′, Y ′, ϕ′, x, y) is called a
sub-relation of Ω if X ′ ⊆ X , Y ′ = ϕ(X ′) and ϕ′ = ϕ|X .
(5) LetR ⊂ RL. A relation Ω = (X,Y, ϕ, x, y) is said to be generated byR if there
exists a sequence of sub-relations of relations in R, {(Xi, Xi+1, ϕi, xi, xi+1)}m−1

i=1 ,
such that X = X1, Y = Xm, x = x1, y = xm and ϕ = ϕm−1◦ . . . ◦ϕ1. We use [R]
to denote the collection of relations generated by R. If R ⊆ R′ ⊆ [R], then R′ is
said to be generated by R or R is a generator of R′.

Remark. If (X,Y, ϕ, x, y) is a relation of L. Then supw∈ΣOΣ[X],x(w) and
supw∈ΣOΣ[Y ],y(w) is finite by Lemma 1.5.8.

Remark. If Ω = (X,Y, ϕ, x, y) be a relation of L, then so is (Y,X, ϕ−1, y, x).
We denote Ω−1 = (Y,X, ϕ−1, y, x) and identify Ω with Ω−1. In particular, if R is a
subset of RL for a self-similar structure L, then we always suppose that Ω−1 ∈ R
for any Ω ∈ R. In making a list of elements of a relation set, we customary mention
only one of (X,Y, ϕ, x, y) or (Y,X, ϕ−1, y, x).

Definition 1.5.10 (Rationally ramified self-similar structure). A self-similar
structure L = (K,S, {Fi}i∈S) is said to be rationally ramified if and only if it is
strongly finite and there exists a finite subset R of RL satisfying the following
property: for any i, j ∈ S with i 6= j,

(1.5.1) π−1(Ki ∩Kj) ∩ Σi =
⋃

(X,Y,ϕ,x,y)∈Rij,x∈σi(W∗)

Σx[X ],

where
Rij = {Ω|Ω = (X,Y, ϕ, x, y) ∈ [R], x ∈ σi(W∗), y ∈ σj(W∗)}.

R is called the relation set of L.

Note that [R] is a finite set if R is finite. We may assume that R = [R]
in the above definition without loss of generality. However, as one will see in
Example 1.5.12, R can be more simple than [R] in some cases.

Example 1.5.11 (the Sierpinski gasket). Let p1, p2 and p3 be vertices of a
regular triangle in C. Define Fi(z) = (z − pi)/2 + pi for i = 1, 2, 3. The Sier-
pinski gasket is the self-similar set with respect to {F1, F2, F3}, i.e. K is the
unique non-empty compact set satisfying K = F1(K) ∪ F2(K) ∪ F3(K). L =
(K,S, {Fi}i∈S), where S = {1, 2, 3}, is a rationally ramified self-similar structure.
Indeed, {({i}, {j}, ϕij, j, i)|(i, j) = (1, 2), (2, 3), (3, 1)}, where ϕij(i) = j, is a rela-
tion set. According to the convention in the remark above, this relation set contains
6 elements in fact.

Example 1.5.12 (the Sierpinski carpet). et p1 = 0, p2 = 1/2, p3 = 1, p4 =
1 +
√
−1/2, p5 = 1 +

√
−1, p6 = 1/2 +

√
−1, p7 =

√
−1 and p8 =

√
−1/2. Define

Fi : C→ C by Fi(z) = (z − pi)/3 + pi for i = 1, . . . , 8. Then there exists a unique
nonempty compact subset to C, K, which satisfies K = ∪8

i=1Fi(K). K is called
the Sierpinski carpet. Let L = (K,S, {Fi}i∈S), where S = {1, . . . , 8}. Then L is
a rationally ramified self-similar structure. To describe its relation set R, we let
X1 = {1, 2, 3}, Y1 = {7, 6, 5}, ϕ1(1) = 7, ϕ1(2) = 6, ϕ1(3) = 5, X2 = {1, 8, 7}, Y2 =
{3, 4, 5}, ϕ2(1) = 3, ϕ2(8) = 4 and ϕ2(7) = 5. Then

R = {(X1, Y1, ϕ1, i, j)|(i, j) = (8, 1), (4, 3), (7, 8), (5, 4)}∪
{(X2, Y2, ϕ2, i, j)|(i, j) = (2, 1), (6, 7), (3, 2), (5, 6)},
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Figure 1.1. Sierpinski gasket

Figure 1.2. Sierpinski carpet

where ϕ3(1) = 5 and ϕ4(3) = 7. In this case, the set of relations generated by R,
[R], is not equal to R. In fact,

[R] = R∪ {({1}, {5}, ϕ15, i, j), ({3}, {7}, ϕ37, k, l)|
(i, j) = (6, 8), (4, 2), (k, l) = (8, 2), (6, 4)},

where ϕmn maps m to n. Those additions are really needed in the definition of
rationally ramified self-similar structure. For example,R42 = {({1}, {5}, ϕ15, 4, 2)}.

Proposition 1.5.13. Let L = (K,S, {Fi}i∈S) be a rationally ramified self-
similar structure with a relation set R.
(1) K 6= V 0.
(2) Set M = maxx∈K #(π−1(x)). Suppose that π(ω) = π(τ) and ω 6= τ . Then
there exist Ω1, . . . ,Ωm ∈ [R] and ω(1), . . . , ω(m+1) ∈ Σ which satisfy the following
conditions (AS1), (AS2) and (AS3):
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(AS1) m+ 1 ≤ maxx∈K #(π−1(x))
(AS2) ω = ω(1), ω(m+1) = τ and (ω(i), ω(i+1)) is a corresponding pair with respect
to Ωi for any i = 1, . . . ,m.
(AS3) s(ω(i), τ) < s(ω(i+1), τ) for any i = 1, . . . ,m− 2, where s(δ, ρ) = min{k −
1|δk 6= ρk} for δ = δ1δ2 . . . and ρ = ρ1ρ2 . . ..

Remark. Under the assumptions of the above proposition, let ω(1), . . . , ω(m+1)

and Ω1, . . . ,Ωm satisfy (AS1), (AS2) and (AS3). Set mn = s(τ, ω(n)). If Ωn =

(Xn, Yn, ϕn, x(n), y(n)), then the first symbols of x(i) and y(i) are ω
(n)
mn+1 and τmn+1

respectively. Furthermore, ω(n) = τ1 . . . τmnx(n)x1x2 . . . for some x1x2 · · · ∈ Σ[X ]
and ω(n+1) = τ1 . . . τmny(n)ϕn(x1)ϕn(x2) . . ..

Proof. (1) Since CL = ∪(X,Y,ϕ,x,y)∈RΣx[X ], the post critical set PL is a fi-
nite union of Σw[X ]’s for some w ∈W∗ and some X where (X,Y, ϕ, x, y) ∈ R. Now
V0 is a finite union of Fw(K[X ])’s. Lemma 1.5.2 shows that V0 = V 0. By [28,
Corollaries 1.4.8 and 1.4.9], L is minimal. Hence, [28, Theorem 1.3.8] implies that
K 6= V0 = V 0.
(2) Define ω(1), ω(2), . . . and Ω1,Ω2, . . . inductively as follows. Set ω(1) = ω. Sup-
pose we have ω(1), . . . , ω(n) and Ω1, . . . ,Ωn−1. If ω(n) = τ , then we setm = n+1 and

finish the construction. If ω(n) 6= τ , then set k = s(ω(n), τ)+1, i = ω
(n)
k and j = τk.

By (1.5.1), we may choose Ωn = (X,Y, ϕ, x, y) ∈ Rij such that σk(ω(n)) ∈ Σx[X ].

Define ω(n+1) = τ1 . . . τkϕ∗(σk(ω(n)). Then ω
(n+1)
k+1 = τk+1. Hence s(ω(n+1), τ) > k.

As far as this construction continues, ω(1), ω(2), . . . , ω(n) and τ are mutually differ-
ent elements. Therefore, n+ 1 will not exceed maxx∈K #(π−1(x)). �

The next two lemmas describe fine structures of intersections of two copies Kw

and Kv for a rationally ramified self-similar set. They are technically useful in
getting results in the following sections.

Lemma 1.5.14. Let L be rationally ramified and let (X,Y, ϕ, x, y) ∈ RL. Define
ϕ̂ : Σ[X ] → Σ[Y ] by ϕ̂(x1x2 . . .) = ϕ(x1)ϕ(x2) . . .. Then there exists a unique
homeomorphism ϕ̃ : K[X ]→ K[Y ] that satisfies ϕ̃ ◦ π = π ◦ ϕ̂.

Proof. Fix p ∈ K[X ]. If there exist x1x2 . . . ∈ Σ(X) and x′1x
′
2 . . . ∈ Σ(X)

such that π(x1x2 . . .) = π(x′1x
′
2 . . .) = p, then π(yϕ̂(x1x2 . . .)) = π(xx1x2 . . .) =

π(xx′1x
′
2 . . .) = π(yϕ̂(x′1x

′
2 . . .)). Therefore, π(ϕ̂(x1x2 . . .)) = π(ϕ̂(x′1x

′
2 . . .)). Hence

for any p ∈ K[X ], π(ϕ̂(π−1(x))) contains only one point. Define ϕ̃(p) as this one
point. Then by a routine argument, ϕ̃ : K[X ] → K[Y ] is continuous. Exchanging
X and Y , we obtain the inverse of ϕ̃. Hence ϕ̃ is a homeomorphism. �

Definition 1.5.15. Let X be a finite subset of W# and let x ∈ W∗. For each
w ∈ W∗, define

AX,x(w) = {(z, x0, x1, . . . , xm)|m ≥ 0, z ∈W∗,

x0 = x, x1, . . . , xm ∈ X, zx0x1 . . . xm ≤ w < zx0x1 . . . xm−1}.

Lemma 1.5.16. Let L be rationally ramified and let Ω = (X,Y, ϕ, x, y) ∈ RL.
Suppose w = w1 . . . wm, v = v1 . . . vn ∈ W# and Σw ∩ Σv = ∅. Set z∗ = w1 . . . wN ,
where N = inf{i|wi = vi} − 1. Then, there exist a corresponding pair with re-
spect to Ω in Σw × Σv if and only if there exist (z∗, x, x1, . . . , xm) ∈ AX,x(w) and
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(z∗, y, y1, . . . , yn) ∈ AY,y(v) such that yi = ϕ(xi) for i = 1, . . . ,min (m,n). More-
over, let xm = x1

mx
2
m where w = zxx1. . .xm−1x

1
m and let yn = y1

ny
2
n where v =

zyy1. . .yn−1y
1
n. Suppose that m ≥ n and define yn+1, . . . , ym by yi = ϕ(xi). Then

Kwx2
m

[X ] = Kvy2
nyn+1...ym

[Y ] ⊆ Kw ∩ Kv and (Fv)
−1◦Fw|Kx2

m
[X] = Fy2

nyn+1...ym
◦

ϕ̃◦ (Fx2
m

)−1, where ϕ̃ is the homeomorphism between K[X ] and K[Y ] introduced in

Lemma 1.5.14. See the following commutative diagram, where y∗ = y2
nyn+1 . . . ym.

K[X ]
Fx2

m−−−−→ Kx2
m

[X ]
Fw−−−−→ Kwx2

m
[X ]

ϕ̃

y
y

∥∥∥

K[Y ] −−−−→
Fy∗

Ky∗ [X ] −−−−→
Fv

Kvy∗ [Y ]

1.6. Rationally ramified self-similar sets 2

Continued from the last section, we will focus on rationally ramified self-similar
structures. In this class, there are useful criteria for a scale being locally finite
and self-similar scales being gentle with respect to each other. As in the previous
sections, L = (K,S, {Fi}i∈S) is a self-similar structure.

Theorem 1.6.1. Let L be rationally ramified and let R be its relation set.
Define R2 = {(X,Y, ϕ, x, y) ∈ R|#(X) ≥ 2}. Then an elliptic scale S on Σ is
locally finite with respect to L if and only if there exist c1, c2 > 0 such that

(1.6.1) c1l(zxx1 . . . xm) ≤ l(zyϕ(x1) . . . ϕ(xm)) ≤ c2l(zxx1 . . . xm)

for any (X,Y, ϕ, x, y) ∈ R2, any x1 . . . xm ∈W∗(X) and any z ∈ W∗, where l is the
gauge function of S. In particular, for a ∈ (0, 1)S, a self-similar scale S(a) on Σ is
locally finite with respect to L if and only if aw = aϕ(w) for any (X,Y, ϕ, x, y) ∈ R2

and any w ∈ X.

Corollary 1.6.2. Let L be rationally ramified. Assume that S1 · S2 is locally
finite with respect to L for elliptic scales S1 and S2 on Σ. Then S1 is locally finite
with respect to L if and only if S2 is locally finite with respect to L.

To prove Theorem 1.6.1, we need the following lemma.

Lemma 1.6.3. Let X be a nonempty independent finite subset of W# and let x ∈
W#. Assume that OΣ[X],x(ω) < +∞ for any ω ∈ Σ. Then supw∈W#

#(AX,x(w)) <
+∞.

Proof. By Theorem 1.5.6, we may choose k so that Qk(X) = ∅. Fix z∗ ∈ W∗.
Then (z∗, x, x1, . . . , xm) ∈ AX,x(w) is uniquely determined except for xm−k, . . . , xm.
Therefore

(1.6.2) sup
w,z∗

#{(z∗, x, x1, . . . , xm) ∈ AX,x(w)} < +∞.

Now define

NX,x(w) = #{z|(z, x, x1, . . . , xm) ∈ AX,x(w) for some (x1, . . . , xm)}
Lemma 1.5.8 implies that supω∈ΣOΣ[X],x(ω) < +∞. Denote the value of this

supremum by N . Suppose that NX,x(w) > k(N + 1), where k = maxw∈X |w|. For
(z, x, x1, . . . , xm) ∈ AX,x(w), |w| − k ≤ |zxx1 . . . xm| ≤ |w| − 1. Therefore, for

some l ∈ {|w| − k, . . . , |w| − 1}, there exists {(z(i), x, x
(i)
1 , . . . , x

(i)
mi)}N+1

i=1 ⊂ AX,x(w)
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such that z(i) 6= z(j) for any i 6= j and z(i)xx
(i)
1 . . . x

(i)
mi = w1 . . . wl, where w =

w1 . . . w|w|. Set ω = w1 . . . wl(x∗)∞, where x∗ ∈ X . Then, σ|z(i)|ω ∈ Σx[X ] for any
i = 1, . . . , N+1. This contradicts to the definition ofN . Hence, NX,x(w) ≤ k(N+1)
for any w ∈ W∗. Combining this with (1.6.2), we have the desired estimate. �

Definition 1.6.4. Let L be a self-similar structure and let R ⊆ RL. For a
scale {Λs}s∈(0,1], we define

ΛR
s,w = {v|v ∈ Λs, there exists an corresponding pair

with respect to some Ω ∈ [R] in Σw × Σv}
for any s ∈ (0, 1] and any w ∈ Λs.

Lemma 1.6.5. Let R be a relation set of a rationally ramified self-similar struc-
ture L and let S = {Λs}s∈(0,1] be a scale on L.
(1) S is locally finite if and only if there exists C > 0 such that #(ΛR

s,w) ≤ C for
any s ∈ (0, 1] and any w ∈ Λs.
(2) Let ψ : W∗ → [0,+∞). Then, ψ is gentle with respect to S if and only if there
exists C′ > 0 such that f(w) ≤ C′f(v) for any s ∈ (0, 1], any w ∈ Λs and any
v ∈ ΛR

s,w.

Proof. Let M = maxx∈K #(π−1(x)). If v ∈ Λs,w, then there exists p ∈ Kw ∩
Kv. Choose ω and τ ∈ π−1(p) so that ω ∈ Σw and τ ∈ Σv. By Proposition 1.5.13-
(2), we have ω(1), . . . , ω(m+1) ∈ Σ and Ω1, . . . ,Ωm ∈ [R] with (AS1), (AS2) and
(AS3). Hence, if Ws,w = ΛR

s,w ∪ {w},

(1.6.3) Λs,w ⊆
⋃

w(1)∈Ws,w

⋃

w(2)∈W
s,w(1)

. . .
⋃

w(M−1)∈W
s,w(M−2)

Ws,wM−1 .

Now if #(ΛR
s,w) ≤ C for any s and w, then (1.6.3) implies that #(Λs,w) ≤ (C+1)M .

Hence we have (1). Next suppose that f(w) ≤ C′f(v) for any w ∈ Λs and any
v ∈ ΛR

s,w. Then by (1.6.3), f(w) ≤ (C′)M−1f(v) for any w ∈ Λs and any v ∈ Λs,w.
This shows (2). �

Proof of Theorem 1.6.1. Note that Ω ∈ [R] is a finite composition of sub-
relations of relations in R and the the number of composed sub-relations is uni-
formly bounded. Therefore, we may assume thatR = [R] without loss of generality.
Let S = {Λs}0<s≤1. Since S is elliptic, there exist δ1, δ2 ∈ (0, 1) and c > 0 such

that (δ1)
|v|l(w) ≤ l(wv) ≤ c(δ2)|v|l(w). Define

M = max{|w||w ∈ X or w ∈ Y for some (X,Y, ϕ, x, y) ∈ R2}.
By Theorem 1.5.6, we may choose n ≥ 1 so that Qn(X) = ∅ for any X with
(X,Y, ϕ, x, y) ∈ R2. Assume that there exist (X,Y, ϕ, x, y) ∈ R2, x1 . . . xm ∈
W∗(X) and z ∈ W∗ such that l(zxx1 . . . xm)(δ1)

M(k+n) > l(zyy1 . . . ym), where
yj = ϕ(xj) for j = 1, . . . ,m. Set s = l(zyy1 . . . ym). Then there exists v ∈ W∗
such that v ≥ zyy1 . . . ym and v ∈ Λs. Since l(zxx1 . . . xm+k+n) > s for any
(xm+1, . . . , xm+k+n) ∈ Xk+n, Lemma 1.5.16 implies that there exists w ∈W∗ such
that w ≤ zxx1 . . . xm+k+n and w ∈ Λs,v. Since Qn(X) = 0, the set

{w|xm+1, . . . , xm+k+n ∈ X,w ≤ zxx1 . . . xm+k+n, w ∈ Λs,v}
contains 2k elements at least. Hence #(Λs,v) ≥ 2k. Therefore, if S is locally finite
with respect to L, then we have (1.6.1) by Lemma 1.3.6.
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Next we assume (1.6.1). Let w ∈ Λs and let Ω = (X,Y, ϕ, x, y) ∈ R2. For
γ = (z, x, x1, . . . , xm) ∈ AX,x(w), we define

B(γ) = {(v, z, y, y1, . . . , yn)|v ∈ Λs, (z, y, y1, . . . , yn) ∈ AY,y(v),
xi = ϕ(yi) for i = 1, . . . ,min (m,n)}.

By Lemma 1.5.16, for v ∈ ΛR
s,w, there exist γ ∈ AX,x(w) and (v, z, y, y1, . . . , yn) ∈

B(γ). If #(X) = 1, then it is immediate to see #(B(γ)) = 1. Suppose #(X) ≥ 2.
Let γ∗ = (v, y, y1, . . . , yn) ∈ B(γ). Since both w and v belongs to Λs,

c3l(zxx1 . . . xm) ≤ l(zyy1 . . . yn) ≤ c4l(zxx1 . . . xm),

where c3 and c4 are positive constants which are independent of s, w,Ω, γ and
γ∗. If n ≥ m, then l(zyy1 . . . yn) ≤ cδ2

kl(zyy1 . . . ym), where k = |n −m|. Hence
c3l(zxx1 . . . xm) ≤ c(δ2)kl(zyy1 . . . ym). By (1.6.1), |n−m| is bounded by a constant
which is independent of s, w,Ω, γ and γ∗. (Note that the above discussion is valid
even if n < m; we only need to exchange γ and γ∗ and do the same argument.)
Therefore, #(B(γ)) is uniformly bounded with respect to w, γ. This fact with
Lemma 1.6.3 implies that #(ΛR

s,w) is uniformly bounded with respect to s and w.
By Lemma 1.6.5-(1), S is locally finite with respect to L.

Finally if S = S(a), then it is straightforward to show that (1.6.1) is equivalent
to that aw = aϕ(w) for any (X,Y, ϕ, x, y) ∈ R2 and any w ∈ X . �

For the gentleness of self-similar scales, we have the following result.

Theorem 1.6.6. Let L = (K, S, {Fi}i∈S) be rationally ramified and let R be a
relations set of L. For a = (ai)i∈S ,b = (bi)i∈S ∈ (0, 1)S, S(a) ∼

GE
S(b) if and only

if, for any (X,Y, ϕ, x, y) ∈ R, either (R1) or (R2) below is satisfied:
(R1) aw = aϕ(w) and bw = bϕ(w) for any w ∈ X.
(R2) There exists δ > 0 such that

δ =
log aw
log bw

=
log aϕ(w)

log bϕ(w)

for any w ∈ X.

Proof. We may assume that R = [R] without loss of generality. First assume
that every Ω ∈ R satisfies (R1) or (R2). Suppose that v ∈ Λs,w(a)R. Then we
find a corresponding pair (ω, τ) with respect to some (X,Y, ϕ, x, y) ∈ R satisfying
ω ∈ Σw, τ ∈ Σv and π(ω) = π(τ). Now, let ω = zxx1x2 . . . and let τ = zyy1y2 . . .,
where z ∈ W∗, x1, x2, . . . ∈ X and yi = ϕ(xi) for any i. Then we obtain that
w = zxx1 . . . xnx

′ and v = zyy1 . . . ymy
′, where xn+1 < x′ and ym+1 < y′. Assume

that (R2) holds. Then, byi = (axi)
δ for any i. Now

bw
bv

=
bxbx′aw

δ(axax′)−δ

byby′avδ(ayay′)−δ
=
(aw
av

)δ(ayay′
axax′

)δ bxbx′

byby′

Note that aw/av is bounded (from above and below) by Lemma 1.1.13 Also since
R and X is a finite set, ax, ax′ , by, by′ is uniformly bounded. Therefore, bw/bv is
uniformly bounded. If (R1) is satisfied, then

aw
av

=
axax′

ayay′
axm+1 . . . axn ,
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where we assume that n ≥ m. Since aw/av is uniformly bounded, it follows that
|m− n| is uniformly bounded from above. Hence

bw
bv

=
bxbx′

byby′
bxm+1 . . . bxn

is uniformly bounded (from above and below). Hence Lemma 1.6.5-(2) implies that
S(a) ∼

GE
S(b).

Conversely assume that S(a) ∼
GE

S(b). Let (X,Y, ϕ, x, y) ∈ R and let w ∈ X .

Since π(x(w)∞) = π(y(ϕ(w))∞), Lemma 1.4.6 implies

(1.6.4)
log aw
log bw

=
log aϕ(w)

log bϕ(w)

We write δw = log bw/ log aw. For x1 6= x2 ∈ X , write yi = ϕ(xi) for i = 1, 2. Note
that π(x(x1x2)

∞) = π(y(y1y2)
∞). Hence by Lemma 1.4.6, we obtain (1.6.4) with

w = x1x2. Combining the three equations (1.6.4) with w = x1, x2 and x1x2, we
obtain either

(1.6.5) δx1 = δx2 ,

or

(1.6.6)
log ax1

log ay1
=

log bx1

log by1
=

log ax2

log ay2
=

log bx2

log by2

is satisfied. Suppose that (1.6.5) does not hold. Then we have (1.6.6). Write
p = log ay1/ log ax1 . Then ayi = (axi)

p and byi = (bxi)
p for i = 1, 2. Without loss

of generality, we may assume that 0 < p ≤ 1. (If not, exchange X and Y .) Suppose
that p 6= 1. Set x(m) = x(x1)

m for any m ≥ 1. Define sm = ax(m) = ax(ax1)
m. As

0 < p < 1, for sufficiently large m, there exists a unique n(m) ∈ N such that

(1.6.7) ay(ay1)
m(ay2)

n(m)−1 > sm ≥ ay(ay1)m(ay2)
n(m).

Then y(m) = y(y1)
m(y2)

n(m) ∈ Λsm(a). Since ayi = (axi)
p, (1.6.7) implies that

(1.6.8) n(m)− 1 ≤ log ax − log ay
log ax2

+m
(1− p)
p

log ax1

log ax2

≤ n(m).

Note that x(m), y(m) ∈ Λsm(a). Hence bx(m)/by(m) is uniformly bounded from

below and above with respect tom because S(a) ∼
GE

S(b). Now bx(m) = bx(ax1)
mδx1 .

Using Lemma 1.4.6, we obtain (1.6.4) with w = (x1)
m(x2)

n(m). Therefore, if δm =

δ(x1)m(x2)n(m) , then by(m) = by
(
(ay1)

m(ay2)
n(m)

)δm
. Hence,

bx(m)

by(m)
=
bx
by

(ay
ax

)δm
(ax(m)

ay(m)

)δm

(ax1)
m(δx1−δm).

As min(δx1 , δx2) ≤ δm ≤ max(δx1 , δx2), the first three factors in the above equality
is uniformly bounded from above and below with respect to m. Therefore, so is the
fourth factor (ax1)

m(δx1−δm). On the other hand, by (1.6.8),

lim
m→∞

(δx1 − δm) =
logbx1

log ax1

− log bx1 +A log bx2

log ax1 +A log ax2

,

where A =
(1− p)
p

log ax1

log ax2

. Now since 0 < p < 1 and δx1 6= δx2 , the value of the

above limit is not zero. Therefore, (ax1)
m(δx1−δm) is not uniformly bounded from
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above and below with respect to m. This contradiction implies that p = 1. Thus
it follows that, for any x1 6= x2 ∈ X , (1.6.5) holds or axi = ayi and bxi = byi

for i = 1, 2. So if (R1) is not satisfied (i.e. there exists some w ∈ X such that
aw 6= aϕ(w) or bw 6= bϕ(w)), then δw = δw′ for any w′ ∈ X with w 6= w′. This
implies (R2). Thus we have the desired conclusion. �

Combining Theorems 1.6.1 and 1.6.6, we can show that the number of equiva-
lence classes of locally finite self-similar scales under ∼

GE
is 0, 1 or +∞ as follows.

Theorem 1.6.7. Let L = (K,S, {Fi}i∈S) be a rationally ramified self-similar
structure and let R be its relation set. For any w = w1 . . . wm ∈ W∗, we define
fw ∈ ℓ(S) by fw(i) = #({k|wk = i}) for any i ∈ S. Define R1 = {(X,Y, ϕ, x, y) ∈
R|#(X) = 1} and R2 = {(X,Y, ϕ, x, y) ∈ R|#(X) ≥ 2}. Also let U be the subspace
of ℓ(S) generated by {fw − fϕ(w)|(X,Y, ϕ, x, y) ∈ R2, w ∈ X}. (If R2 = ∅, then U
is thought of as {0}.)
(1) There exists a self-similar scale on Σ which is locally finite with respect to L
if and only if U ∩ [0,+∞)S = {0}.
(2) Assume that U ∩ [0,+∞)S = {0}. For Ω = (X,Y, ϕ, x, y) ∈ R1, we use UΩ to
denote the subspace of ℓ(S) generated by {fw, fϕ(w)}, where w ∈ X. Also define

SLF(Σ,L) = {S|S ∈ S(Σ), S is locally finite with resepct to L}.
If for any Ω ∈ R1 with dimUΩ = 2, then #(SLF(Σ,L)/∼

GE
) = 1. In other words,

all self-similar scales which are locally finite with respect to L are gentle each other
if dim (U ∩ UΩ) = 1. If dim (U ∩ UΩ) = 0 for some Ω ∈ R1 with dimUΩ = 2, then
#(SLF(Σ,L)/∼

GE
) = +∞.

Remark. Let Ω = (X,Y, ϕ, x, y) ∈ R1 and let X = {w}. Then both fw and
fϕ(w) belong to [0,+∞)S. Therefore, if U ∩ [0,∞)S = {0} and dim (U ∩ UΩ) > 0,
then dim (U ∩ UΩ) = 1.

The following lemma is a version of Stiemke’s Theorem (or Minkowski-Frakas’s
Theorem), which is a well-known result in convex analysis. See [39] or [37] for
example.

Lemma 1.6.8. Let X be a finite set and U be a subspace of ℓ(X). Then U ∩
[0,+∞)X = {0} if and only if U⊥ ∩ (0,+∞)X 6= ∅, where U⊥ is the orthogonal
complement with respect to the inner product (·, ·)X .

Lemma 1.6.9. Assume that U ∩ [0,+∞)S = {0}. Let Ω = ({w}, {v}, ϕ, x, y) ∈
R1. Define ΦΩ : U⊥ → R2 by ΦΩ(p) =

(
(fw, p)S
(fv, p)S

)
. Then dimΦΩ(U⊥) = 1 or 2.

Moreover, dimΦΩ(U⊥) = 1 if and only if dimUΩ = 1 or dim (U ∩ UΩ) = 1.

Proof. By Lemma 1.6.9, we have U⊥ ∩ (0,+∞)S 6= ∅. Hence ΦΩ(U⊥) 6= {0}.
Hence dim ΦΩ(U⊥) > 0. Since U⊥ ∩ (0,+∞)S 6= ∅, it follows that dimΦΩ(U⊥) = 1
if and only if there exist α > 0 and β > 0 such that αfw − βfv ∈ (U⊥)⊥ = U .
αfw−βfv = 0 if and only if dimUΩ = 1. Also αfw−βfv 6= 0 if and only if U∩UΩ 6=
0. By the remark after Theorem 1.6.7, this is equivalent to dim (U ∩ UΩ) = 1. �

Proof of Theorem 1.6.7. Let S = S(a), where a = (ai)i∈S ∈ (0, 1)S. Set
pi = log ai for i ∈ S and write p = (pi)i∈S . Note that p ∈ (−∞, 0)S . By Theo-
rem 1.6.1, S is locally finite if and only if (fw−fϕ(w), p)S = 0 for any (X,Y, ϕ, x, y) ∈
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R2 and any w ∈ X . This is equivalent to that p ∈ U⊥. Therefore, there exists a
self-similar scale which is locally finite if and only if U⊥ ∩ (−∞, 0)S 6= ∅. Since U
is a linear subspace, U⊥ ∩ (−∞, 0)S 6= ∅ if and only if U⊥ ∩ (0,+∞)S 6= ∅. Now
Lemma 1.6.8 immediately implies (1).

Next we assume that U ∩ [0,+∞)S = {0}. Let S(a) and S(b) be locally finite.
By Theorem 1.6.1, the condition (R1) is satisfied for any (X,Y, ϕ, x, y) ∈ R2. If
dim (U ∩ UΩ) = 1 for any Ω ∈ R1 with dimUΩ = 2, then Lemma 1.6.9 shows that
dimΦΩ(U⊥) = 1 for any Ω ∈ R1. This immediately implies that (R2) holds for
any Ω ∈ R1. Thus we see S(a) ∼

GE
S(b). Now assume that dim (U ∩ UΩ) = 0 for

some Ω ∈ R1 with dimUΩ = 2. Then by Lemma 1.6.9 implies that dimΦΩ(U⊥) = 2.

Then for any q ∈ (−∞, 0)2, there exists a = (ai)i∈S such that log a ∈ U⊥ ∩
(−∞, 0)S and ΦΩ(log a) = q, where log a = (log ai)i∈S ∈ ℓ(S). Therefore there is
no constraint on the ratio between log aw and log av, where Ω = ({w}, {v}, ϕ, x, y).
Hence #(SLF(Σ,L)/∼

GE
) = +∞. �

Corollary 1.6.10. Let L be rationally ramified and let R1 and R2 be the same
as in Theorem 1.6.7. If R1 = ∅ and U ∩ [0,+∞)S = {0}, then #(SLF(Σ,L)/∼

GE
) =

1.

In the case of post critically finite self-similar structures, the above results are
easy to verify as follows.

Definition 1.6.11. A self-similar structure L = (K,S, {Fi}i∈S) is called post
critically finite (p. c. f. for short) if and only if the post critical set P of L is a finite
set.

Proposition 1.6.12. L = (K,S, {Fi}i∈S) is post critically finite if and only if
L is rationally ramified with a relation set R which satisfies R = R1. Moreover, if
L is post critically finite, then any scale S of Σ is locally finite with respect to L.

Corollary 1.6.13. Suppose that L is post critically finite with a relation set
R. Let

R = {({w(j)}, {v(j)}, ϕj , x(j), y(j))|j = 1, . . . , k, w(j), v(j), x(j), y(j) ∈W#},
where ϕj(w(j)) = v(j).
(1) For a = (ai)i∈S ,b = (bi)i∈S ∈ (0, 1)S, S(α) ∼

GE
S(β) if and only if

(1.6.9)
log aw(j)

log bw(j)
=

log av(j)

log bv(j)

for all i = 1, . . . , k.
(2) Let a = (ai)i∈S ∈ (0, 1)S. A self-similar measure µ with weight (µi)i∈S has
volume doubling property with respect to S(a) if and only if (1.6.9) with b = (µi)i∈S
holds for all j = 1, . . . , k.

1.7. Examples

In this section, we will apply our results in the previous sections to several
examples.

Example 1.7.1 (Sierpinski gasket). Let (K,S, {Fi}i∈S) be the same as in
Example 1.5.11. By Corollary 1.6.13, for a = (ai)i∈S ,b = (bi)i∈S ∈ (0, 1)S,
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S(a) ∼
GE

S(b) if and only if there exists δ > 0 such that δ = log bi

log ai
for any

i ∈ S. Hence {S|S is a self-similar scale and S ∼
GE

S(a)} = {S(aδ)|δ > 0}, where

aδ = {(ai)δ}i∈S . Also a self-similar measure µ with weight (µi)i∈S has volume
doubling property with respect to S(a) if and only if µi = (ai)

d, where d is the
unique constant that satisfies

∑
i∈S(ai)

d = 1.

Define

MS
VD(L, S) = {(µ)i∈S |the self-similar measure with weight (µi)i∈S

has volume doubling property with respect to S}.
We always identify MS

VD as the collections of self-similar measures with volume
doubling property with respect to S. For the Sierpinski gasket,MS

VD(L, S) consists
of only one self-similar measure. In general, however, the collection of self-similar
measures with volume doubling property may have richer structure. In fact, even
for the Sierpinski gasket, this is the case if we change the self-similar structure.

Example 1.7.2. L = (K,S, {Fi}i∈S) is the same as in Example 1.7.1. Define
L2 = (K,W2, {Fw}w∈W2). Then L2 is a p. c. f. self-similar structure with PL2 =
{(ii)∞|i ∈ S}. If (X,Y, ϕ, x, y) belongs to the relation set of L2, then X = {ii}, Y =
{jj} and ϕ(ii) = jj for some i 6= j ∈ S. Let a = (aw)w∈W2 ∈ (0, 1)W2 and consider
S(a), the self-similar scale on Σ(W2) with weight a. Also let µ be a self-similar
measure with respect to L2 with weight (µw)w∈W2 . Then a self-similar measure
µ with weight (µij)ij∈W2 has the volume doubling property with respect to a self-
similar scale (aij)ij∈W2 if and only if there exists δ > 0 such that µii = (aii)

δ

for any i ∈ S. In particular, if i 6= j, we may choose any value for µij as long
as
∑

w∈S µw = 1 and 0 < µij . So MS
VD(K, S) is an infinite set. This fact also

shows that MVD(L, S) is not trivial for any self-similar scale S on Σ(S) because
MS

VD(L2, S2(a)) ⊂ MVD(L, S(a)), where S2(a) is the self-similar scale on Σ(W2)
with weight (aiaj)ij∈W2 .

Next we present two examples, unit square and the Sierpinski carpet, which
are not post critically finite but rationally ramified.

Example 1.7.3 (Unit square). Let K be the unit square in R2, i.e. K = [0, 1]2

as in Section 0.2. We will identify R2 with C is the usual manner. Let p1 = 0, p2 =
1, p3 = 1+

√
−1 and p4 =

√
−1. Define fi : C→ C by fi(x) = (x−pi)/2+pi. ({fi}’s

are the same as in Section 0.2.) Then, L = (K,S, {fi}i∈S), where S = {1, 2, 3, 4},
is a rationally ramified self-similar structure. To describe its relation set R, we
define X1 = {1, 2}, Y1 = {4, 3}, ϕ1(1) = 4, ϕ1(2) = 3, X2 = {1, 4}, Y2 = {2, 3},
ϕ2(1) = 2 and ϕ2(4) = 3. As we explained in Section 0.2, where ϕ2 was denoted
by φ, (X2, Y2, ϕ2, 2, 1) is a relation. (See Figure 0.1.) In the same way, we have a
relation set

R = {(X1, Y1, ϕ1, 4, 1), (X1, Y1, ϕ1, 3, 2), (X2, Y2, ϕ2, 2, 1), (X2, Y2, ϕ2, 3, 4)}.
Let a = (ai)i∈S ∈ (0, 1)S and let b = (bi)i∈S ∈ (0, 1)S. Then Theorem 1.6.6 implies
that S(a) ∼

GE
S(b) if and only if there exists δ > 0 such that log bi/ log ai = δ for

any i ∈ S. On the other hand, by Theorem 1.6.1, S(a) is locally finite with respect
to L if and only if a1 = a2 = a3 = a4. Hence,there is only one equivalence class in
S(Σ)/∼

GE
which consists of locally finite scales. Let µ be a self-similar measure on K
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and let a ∈ (0, 1)S . Theorem 1.3.5 shows that µ has the volume doubling property
with respect to S(a) if and only if a1 = a2 = a3 = a4 and µ is the restriction of
the Lebesgue measure on K. So, we have only one choice of the volume doubling
measure in this case. Note that if ai = 1/2 for all i, Us(x) is equivalent to the
Euclidean ball, i.e. there exist c1 and c2 such that Bc1r(x, d) ⊆ Ur(x) ⊆ Bc2r(x, d)
for any r ∈ [0, 1] and any x ∈ K, where d is the Euclidean distance. (In such
a situation, the Euclidean distance is said to be adapted to the scale S(a). (See
Section 2.3 for details.) This fact shows Theorem 0.2.1.

Changing the self-similar structure, however, we have richer structure as in the
case of Sierpinski gaskets. Let S′ = {1, . . . , 9} and let {Fi}i∈S′ be the collection
of contractions defined in Section 0.2. Then L′ = {K,S′, {Fi}i∈S′} is a self-similar
structure. Let

R = {({1, 8, 7}, {3, 4, 5}, ψ1, x, y)|(x, y) = (2, 1), (2, 3), (9, 8), (4, 9), (6, 7), (5, 6)}
∪ {({1, 2, 3}, {7, 6, 5}, ψ2, x, y)|(x, y) = (8, 1), (7, 8), (9, 2), (6, 9), (4, 3), (5, 4)},

where ψ1(1) = 3, ψ1(8) = 4, ψ1(7) = 5, ψ2(1) = 7, ψ2(2) = 6, ψ2(3) = 5. Then L′
is rationally ramified with a relation set R. By Theorem 1.6.1, a self-similar scale
S(a) is locally finite with respect to L′ if and only if a1 = a3 = a5 = a7, a2 = a6 and
a4 = a8. (In Section 0.2, a ratio {ai}i∈S′ which satisfies this condition is said to be
weakly symmetric.) Moreover, Corollary 1.6.10 implies that #(SLF(Σ,L)/∼

GE
) = 1.

Combining those results with Theorem 1.3.5, we see that a self-similar measure µ
with weight {µi}i∈S′ has the volume doubling property with respect to a self-similar
scale S(a) if and only if both {µi}i∈S′ and {ai}i∈S′ are weakly symmetric. This
fact essentially shows Theorem 0.2.3.

Example 1.7.4 (the Sierpinski Carpet). Let L be the self-similar structure
associated with the Sierpinski carpet given in Example 1.5.12. Fix a = (ai)i∈S ∈
(0, 1)S. Using Theorem 1.6.6, we are going to determine if S(b) ∼

GE
S(a) holds for

b = (bi)i∈S or not. Define two conditions (SC1) and (SC2) as follows:
(SC1) a1 = a7, a2 = a6 and a3 = a5

(SC2) a1 = a3, a8 = a4 and a7 = a5

Then there are four cases:
(A) Assume that both (SC1) and (SC2) are satisfied, i.e. a1 = a3 = a5 = a7, a2 =
a6 and a8 = a4. See Figure 1.3. Then S(b) ∼

GE
S(a) if and only if b1 = b3 =

b5 = b7, b2 = b6 and b8 = b4. So all self-similar scales on Σ with (SC1) and
(SC2) are equivalent under ∼

GE
. Theorem 1.6.1 implies that any scale in this class is

locally finite. Moreover, by Corollary 1.6.10, this is the only one equivalence class
in S(Σ)/∼

GE
which consists of locally finite scales. Also in this case,

MS
VD(L, S(a)) = {(µi)i∈S |µ1 = µ3 = µ5 = µ7, µ2 = µ6, µ4 = µ8}.

(B) Assume that (SC1) holds but (SC2) does not. Then S(b) ∼
GE

S(a) if and

only if b1 = b7 = (a1)
δ, b3 = b5 = (a3)

δ, b4 = (a4)
δ, b8 = (a8)

δ and b2 = b6 for
some δ > 0. In this case, as we mentioned in (A), no scale is locally finite and
MVD(L, S(a)) = ∅.
(C) Assume that (SC2) holds but (SC1) does not. Then S(b) ∼

GE
S(a) if and only

if b1 = b3 = (a1)
δ, b5 = b7 = (a5)

δ, b2 = (a2)
δ, b6 = (a6)

δ and b8 = b4 for some
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a b a

c c

a b a

a = a1 = a3 = a5 = a7

b = a2 = a6

c = a4 = a8

Figure 1.3. Case (A) of the Sierpinski carpet

δ > 0. In this case, no scale is locally finite andMVD(L, S(a)) = ∅.
(D) Assume that neither (SC1) nor (SC2) holds. Then S(b) ∼

GE
S(a) if and only if

there exists δ > 0 such that bi = (ai)
δ for any i ∈ S. In this case, no scale is locally

finite andMVD(L, S(a)) = ∅.

Next we introduce a class of self-similar sets which are modifications of the
Sierpinski carpet. This class contains self-similar structures which are not rationally
ramified.

Example 1.7.5 (Sierpinski cross). Let p1, . . . , p8 be the same as in Exam-
ples 1.5.12 and1.7.4. For r ∈ [1/3, 1/2), define

Fi(z) =

{
r(z − pi) + pi if i is odd,

(1 − 2r)(z − pi) + pi if i is even.

The unique nonempty compact set K ⊆ R2 satisfying K = ∪8
i=1Fi(K) is called

a Sierpinski cross. (Note that if r = 1/3, then K is the Sierpinski carpet.) Let
S = {1, . . . , 8} and let L = (K,S, {Fi}i∈S). In this case, L may (or may not) be
rationally ramified. In fact, we have the following dichotomy.

Proposition 1.7.6. Let L be a Sierpinski cross. Then L is rationally ramified
if and only if r is the unique positive solution of 1− 2r = rm for some m ∈ N.

We will prove this proposition at the end of this section.
First we consider the rationally ramified cases. Assume that 1 − 2r = rm for

some m ∈ N. Since L is the Sierpinski gasket for m = 1, we assume that m > 1. If
X1, Y1, ϕ1, X2, Y2 and ϕ2 are the same as in Example 1.5.12, then the relation set
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Figure 1.4. Sierpinski cross: rationally ramified case r =
√

2− 1

Figure 1.5. Sierpinski cross: non rationally ramified case r = 2/5

R of L equals

{(Xl, Yl, ϕl, i(j)
m−1, k), (Xl, Yl, ϕl, k, j(i)

m−1)

|(i, j, k, l) = (7, 1, 8, 1), (5, 3, 4, 1), (3, 1, 2, 2), (5, 7, 6, 2)}
Using Theorems 1.6.1 and 1.6.7, we see that S(a) is locally finite if and only if
a1 = a3 = a5 = a7, a2 = a6 and a4 = a8. Obviously those scales are gentle each
other and form an equivalence class of S(Σ)/∼

GE
. Also a self-similar measure µ with

weight (µi)i∈S has volume doubling property with respect to those scales if and
only if µ1 = µ3 = µ5 = µ7, µ2 = µ6 and µ4 = µ8.

Even if L is not rationally ramified, there exists at lease one self-similar scale
on Σ that is locally finite with respect to L. Define c = (ci)i∈S by ci = r if i is odd,
ci = 1 − 2r if i is even. For any w ∈ W∗, define ∂Kw as the topological boundary
of Fw([0, 1]2). (In fact, ∂Kw = Fw(V0).) Then total length of ∂Kw is 4cw. Let
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Figure 1.6. Construction of diamond fractal

w ∈ Λs(c). Note that cw/(1 − 2r) ≥ s ≥ cw. Since {Kw ∩Kv}v∈Λs,w(c) provide a

division of ∂Kw, it follows that #(Λs(c)) ≤ 4(1 + (1 − 2r)−1). Therefore, for any
r, S(c) is locally finite with respect to L.

The next example is the diamond fractal which has been introduced in [31].
This self-similar structure is not post critically finite but any self-similar scale is
locally finite as in the post critically finite case.

Example 1.7.7 (Diamond fractal). Let p1, p2, p3 ∈ C be vertices of a regular
triangle with the length of edges 1, i.e. |pi − pj | = 1 if i 6= j. Define p = (p1 + p2 +
p3)/3. For i ∈ {1, 2, 3}, define Fi(z) = (z − pi)/3 + pi and

Fi+3(z) = −1

3

qi
qi

(z − pi+3) + pi+3,

where qi = pi−p and pi+3 = (3p+pi)/4. Let qij = (2pi+pj)/3 for any i, j ∈ {1, 2, 3}.
If {i, j, k} = {1, 2, 3}, then Fi+3 maps the regular triangle with vertices {pi, pj, pk}
to the regular triangle {p, pij, pik}.

There exists a unique nonempty compact set K satisfying K = ∪6
i=1Fi(K).

K is called the diamond fractal. The corresponding self-similar structure L =
(K,S, {Fi}i∈S), where S = {1, . . . , 6}, is rationally ramified. In fact, the relation
set R equals

{({i, j}, {i, j}, id, k, k + 3)|(i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)}∪
{({i}, {j}, ϕij, i+ 3, j + 3)|(i, j) = (1, 2), (2, 3), (3, 1)},

where id is the identity map and ϕij(i) = j. By Theorem 1.6.1, any self-similar
scale on Σ is locally finite with respect to L. Using Theorem 1.6.6, we see that, for
a,b ∈ (0, 1)S , S(a) ∼

GE
S(b) if and only if there exists δ > 0 such that bi = (ai)

δ for

i = 1, 2, 3.
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Figure 1.7. Diamond fractal

The rest of this section is devoted to a proof of Proposition 1.7.6.

Lemma 1.7.8. Let S be a finite set. Let fi : R → R be an affine contraction
for any i ∈ S, i.e. fi(x) = rix + ai, where |ri| < 1. Let K be the self-similar set
associated with {fi}i∈S. If fi(K) ∩ fj(K) = ∅ for any i, j ∈ S with i 6= j, then
ν1(K) = 0, where ν1 is the 1-dimensional Hausdorff measure.

Proof. Define Kǫ = {y|y ∈ R, |x − y| ≤ ǫ for some x ∈ K}. Let y ∈ Kǫ.
Choose x ∈ K so that |x− y| ≤ ǫ. Then fi(x) ∈ K and |f(y)− f(x)| ≤ |y− x| ≤ ǫ.
Hence fi(y) ∈ Kǫ. This shows that fi(Kǫ) ⊆ Kǫ. Let K1

ǫ = ∪i∈Sfi(Kǫ). Then
K1
ǫ ⊆ Kǫ. Since Kǫ 6= K, the uniqueness of the self-similar set implies K1

ǫ 6= Kǫ.
Therefore, if α = ν1(K

1
ǫ )/ν1(Kǫ), then α ∈ (0, 1). On the other hand, if we choose

sufficiently small ǫ, then fi(Kǫ) ∩ fj(Kǫ) = ∅ for any i, j ∈ S with i 6= j. Define
Km
ǫ inductively by Km

ǫ = ∪i∈Sfi(Km−1
ǫ ). Then ν1(K

m
ǫ ) = αmν1(Kǫ). Since

K = ∩m≥0K
m
ǫ , it follows that ν1(K) = 0. �

Let L be a Sierpinski cross.

Proof of Proposition 1.7.6. If 1 − 2r = rm for some m ∈ R, then we can
give the relation set R as in Example 1.7.5. Hence L is rationally ramified.

Next assume that L is rationally ramified with a relation set R. Let [R] =
{Ω1, . . . ,Ωm}, where Ω = (Xi, Yi, ϕi, x(i), y(i)), be a relation set. Consider K8 ∩
K7 = F7(L1) ∩ F8(L2) = F8(L2), where L1 = [0, 1] and L2 = {x+

√
−1|x ∈ [0, 1]}.

Define J = {i|x(i) ∈ σ7(W∗), y(i) ∈ σ8(W∗), ν1(Kx(i)[Xi] ∩ K7 ∩ K8) > 0}. By
(1.5.1), K7 ∩K8 ⊆ ∪i∈JKx(i)[Xi]. Choose i ∈ J so that Kx(i)[Xi] contains F7(0) =

F8(
√
−1) and write X = Xi, Y = Yi, ϕ = ϕi, x = x(i) and y = y(i) for simplicity.

Since π−1(F7(0)) = {8(7)∞, 7(1)∞}, we see that x = 7(1)p, X ⊆W#({1, 2, 3}), y =
8(7)q and Y ⊆ W#({7, 6, 5}). Note that ν1(K[X ]) > 0 and that K[X ] is the self-
similar set associated with {Fw}w∈X . By Lemma 1.7.8, Fw(K[X ])∩Fv(K[X ]) 6= ∅
for some w, v ∈ X . Note that K[X ] ⊆ L1 = [0, 1]. The intersection Fw(L1)∩Fv(L1)
contains a pair of points {π(w∗(1)∞), π(v∗(3)∞} if it is not empty. Hence there
exists a w ∈ X such that w = (3)m. This implies π((3)∞) = 1 ∈ K[X ]. Using the
same arguments, we also obtain that π(5∞) = 1 +

√
−1 ∈ K[Y ]. Since 1 +

√
−1
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and 1 are the most right points in K[X ] and K[Y ] respectively, F8(7)p(1 +
√
−1) =

F7(1)q(1). Therefore, 1 − 2r = rq+1−p. Since 0 < 1 − 2r < 1, it follows that
q + 1− p ≥ 1. �





CHAPTER 2

Construction of Distances

2.1. Distances associated with scales

We have studied the scale and the associated family of “balls” {Us(x)}x∈X,s∈(0,1]

in the previous sections. Can this family of “balls”be thought of as real balls with
respect to any distance? The next three sections are devoted to answer this ques-
tion. In this section, we will define a pseudodistance on a self-similar set associated
with a scale and consider when this pseudodistance is a distance.

As in the previous sections, S is a finite set, S = {Λs}0<s≤1 is a right-continuous
scale on Σ = Σ(S) whose gauge function is l and L = (K,S, {Fi}i∈S) is a self-similar
structure. Moreover, we assume that K is connected in the following sections.

Definition 2.1.1. A sequence of words, (w(1), . . . , w(m)),where w(i) ∈ W∗ for
any i, is called a chain of L if and only if Kw(i) ∩Kw(i+1) 6= ∅ for i = 1, . . . ,m− 1.
We use CH to denote the collection of all chains of L. A chain (w(1), . . . , w(m))
is said to be a chain between x and y for x, y ∈ K if and only if x ∈ Kw(1) and
y ∈ Kw(m). The collection of all chains between x and y is denoted by CH(x, y).

Since K is assumed to be connected, CH(x, y) 6= ∅ for any x, y ∈ K. See [28,
Theorem 1.6.2].

Proposition 2.1.2. For x, y ∈ K, we define DS(x, y) by

DS(x, y) = inf{
m∑

i=1

l(w(i))|(w(1), . . . , w(m)) ∈ CH(x, y)}.

Then DS(·, ·) is a pseudodistance on K: DS(x, y) = DS(y, x) ≥ 0 for any x, y,
DS(x, x) = 0 for any x ∈ K and DS(x, z) ≤ DS(x, y)+DS(y, z) for any x, y, z ∈ K.
Also DS(Fw(x), Fw(y)) ≤ l(w) for any x, y ∈ K. Moreover, if DS(·, ·) is a distance
on K, then it is compatible with the original topology of K.

Proof. It is straight forward to see that DS is a pseudodistance on K by its
definition. Since both Fw(x) and Fw(y) belong to Kw, DS(Fw(x), Fw(y)) ≤ l(w).
Now assume that DS is a distance on K, i.e.DS(x, y) ≥ 0 for any x, y ∈ K. Note
that {Us(x)}0<s≤1 is a system of fundamental neighborhoods of x with respect to
the original topology. Let d be a distance on K which gives the original topology
of K. Suppose that d(xn, x) → 0 as n → ∞ for a sequence {xn}n≥1. Then, for
any s > 0, xn belongs to Us(x) for sufficiently large n. Hence DS(x, xn) ≤ 2s for
sufficiently large n. This implies that DS(x, xn)→ 0 as n→∞. Conversely assume
that DS(xn, x) → 0 as n → ∞. Let y be an accumulating point of {xn}n≥1 with
respect to d: there exists a subsequence {ym}m≥1 of {xn}n≥1 such that d(ym, y)→ 0
as m → ∞. Since DS(ym, x) → 0 as m → ∞, we see that DS(x, y) = 0. Hence
x = y. Now the compactness of (K, d) implies that d(xn, x)→ 0 as n→∞. �

43
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Definition 2.1.3. DS is called the pseudodistance on K associated with the
scale S. In particular, if S = S(a) for a ∈ (0, 1)S, then we write DS = Da.

Remark. If S = S(a) for a ∈ (0, 1)S , then DS coincides with the standard
pseudodistance on K with poly ratio a defined by Kameyama [26].

Notation. Let d be a (pseudo)distance on K. For x ∈ K and r > 0, we define
Br(x, d) = {y|y ∈ K, d(x, y) ≤ r). Also diam(A, d) = supx,y∈A d(x, y) for A ⊆ K.

Br(x, d) is the r-ball around x with respect to d and diam(A, d) is the diameter
ofA with respect to d. A ball with respect to the pseudodistanceDS always contains
a “ball” associated with the scale S as follows.

Proposition 2.1.4. For any n ∈ N ∪ {0}, any s ∈ (0, 1] and any x ∈ K,

U (n)
s (x) ⊆ B(n+1)s(x,DS),

Proof. Let y ∈ U (n)
s (x). Then there exists a chain (w(1), . . . , w(m)) between

x and y such that m ≤ n+ 1 and w(j) ∈ Λs for any j. Since l(w(j)) ≤ s for any j,
it follows that

∑m
j=1 l(w(j)) ≤ (n+ 1)s. �

In general, we have the next equivalence between conditions concerning a dis-
tance and a pseudodistance associated with a scale.

Proposition 2.1.5. Let d be a distance on K and let β > 0. Then the following
four conditions are equivalent.
(1) Ks(x) ⊆ Bβs(x, d) for any x ∈ K and any s ∈ (0, 1].

(2) U
(n)
s (x) ⊆ B(n+1)βs(x, d) for any n ≥ 0, any x ∈ K and any s ∈ (0, 1].

(3) d(x, y) ≤ βDS(x, y) for any x, y ∈ K.
(4) diam(Kw, d) ≤ βl(w) for any w ∈W∗.

In particular, if any of the four conditions above is satisfied, DS is a distance
on K.

Recall that Ks(x) = U
(0)
s (x).

Proof. (1) ⇒ (3): Let (w(j))j=1,...,m ∈ CH(x, y). Choose xj ∈ Kw(j) ∩
Kw(j+1) for j = 1, . . . ,m− 1. Set x0 = x and xm = y. Then xj ∈ Ul(w(j))(xj−1) ⊆
Bβl(w(j))(xj−1) for j = 1, . . . ,m. Hence d(xj−1, xj) ≤ βl(w(j)). Summing these
inequalities for j = 1 to j = m, we obtain d(x, y) ≤ βDS(x, y).
(3) ⇒ (2): Since Bs(x,DS) ⊆ Bβs(x, d), Proposition 2.1.4 suffices to see the claim.
(2) ⇒ (1): Obvious
(3) ⇒ (4): Let x and y belong to Kw. Since DS(x, y) ≤ l(w), it follows that
d(x, y) ≤ βl(w).

(4)⇒ (1): Let y ∈ U (0)
s (x). Then x, y ∈ Kw for some w ∈ Λs. Since d(x, y) ≤ βl(w),

we obtain (1). �

If we can find one elliptic scale S∗ where DS∗
is a distance, then for any elliptic

scale S, DSα is a distance for some α > 0. To give detailed version of such a result,
we need the following definition.

Definition 2.1.6. Let S be a scale on Σ and let l be its gauge function. For
w ∈ W∗, define lw : W∗ → (0, 1] by lw(v) = l(wv)/l(w). We denote the scale whose
gauge function is lw by Sw.
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In the above definition, it is obvious that Sw is actually a (right-continuous)
scale. In the followings, we use Sαw to denote (Sα)w for α > 0 and w ∈ W∗. Note
that (Sα)w = (Sw)α.

Proposition 2.1.7. Let S∗ be a scale on Σ with (EL2). Suppose that DS∗
is a

distance on K. If a scale S satisfies (EL1), then there exist α > 0 and β > 0 such
that DSα

w
(x, y) ≥ βDS∗

(x, y) for any x, y ∈ K and any w ∈ W∗. In particular, DSα
w

is a distance on K.

Proof. Let l∗ be the gauge function of S∗. By (EL2), there exists γ ∈ (0, 1)
and β > 0 such that l∗(v) ≤ βγ|v| for any v ∈ W∗. Also if l is the gauge function
of S, then (EL2) implies that there exists β1 ∈ (0, 1) such that lw(v) ≥ (β1)

|v| for
any v, w ∈ W∗. Therefore if (β1)

α ≥ γ, then diam(Kv, DS∗
) ≤ β−1lw(v) for any

v ∈W∗. By Proposition 2.1.5, we see that DSα
w
(x, y) ≥ βDS∗

(x, y). �

Next theorem gives a topological sufficient condition for DS being a distance.
By virtue of this result, for any locally finite scale S on a rationally ramified self-
similar structures, DSα is shown to be a distance for some α > 0 in the next
section.

Theorem 2.1.8. Let S = {Λs}0<s≤1 be a scale on Σ. Assume the existence of
n ∈ N satisfying the following two conditions (D1) and (D2):
(D1) If w ∈ Λs, τ ∈ Wn, v ∈ Λs,w and Kvτ ∩Kw 6= ∅, then Kvτ ∩Kv′ = ∅ for
any v′ ∈ Λs\Λs,w.

(D2) Let l be the gauge function of S. Set β = (
√

17− 1)/4. Then l(wτ) ≥ βl(w)
for any w ∈W∗ and any τ ∈Wn.
Then for any x, y ∈ K,

inf{s|y ∈ U (3)
s (x)} ≤ DS(x, y) ≤ 4 inf{s|y ∈ U (3)

s (x)}.
In particular, DS is a distance on K. Moreover, for any s ∈ (0, 1] and any x ∈ K,

Bs(x,DS) ⊆ U (3)
s (x) ⊆ B4s(x,DS).

Note that 0 < β < 1.
The condition (D1) is shown to hold if S is intersection type finite in the next

section. See the next section for the notion of “intersection type finite”.
To prove the above theorem, we need several lemmas.

Lemma 2.1.9. For w ∈ Λs, we define Us(w) = K(Λs,w) = K(W (Λs,Kw)).
Assume that (D1) is satisfied. If w ∈ Λs, τ ∈ Wn, v ∈ Λs,w, vτ ∈ Λs′ and
Kvτ ∩Kw 6= ∅, then Us′(vτ) ⊆ Us(w).

Proof. Let v′′ ∈ Λs′,vτ . Since Kvτ ∩Kv′ = ∅ for any v′ ∈ Λs,w, there exists
w′ ∈ Λs,w such that w′ ≥ v′′. Therefore, Kv′′ ⊆ Kw′ ⊆ Us(w). �

Lemma 2.1.10. Assume (D1) and (D2). Let (w, v) be a chain of L. If w ∈
Λs, v ∈ Λs′ and βl(w) ≥ l(v), then Us′(v) ⊆ Us(w).

Proof. If |v| ≤ n, then l(v) ≥ βl(∅) ≥ βl(w) ≥ l(v). Therefore, 1 = l(∅) =
l(w). Since w ∈ Λs, we see that w = ∅ and s = 1. Hence Us′(v) ⊆ Us(w) = K.
Assume that |v| > n. Let v = v′z for z ∈ Wn. Then l(v) ≥ βl(v′). This implies
l(w) ≥ l(v′). Therefore, v = v∗ττ ′ for v∗ ∈ Λs, τ ∈ Wn and τ ′ ∈ W∗. Since
Kv∗x ∩ Kw 6= ∅, Lemma 2.1.9 implies that Ul(v∗τ)(v∗x) ⊆ Us(w). Note that s′ ≤
l(v∗τ). Hence Us′(v) ⊆ Us(w). �
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Lemma 2.1.11. Assume (D1) and (D2). Let (v, w, τ) be a chain of L. If
βl(w) < l(v) and βl(w) < l(τ), then there exists a chain (v′, τ ′) such that v′ ≥
v, τ ′ ≥ τ and l(v′) + l(τ ′) < l(v) + l(w) + l(τ).

Proof. If |w| ≤ n, then let v′ = τ ′ = ∅. By (D2), (1+2β)β ≥ 2 and l(w) ≥ β.
Therefore, l(v)+ l(w)+ l(τ) > (1 + 2β)β ≥ 2 = l(v′)+ l(τ ′). Hence we may assume
that |w| > n. Let w = w1 . . . wm. Set w∗ = w1 . . . wm−n and define s = l(w∗). If
l(v) ≥ s, then we may find v∗ ∈ W∗ such that v ≥ v∗,Kv∗ ∩Kw 6= ∅ and v∗ ∈ Λs.
If l(v) < s, then there exists a unique v∗ such that v∗ > v and v∗ ∈ Λs. Also we
define τ∗ in the same way as v∗. Since (1 + 2β)β ≥ 2 and (1 + β)β ≥ 1 by (D2),

l(w) + l(v) > (1 + β)βl(w∗) ≥ l(w∗) ≥ l(v∗)
l(w) + l(τ) > (1 + β)βl(w∗) ≥ l(w∗) ≥ l(τ∗)

l(v) + l(w) + l(τ) > (1 + 2β)βl(w∗) ≥ 2l(w∗) ≥ l(v∗) + l(τ∗)

(2.1.1)

Since w∗ ∈ Λs,v∗ , Kw∩Kv∗ 6= ∅ and Kw∩Kτ∗ 6= ∅, (D1) implies that Kv∗∩Kτ∗ 6= ∅.
Define v′ = max{v∗, v} and τ ′ = max{τ∗, τ}. Then by (2.1.1), (v′, τ ′) satisfies the
desired properties. �

Proof of Theorem 2.1.8. Define

CHs(x, y) = {(w(j))j=1,...,m|(w(j))j=1,...,m ∈ CH(x, y), min
j=1,...,m

l(w(j)) ≥ s}

F (s) = inf{
m∑

j=1

l(w(j))|(w(j))j=1,...,m ∈ CHs(x, y)}

for any s > 0 and any x, y ∈ K. Then F (s) is monotonically decreasing and
DS(x, y) = lims↓0 F (s). Note that we may only consider chains without loops in
the definition of F (s). Hence there exists (w(j))j=1,...,m ∈ CHs(x, y) which attains
the infimum. Set sj = l(w(j)) and Uj = Usj (w(j)) for j = 1, . . . ,m. If 1 < j < m,
then Lemma 2.1.11 implies that βsj ≥ sj−1 or βsj ≥ sj+1. Hence by Lemma 2.1.10,
Uj−1 ⊆ Uj or Uj+1 ⊆ Uj . Therefore, there exists j∗ such that 1 ≤ j∗ ≤ m+ 1 and

U1 ⊆ U2 ⊆ . . . ⊆ Uj∗−1, Uj∗ ⊇ . . . ⊇ Um−1 ⊇ Um.
Let s∗ = max{sj∗−1, sj∗}. Since Kw(j∗−1) ∩ Kw(j∗) 6= ∅, x ∈ U1 and y ∈ Um, we

see that y ∈ U (3)
s∗ (x). Therefore, F (s) =

∑m
j=1 sj ≥ s∗ ≥ inf{s|y ∈ U (3)

s (x)}. Thus

DS(x, y) ≥ inf{s|y ∈ U (3)
s (x)}. On the other hand, if y ∈ U (3)

s (x), then there exists
(w(1), w(2), w(3), w(4)) ∈ CH(x, y) such that w(j) ∈ Λs for j = 1, 2, 3, 4. Therefore,

DS(x, y) ≤ 4s. Hence DS(x, y) ≤ 4 inf{s|y ∈ U (3)
s (x)}.

Finally, since {U (3)
s (x)}0<s≤1 is monotonically decreasing with respect to s and

∩0<s≤1U
(3)
s (x) = {x}, we see that inf{s|y ∈ U (3)

s (x)} > 0 if x 6= y. �

2.2. Intersection type

Let L = (K,S, {Fi}i∈S) be a self-similar structure satisfying K\V 0 6= ∅. A
scale S = {Λs}s∈(0,1] is said to be intersection type finite if the topological types
of Kw ∩ Kv for s ∈ (0, 1] and w, v ∈ Λs are finite. Under the assumption of a
scale being intersection type finite, we can verify the conditions (D1) and (D2)
in Theorem 2.1.8 and hence the associated pseudodistance is a distance for some
power of the scale. See Theorem 2.2.6 for details.

First we define the notion of intersection pairs.
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Definition 2.2.1. (1) Define IP(L) by

IP(L) = {(w, v)|w, v ∈W#,Kw ∩Kv 6= ∅,Σw ∩ Σv = ∅}.
(w, v) ∈ IP(L) is called an intersecting pair of L.
(2) Define

A = {(A,B, ϕ)|A and B are nonempty closed subsets of V0

and ϕ : A→ B is a homeomorphism between A and B}.

There exists a natural map from IP(L)→ A.

Proposition 2.2.2. Define

Φ((w, v)) = ((Fw)−1(Kw ∩Kv), (Fv)
−1(Kw ∩Kv), (Fv)

−1 ◦ Fw|(Fw)−1(Kw∩Kv))

for any (w, v) ∈ IP(L). Then Φ : IP(L)→ A.

The image of an intersection pair under the map Φ is called the intersection
type.

Definition 2.2.3. (1) Define IT (L) = Φ(IP(L)). An element of IT (L) is
called an intersection type of L.
(2) Let S = {Λs}0<s≤1 be a scale on Σ. Define

IP(L, S) = {(w, v)|(w, v) ∈ IP(L), w, v ∈ Λs for some s ∈ (0, 1]}
and

IT (L, S) = {Φ((w, v))|(w, v) ∈ IP(L, S)}
S is said to be intersection type finite with respect to L if and only if IT (L, S) is

a finite set.

The following proposition is straight forward by definition.

Proposition 2.2.4. Let S be a scale on Σ. If L is strongly finite and S is
intersection type finite with respect to L, then S is locally finite.

The property of a scale being intersection type finite is preserved under the
equivalence relation ∼

GE
.

Proposition 2.2.5. Let S1 and S2 be elliptic scales. If S1 is intersection type
finite and S1 ∼

GE
S2, then S2 is intersection type finite.

Proof. Set S1 = {Λs}0<s≤1 and S2 = {Λ′
s}0<s≤1. Also let l be the gauge

function of S1. Suppose that w, v ∈ Λ′
s, that Kw ∩Kv 6= ∅ and that l(v) ≤ l(w).

Since S1 ∼
GE

S2 and S1 is elliptic, there exist n (which is independent of s, w and

v) such that v = v∗τ and v∗ ∈ Λl(w) for some v∗, τ ∈ W∗ with |τ | ≤ n. Therefore,
Φ((w, v)) ∈ {Φ((w, v∗z))||z| ≤ n}. Note that {Φ((w, v∗z))||z| ≤ n} only depends
on Φ((w, v∗)). Therefore, if S1 is intersection type finite, then so is S2. �

Now we present the first main theorem of this section.

Theorem 2.2.6. Let S be a scale on Σ with (EL1). If S is intersection type
finite, then there exists α > 0 such that DSα is a distance on K and Bs(x,DSα) ⊆
U

(3)

s1/α(x) ⊆ B4s(x,DSα) for any s ∈ (0, 1] and any x ∈ K.
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Proof. Let S = {Λs}0<s≤1 and let l be its gauge function. First we show (D1).
Since S is intersection type finite, there exists compact subsets B1, . . . , Bm ⊂ K
such that Φ((w, v)) = (Bi, Bj , φij) for any s ∈ (0, 1], any w ∈ Λs and any v ∈ Λs,w.
Define Wk,j = {τ |τ ∈ Wk,Kτ ∩ Bj 6= ∅} and Kk,j = ∪τ∈Wk,j

Kτ for any j. Since
∩k≥1Kk,j = Bj , there exists n such that Kn,j ∩ Bp = ∅ for any j, p ∈ {1, . . . ,m}
with Bj ∩Bp = ∅. This implies (D1).

Now note that Sα satisfies (D1) with the same n as S for any α > 0. Since S

satisfies (EL1), there exists γ ∈ (0, 1) such that l(wv) ≥ γl(w) for any w ∈W∗ and

any v ∈ Wn. Choosing α so that γα ≥ β = (
√

17 − 1)/4, we see that Sα satisfies
(D2). Thus by Theorem 2.1.8, DSα is a distance on K. �

The second main theorem of this section tells us that one can identify “inter-
section type” finite with “locally” finite in the rationally ramified case.

Theorem 2.2.7. Let L be a rationally ramified self-similar structure. Then an
elliptic scale S on Σ is intersection type finite if and only if S is locally finite with
respect to L.

Proof. Since L is strongly finite, if S is intersection type finite, then S is
locally finite by Proposition 2.2.4. Conversely assume that S is locally finite. Let R
be the relation set of L. We may assume that R = [R] without loss of generality.
Set S = {Λs}0<s≤1.

Let R′ be a subset of RL. For (w, v) ∈ IP(L), define R(w, v,R′) =

{(Ω, (z, x0, . . . , xm), (z, y0, . . . , yn))|Ω = (X,Y, ϕ, x, y) ∈ R′,

(z, x0, . . . , xm) ∈ AX,x(w), (z, y0, . . . , yn) ∈ AY,y(v),
yj = ϕ(xj)for j = 1, . . . ,min{m,n}}

Let η = (Ω, (z, x0, . . . , xm), (z, y0, . . . , yn)) ∈ R(w, v,R′) with Ω = (X,Y, ϕ, x, y).
Note that z = w1 . . . wN , where N = inf{i|wi 6= vi} − 1 and that the first symbols
of x and y are wN+1 and vN+1 respectively. Define K(η, w),K(η, v) and ψη :
K(η, w)→ K(η, v) as follows. If m ≥ n, then we set K(η, w) = Kx2

m
[X ], K(η, v) =

Ky2
nyn+1...ym

[Y ] and ψη = Fy2
nyn+1...ym

◦ ϕ̃ ◦ (Fx2
m

)−1, where x2
m and y2

n are given
in Lemma 1.5.16 and yj = ϕ(yj) for j = n + 1, . . . ,m. If m < n, then K(η, w) =
Kx2

mxm+1...xn
[X ], K(η, v) = Ky2

n
[Y ] and ψη = Fy2

n
◦ϕ̃◦(Fx2

mxm+1...xn
)−1, where xj =

ϕ−1(yj) for j = m + 1, . . . , n. Note that Fw(K(η, w)) = Kv(K(η, v)) ⊆ Kw ∩Kv

and that ψη = F−1
v ◦Fw|K(η,w) by Lemma 1.5.16.

Next, we define

IP(L, S,R′) = {(w, v)|(w, v) ∈ IP(L, S), R(w, v,R′) 6= ∅}
and

IT (L, S,R′) = {(K(η, w),K(η, v), ψη)|(w, v) ∈ IP(L, S,R′), η ∈ R(w, v,R′)},
whereR′ is a subset ofRL. The first step of the proof is to show that IT (L, S,R) =
IT (L, S,R1) ∪ IT (L, S,R2) is a finite set, where R1 and R2 are the same as in
Theorem 1.6.7. First we consider IT (L, S,R2). Let (w, v) ∈ IP(L, S) and let
η = (Ω, (z, x0, . . . , xm), (z, y0, . . . , yn)) ∈ R(w, v,R2) with Ω = (X,Y, ϕ, x, y). Since
S is locally finite with respect to L, Theorem 1.6.1 implies that |yn+1 . . . ym| or
|xm+1 . . . xn| (depending on m ≥ n or m < n) is uniformly bounded with respect to
w, v and η. Also by Lemma 1.6.3, #(AX,x(w)) is uniformly bounded with respect
to Ω and w. Therefore, IT (L, S,R2) is finite.
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Secondly, let η = (Ω, (z, x0, . . . , xm), (z, y0, . . . , yn)) ∈ R(w, v,R1) with Ω =
({x∗}, {y∗}, ϕ, x, y). Then K(η, w) ∈ {π(σi(x(x∗)∞)|i = 1, 2, . . .} and K(η, v) ∈
{π(σi(y(y∗)∞)|i = 1, 2, . . .}. Since R1 is finite, IT (L, S,R1) is finite. Thus it
follows that IT (L, S,R) is a finite set.

To proceed to the next step, we need to define δm◦ . . . ◦δ1 for δ1, . . . , δm ∈ A.
For δ1 = (A1, B1, ϕ1) and δ2 = (A2, B2, ϕ2) ∈ A, define δ2◦δ1 ∈ A by

δ2◦δ2 = ((ϕ1)
−1(A2 ∩B1), ϕ2(A2 ∩B1), ϕ2◦ϕ1|(ϕ1)−1(A2∩B1)).

Then δm◦ . . . ◦δ1 is defined inductively by δm◦(δm−1◦ . . . ◦δ1).
Now, let (w, v) ∈ IP(L, S) and let p ∈ Kw ∩ Kv. Choose s so that w, v ∈

Λs. Choose ω ∈ Σw ∩ π−1(p) and τ ∈ Σv ∩ π−1(p). By Proposition 1.5.13-(2),
there exist Ω1, . . . ,Ωm ∈ R and ω(1), . . . , ω(m+1) ∈ Σ(S) which satisfies (AS1),
(AS2) and (AS3). For some n, ω(n) /∈ Σv but ω(n+1) ∈ Σv. Recall the remark
after Proposition 1.5.13. Set mj = s(ω(j), τ). Then mj < |v| for j = 1, . . . , n.

Hence letting w(j) = ω
(j)
1 . . . ω

(j)
mj (= v1 . . . vmj ), then l(w(j)) ≥ l(v1 . . . v|v|−1) > s,

where l is the gauge function of S. We may choose kj > mj so that v(j) =

ω
(j)
1 . . . ω

(j)
kj
∈ Λs for any j = 1, . . . , n. (We set v(1) = w and v(n+1) = v.) Let Ωj =

(Xj , Yj , ϕj , x(j), y(j)). Then, ω(j) = w(j)x(j)x1x2 . . . for some x1x2 . . . ∈ Σ[Xj]

and ω(j+1) = w(j)y(j)y1y2 . . ., where yi = ϕj(xi). Hence, for some Mj and Nj,
ηj = (Ωj , (w(j), x(j), x1 , . . . , xMj ), (w(j), y(j), y1, . . . , yMj ) ∈ R(v(j), v(j + 1),R).
Define ρj = (K(ηj , v(j)),K(ηj , v(j + 1)), ψηj ). Then ρj ∈ IT (L, S,R). Now,

ρn◦ . . . ◦ ρ1 gives a fraction of Φ((w, v)) around F−1
w (p). Therefore, Φ((w, v)) is a

combination of elements in {δ1◦ . . .◦δn|n ≤ maxp∈K #(π−1(p)), δi ∈ IT (L, S,R))}.
Since this set is finite, L is intersection type finite. �

Combining the last two theorems, we obtain the following fact.

Corollary 2.2.8. Let L be a rationally ramified self-similar structure. If an
elliptic scale S on Σ is locally finite, then DSα is a distance on K for some α > 0.

Moreover, Bs(x,DSα) ⊆ U (3)

s1/α(x) ⊆ B4s(x,DSα) for any s ∈ (0, 1] and any x ∈ K.
In particular, if L is post critically finite, then, for any elliptic scale on K, DSα is
a distance on K for some α > 0.

Proof. The first half is verified by using Theorems 2.2.6 and 2.2.7. About
post critically finite self-similar structure, recall that any scale on K is locally
finite. This suffices the conclusion. �

Remark. In [26], Kameyama has shown that there exists a self-similar scale
α ∈ (0, 1)S such that Dα is a distance on K for any critically finite self-similar set,
which corresponds to post critically finite self-similar structure in our language.
(His definition of self-similar sets allows that the contraction mappings are not
injective.) The above corollary partially extends his result to rationally ramified
case.

In the rest of this section, we will give several accounts about intersection pairs.
Those results are rather technical but play important roles later.

Definition 2.2.9. Let Γi ⊆ W∗ for i = 1, 2. A bijection ψ : Γ1 → Γ2 is called
an L-isomorphism between Γ1 and Γ2 if the following condition is satisfied:
For w, v ∈ Γ1, (w, v) ∈ IP(L) if and only if (ψ(w), ψ(v)) ∈ IP(L). If (w, v) ∈
IP(L) for w, v ∈ Γ1, then Φ((w, v)) = Φ((ψ(w), ψ(v))).
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Γ1 and Γ2 are said to be L-similar if there exists an L-isomorphism between
Γ1 and Γ2.

Proposition 2.2.10. Let Γi ⊆W∗ for i = 1, 2 and let ψ be an L-isomorphism
between Γ1 and Γ2. Then there exists a homeomorphism φ between K(Γ1) and
K(Γ2) such that φ|Kw = Fψ(w)◦(Fw)−1 for any w ∈ Γ1. φ is called the L-similitude
between K(Γ1) and K(Γ2) associated with ψ.

For Γ1,Γ2 ⊆ W∗, we say that φ : K(Γ1) → K(Γ2) is an L-similitude between
K(Γ1) and K(Γ2) if and only if there exists a L-isomorphism ψ between Γ1 and Γ2

and φ is associated with ψ.

Proof. Let (w, v) ∈ IP(L) for w, v ∈ Γ1. Since Φ((w, v)) = Φ((ψ(w), ψ(v))),
it follows that Fψ(w)◦(Fw)−1 coincides with Fψ(v)◦(Fv)−1 on Kw ∩ Kv. Hence if

φ = Fψ(w)◦(Fw)−1 on Kw, then φ is a well-defined homeomorphism between K(Γ1)
and K(Γ2). �

Definition 2.2.11. Let n ∈ {0} ∪ N. For (s1, x1), (s2, x2) ∈ (0, 1] × K, we
write (s1, x1) ∼

n
(s2, x2) if and only if there exists an L-isomorphism ψ between

Λns1,x1
and Λns2,x2

such that ψ(Λks1,x1
) = Λks2,x2

for any k = 0, 1, . . . , n. We call ψ
the n-isomorphism between (s1, x1) and (s2, x2).

Note that (s1, x1) ∼
n

(s2, x2) implies (s1, x1) ∼
k

(s2, x2) for any 0 ≤ k ≤ n. It is

easy to see that ∼
n

is an equivalence relation.

Proposition 2.2.12. The relation ∼
n

is an equivalence relation on (0, 1] × K
for any n ≥ 0.

We can relate the notion of being intersection type finite with the number of
equivalence classes under ∼

n
.

Theorem 2.2.13. Let L be strongly finite. Then the following three conditions
are equivalent.
(1) S is intersection type finite with respect to L.
(2)

(
(0, 1]×K

)
/∼
n

is a finite set for any n ∈ {0} ∪ N.

(3)
(
(0, 1]×K

)
/∼
n

is a finite set for some n ∈ {0} ∪ N.

The following fact, which is used to show the above theorem, is straight forward.

Lemma 2.2.14. For (s, x) ∈ (0, 1] ×K and n ∈ {0} ∪ N, define Jns,x : Λns,x →
{0, 1, . . . , n} by Jns,x(w) = min{k|w ∈ Λks,x} and define Hn

s,x : Λns,x × Λns,x →
IT (L, S) ∪ {0, 1} by

Hn
s,x(w, v) =






Φ((w, v)) if (w, v) ∈ IP(L),

0 if Kw ∩Kv = ∅,
1 if w = v.

Then ψ is an n-isomorphism between (s1, x1) and (s2, x2) if and only if Js1,x1(w)
= Js2,x2(ψ(w)) and Hs1,x1(w, v) = Hs2,x2(ψ(w), ψ(v)) for any w, v ∈ Λns1,x1

.
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Proof of Theorem 2.2.13. (1) ⇒ (2): Assume that S is intersection type
finite with respect to L. Then by Proposition 2.2.4, S is locally finite with respect
to L. Hence Lemma 1.3.6 implies that #(Λns,x) is uniformly bounded with respect
to (s, x) ∈ (0, 1] × K. Since IT (L, S) is a finite set, we only have finite number
of choices of Jns,x and Hn

s,x up to n-isomorphisms. Therefore by Lemma 2.2.14,(
(0, 1]×K

)
/∼
n

is a finite set for any n ∈ {0} ∪ N.

(2) ⇒ (3): This is obvious.
(3) ⇒ (1): We see that

(
(0, 1]×K

)
/∼
0

is a finite set under (3). Since L is strongly

finite, #(Λs,x) is uniformly bounded with respect to (s, x) ∈ (0, 1]×K. Therefore if
X = ∪(s,x)∈(0,1]×KImH0

s,x, then Lemma 2.2.14 implies that X is a finite set. Note
that IT (L, S) ⊆ X . Thus we have #(IT (L, S)) is finite. �

2.3. Qdistances adapted to scales

As is seen in the last section, DS is not always a distance even if a scale S is
elliptic and locally finite. Instead we sometimes managed to show that DSα is a
distance for some α > 0. In such a case, if d(x, y) = (DSα(x, y))1/α, then d has
the same scaling ratio as the scale S but d is not a distance. Considering such a
situation, we will introduce the notion of an α-qdistandce in this section.

Definition 2.3.1. Let X be a set. For α > 0, d : X ×X → [0,∞) is called α-
qdistance on X if and only if d(x, y)α is a distance on X . Also d is called a qdistance
on X if it is an α-qdistance on X for some α > 0. We say d1 and d2 are equivalent
if there exist c1 > 0 and c2 > 0 such that c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y) for any
x, y ∈ X .

Remark. We may give more general definition of a qdistance: let f : [0,∞)→
[0,∞) satisfy that f(x) < f(y) if x, y ∈ [0,∞) and x < y, limx↓0 f(x) = f(a) for
any a ∈ [0,∞) and that f(0) = 0. Then d : X ×X → [0,∞) is called f -qdistance
on X if and only if f(d(x, y)) is a distance on X . In this paper, however, we do not
need such an generality. So we restrict ourselves to the case where f(x) = xα for
some α > 0.

The symbol “q” of qdistance represents the prefix “quasi”. We do not use the
word “quasidistance” to avoid confusion with the existent notion of quasidistance
(or quasimetric) which has been defined as follows: d : X ×X → [0,+∞) is called
a C-quasidistance (or quasimetric) for C > 0 if and only if d(x, y) = 0 is equivalent
to x = y, d(x, y) = d(y, x) for any x, y and

d(x, z) ≤ C(d(x, y) + d(y, z))

for any x, y, z. A qdistance is is a quasidistance. (In fact, an α-qdistance is a 21/α−1-
quasidistance.) The immediate converse itself is not true. We have, however, the
following modification of the converse.

Proposition 2.3.2. Let d be a quasidistance on a set X. Then d is equivalent
to an α-qdistance D for some α > 0, i.e. there exist positive constants c1 and c2
such that c1d(x, y) ≤ D(x, y) ≤ c2d(x, y) for any x, y ∈ X.

Proof. This proposition is a version of [23, Proposition 14.5] in terms of
“qdistance”. �
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If d is a qdistance, limn→∞ d(xn, x) = 0 implies limn→∞ d(xn, y) = d(x, y) for
any y. This is not the case in general for a quasidistance.

If d is an α-qdistance, then d is an α′-qdistance for any α′ ∈ (0, α], because
as ≤ bs+cs for any a, b, c,∈ R with a ≤ b+c and any s ∈ (0, 1]. In particular, if d is
an α-qdistance for α > 1, then d is a distance. Thus, we will consider α-qdistances
for α ∈ (0, 1].

For an α-qdistance d on a set X , we always associate the topology given by the
distance dα. Also we may define Hausdorff measures and Hausdorff dimensions of
subsets of X in the same manner as in the case of distance as follows.

Definition 2.3.3. Let d be a qdistance on X . Then for any A ⊆ X , we define

Hsδ(A) = inf{
∑

i≥1

diam(Ei)
s|A ⊆ ∪i≥1Ei, diam(Ei) ≤ δ}

for any δ > 0 and s ≥ 0, where diam(E) = supx,y∈A d(x, y). Also we define
Hs(A) = limδ↓0Hsδ(A). Hs is called the s-dimensional Hausdorff measure with
respect to the qdistance d. Also let

dimH(A, d) = sup{s|Hs(A) =∞} = inf{s|Hs(A) = 0}
for any A ⊆ X . dimH(A, d) is called the Hausdorff dimension of A with respect to
the qdistance d.

As in the case of distances, Hs is a complete Borel regular measure on X for
any s ≥ 0.

Hereafter in this section, S is a non-empty finite set and L = (K,S, {Fi}i∈S)
is a self-similar structure with K\V 0 6= ∅. Also S is a right-continuous scale.

Definition 2.3.4. A qdistance d on K is said to be adapted to a scale S if and
only if there exists β1, β2 > 0 and n ∈ N such that

Bβ1s(x, d) ⊆ U (n)
s (x) ⊆ Bβ2s(x, d)

for any x ∈ K and any s ∈ (0, 1].

For example, the distance DS given in Theorem 2.1.8 is adapted to the scale S

with n = 3, β1 = 1 and β2 = 4.

Proposition 2.3.5. If d is a qdistance on K which is adapted to a scale S,
then the topology on K given by d is the same as the original topology of K.

Proof. Note that {U (n)
s (x)}0<s≤1 is a fundamental system of neighborhoods

of x for any x ∈ K. This immediately imply the desired statement. �

Hereafter, we always assume that the topology of K given by a qdistance d is
the same as the original topology of K.

First we give an extension of Moran-Hutchinson’s theorem on the Hausdorff
dimension of self-similar sets.

Theorem 2.3.6. Let S be a scale on Σ which satisfies (EL1) and let l be the
gauge function of S. Assume that S is locally finite and that there exist positive
constants c1, c2, γ and a Borel regular measure ν on K such that c1l(w)γ ≤ ν(Kw) ≤
c2l(w)γ for any w ∈W∗. Also assume that d is a qdistance on K which is adapted
to S. Then, there exist positive constants c3 and c4 such that

(2.3.1) c3Hγ(A) ≤ ν(A) ≤ c4Hγ(A)



2.3. QDISTANCES ADAPTED TO SCALES 53

for any Borel set A ⊆ K and

(2.3.2) c3r
γ ≤ ν(Br(x, d)) ≤ c4rγ

for any x ∈ K and any r > 0. In particular, dimH(K, d) = γ.

Proof. First we show that ν is elliptic. Since S satisfies (EL1), there exists
β1 > 0 such that l(wi) ≥ β1l(w) for any w ∈ W∗ and any i ∈ S. Therefore
ν(Kwi) ≥ c1l(wi)

γ ≥ c1(β1l(w))γ . Hence ν is elliptic. By Theorem 1.2.4, we see
that ν ∈M(K). This implies

ν(U (n)
s (x)) =

∑

w∈Λn
s,x

ν(Kw).

for any s ∈ (0, 1] and any x ∈ K. Since µ is elliptic and S is locally finite, there
exists positive constants c5 and c6 such that

c5s
γ ≤ ν(U (n)

s (x)) ≤ c6sγ

for any s ∈ (0, 1] and any x ∈ K. As d is adapted to S, this immediately shows
(2.3.2). By (2.3.2), using the mass distribution principle (i.e. Frostman’s lemma, see
[28, Lemma 1.5.5]), we conclude that there exists c4 > 0 such that ν(A) ≤ c4Hγ(A)
for any Borel set A. Next fix w ∈ W∗. For sufficiently small s, define Zw = {v|v ∈
Λs, v ≤ w}. Then Kw = ∪v∈ZwKv. Note that there exist c′ > 0 and c′′ > 0 such
that diam(Kv, d)

γ ≤ c′sγ ≤ c′′ν(Kv) for any s ∈ (0, 1] and v ∈ Λs. Therefore,∑
v∈Zw

diam(Kv, d)
γ ≤ c′′

∑
v∈Zw

ν(Kv) = c′′ν(Kw) because ν ∈ M(K). Since

maxv∈Zw diam((Kv, d))→ 0 as s→ 0, it follows that Hγ(Kw) ≤ c′′ν(Kw). By [28,
Theorem 1.4.10], we obtain (2.3.1). �

In general, it is difficult to find a measure ν satisfying the assumption of the
above theorem. However, if S is a scale induced by an elliptic measure µ, then
we may let ν = µ and have γ = 1. Also there is an obvious choice of ν and γ in
the case of a self-similar scale. The following corollary corresponds to the classical
Moran-Hutchinson theorem on the Hausdorff dimension of a self-similar set with
the open set condition. See [28, Section 1.5]. Also see [35, 24].

Corollary 2.3.7. Let a = (ai)i∈S ∈ (0, 1)S. Assume that S(a) is locally
finite and that d is a qdistance on K which is adapted to S(a). Then the results of
Theorem 2.3.6 holds, where γ is the unique constant which satisfies

∑
i∈S(ai)

γ = 1
and ν is the self-similar measure with weight ((ai)

γ)i∈S .

Definition 2.3.8. (1) Let S be a scale on Σ. For n ≥ 1, define

δ
(n)
S

(x, y) = inf{s|y ∈ U (n)
s (x)}

for any x, y ∈ K.
(2) Let d be a qdistance. We say that d is n-adapted to S if and only if there

exist c1, c2 > 0 such that c1d(x, y) ≤ δ(n)
S

(x, y) ≤ c2d(x, y) for any x, y ∈ K.

Obviously, a qdistance d is adapted to S if and only if it is n-adapted to S for

some n ≥ 1. If no confusion may occur, we omit S in δ
(n)
S

and write δ(n). The
following proposition is immediate from the definition.

Proposition 2.3.9. Let S be a scale on Σ. For any n ≥ 1 and any x, y ∈ K,
δ(n)(x, y) = δ(n)(y, x), δ(n)(x, y) ≥ 0 and the equality holds if and only if x = y.
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Lemma 2.3.10. Let S be a scale on Σ. Fix n ∈ N and α > 0. Then the following
three conditions are equivalent:
(A) There exists an α-qdistance which is n-adapted to S.
(B) DSα is a distance and (DSα)1/α is n-adapted to S.
(C) DSα is a distance and (DSα)1/α is m-adapted to S for any m ≥ n.

Moreover, let d be an α-qdistance. Then d is n-adapted to S if and only if
(DSα)1/α is an α-qdistance which is n-adapted to S and d is equivalent to (DSα)1/α.

Proof. (A) ⇒ (B) Let d be an α-qdistance which is n-adapted to S. Then
dα is a distance and there exist c1, c2 > 0 such that

Bc1s(x, d
α) ⊆ U (n)

s1/α(x) ⊆ Bc2s(x, dα)

for any x and any s. Applying Proposition 2.1.5, we obtain d(x, y)α ≤ βDSα(x, y)
for any x, y, where β = c2/(n+1). In particular,DSα is a distance andBs(x,DSα) ⊆
Bβs(x, d

α). Moreover, by Proposition 2.1.4, U
(n)

s1/α(x) ⊆ B(n+1)s(x,DSα). Hence

(DSα)1/α is n-adapted to S.

(B) ⇒ (C) By Proposition 2.1.4, U
(m)

s1/α(x) ⊆ B(m+1)s(x,DSα). This along with

the fact that U
(n)
s (x) ⊆ U (m+1) shows that (DSα)1/α is m-adapted.

(C) ⇒ (A) This is obvious.
The remaining statement is easily verified from the arguments in “(A)⇒ (B)”.

�

Theorem 2.3.11. Let S be a scale on Σ and let n ∈ N. The following six
properties are equivalent:
(A) δ(n) is a quasidistance.
(B) There exists a qdistance which is n-adapted to S.
(C) There exists α > 0 such that DSα is a distance and (DSα)1/α is n-adapted to
S.
(D) There exists α > 0 such that DSα is a distance and (DSα)1/α is m-adapted to
S for any m ≥ n.
(E) For any m ≥ n, there exists c > 0 such that cδ(m)(x, y) ≥ δ(n)(x, y) for any
x, y ∈ K.
(F) There exists c > 0 such that cδ(2n+1)(x, y) ≥ δ(n)(x, y) for any x, y ∈ K.

Proof. (A) ⇒ (B) Proposition 2.3.2 suffices this implication.
(B) ⇒ (C) ⇒ (D) This is immediate by Lemma 2.3.10.
(D) ⇒ (E) Let d = (DSα)1/α. Since d is both m and n- adapted to S, there exist
β1, β2 > 0 such that β1δ

(m)(x, y) ≥ β2d(x, y) ≥ δ(n)(x, y) for any x, y.
(E) ⇒ (F) This is obvious.
(F) ⇒ (A) Let x, y and z belong to K. If t > max δ(n)(x, y), δ(n)(y, z), then y ∈
U

(n)
t (x) and z ∈ U (n)

t (y). Hence x ∈ U (2n+1)
t (z). This shows that δ(2n+1)(x, z) ≤

δ(n)(x, y) + δ(n)(y, z). By (5), δ(n)(x, z) ≤ c(δ(n)(x, y) + δ(n)(y, z)). �

By the above theorem, a qdistance which is adapted to a scale S is essentially
(DSα)1/α. Also, qdistances which are adapted to a scale S are all equivalent.

Corollary 2.3.12. Let S be a scale on Σ.
(1) There exists a qdistance which is adapted to S if and only if (DSα)1/α is a
α-qdistance which is adapted to S for some α > 0.
(2) Let d be a qdistance. Then d is adapted to S if and only if (DSα)1/α is a
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α-qdistance which is adapted to S for some α > 0 and d is equivalent to (DSα)1/α.
(3) Let d1 be a qdistances adapted to S. Then a qdistance d2 is adapted to S if and
only if d2 is equivalent to d1.

By the above results, if there exists a qdistance which is adapted to S, then

{m|there exists a qdistance which is m-adapted to S}
={m|δ(m) is a quasidistance} = {n, n+ 1, . . .}.

Denote this n by nA(S). Combining Theorems 2.2.6 and Corollary 2.3.12, we have
the following result on existence of an adapted qdistance for an intersection type
finite scale.

Theorem 2.3.13. Let S be a scale on Σ with (EL1). If S is intersection type
finite with respect to L, then there exists a qdistance on K which is adapted to S.
Furthermore, nA(S) ≤ 3.

Proof. By Theorem 2.2.6, there exists α > 0 such that DSα is a distance on
K which is 3-adapted to S

α. Therefore, if d = (DSα)1/α, then d is a qdistance on
K which is 3-adapted to S. �

If the self-similar structure is strongly finite, then we have slightly better result.

Theorem 2.3.14. Assume that the self-similar structure L is strongly finite.
If S is intersection type finite and satisfies (EL1), then δ(1) is a quasidistance. In
particular, nA(S) = 1.

Proof. Let (s, x) ∈ (0, 1]×K. For any k ≥ 0 and m ≥ 2, define

CH(x, s, k,m) = {(w(1)v(1), . . . , w(m)v(m)) ∈ CH|w(i) ∈ Λs and

v(i) ∈ Wk for any i = 1, . . . ,m, x ∈ Kw(1)v(1)}.
Also define

Km(s, x, k) =
⋃

(τ(1),...,τ(m))∈CH(s,x,k,m)

( m⋃

i=1

Kτ(i)

)

Let d be a distance on K which gives the original topology ofK. Then the diameter
of Km(s, x, k) with respect to d converges to 0 as k →∞. Since Us(x) is a neighbor-
hood of x, there exists k0 such that Km(s, x, k0) ⊆ Us(x). Since S satisfies (EL1),
there exists α1 ∈ (0, 1) such that Λs∩Λα1s = ∅. This means that any w ∈ Λα1s can
be written as w = w′v, where w′ ∈ Λs and |v| ≥ 1. Hence if β = (α1)

k0 , then any
w ∈ Λβs can be written as w = w′v, where w′ ∈ Λs and |v| ≥ k. This along with

that fact that Km(s, x, k0) ⊆ Us(x) yields that Um−1
βs (x) ⊆ Us(x). Note that the

constant β is determined by (s, x) and m. In this sense, we write β = β(s, x,m).
By Theorem 2.2.13,

(
(0, 1] × K

)
/∼

1
is a finite set. Suppose that (s1, x1) ∼

1

(s2, x2). Then there exists an L-isomorphism ψ between Λ1
s1,x1

and Λ1
s2,x2

. Using ψ,
we see that β(s1, x1,m) = β(s2, x2,m). Since the equivalence class under ∼

1
is finite,

we may choose β1 ∈ (0, 1) such that U
(m−1)
β1s

(x) ⊆ U (n)
s (x) for any (s, x) ∈ (0, 1]×K.

This implies that δ(m−1)(x, y) ≥ β1δ
(n)(x, y) for any x, y ∈ K. In the case, m = 4,

we have the condition (F) of Theorem 2.3.11 with n = 1. Therefore δ(1) is a
quasidistance. �
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In the case of a rationally ramified self-similar structure, Corollary 2.2.8 along
with Theorem 2.2.6 implies the following result.

Corollary 2.3.15. Let L be a rationally ramified self-similar structure and let
S be an elliptic scale on S. If S is locally finite, then nA(S) = 1 and there exists a
qdistance on K which is 1-adapted to S. In particular, if L is post critically finite,
then there exists an adapted qdistance for every elliptic scale on Σ.

For self-similar scales, we have the following stronger result.

Theorem 2.3.16. Assume that DS(a) is a distance on K, where a ∈ (0, 1)S.
If L is strongly finite and S(a) is intersection type finite, then there exists β1 > 0
such that

Bβ1s(x,DS(a)) ⊆ Us(x) ⊆ B2s(x,DS(a))

for any s ∈ (0, 1] and any x ∈ K.

Proof. By Proposition 2.1.4, we have Us(x) ⊆ B2s(x,DS(a)). Hereafter we
write S = S(a). Let a = (ai)i∈S and define c = mini∈S ai. Let X be a finite subset
of W∗. If ∪w∈XKw is connected, we define, for x, y ∈ ∪w∈XKw,

CH(x, y : X) = {(w(1)v(1), . . . , w(m)v(m)) ∈ CH(x, y)|w(1), . . . , w(m) ∈ X}.
and DS,X(x, y) = inf{∑m

j=1 aτ(j)|(τ(1), . . . , τ(m)) ∈ CH(x, y : X)}. Note that

DS,X(x, y) ≥ DS(x, y). Also for (s, x) ∈ (0, 1]×K, we define

ds,x = inf{DS,Λ2
s,x

(x1, x2)|x1 ∈ Ks(x), x2 ∈ U (2)
s (x)\Us(x)}

Ds,x = inf{DS(x1, x2)|x1 ∈ Ks(x), x2 ∈ U (2)
s (x)\Us(x)}.

By Theorem 2.2.13,
(
(0, 1]×K

)
/∼
2

is a finite set. Choose one representative (s∗, x∗)

in a equivalence class. Suppose that (s, x) ∼
2

(s∗, x∗). Let ψ be an 2-isomorphism

between (s, x) and (s∗, x∗) and let φ be the homeomorphism between U
(2)
s (x) and

U
(2)
s∗ (x∗) associated with ψ. For p, q ∈ U (2)

s (x),

(s∗)
−1

m∑

j=1

aψ(w(j))v(j) ≤
m∑

j=1

av(j) ≤ (cs)−1
m∑

j=1

aw(j)v(j)

for any (w(1)v(1), . . . , w(m)v(m)) ∈ CH(p, q : Λ2
s,x), where w(1), . . . , w(m) ∈ Λ2

s,x.
Hence we have csDS,Λ2

s∗,x∗

(φ(p), φ(q))/s∗ ≤ DS,Λ2
s,x

(p, q). This implies that ds,x ≥
c∗s, where c∗ = c(s∗)−1ds∗,x∗

. Since the number of equivalence classes is finite,
there exists β > 0 such that ds,x ≥ βs for any (s, x) ∈ (0, 1]×K.

If ds,x > Ds,x, then there exists a chain between x and y which gives the
infimum of the definition of Ds,x. This chain should contain a word in Λs′ for
s′ ≥ s. Therefore Ds,x ≥ s. Combining this with the fact that ds,x ≥ βs, we see
that Bβ1s(x,DS) ⊆ Us(x), where β1 = β/2. �

Finally we define the notion of “volume doubling with respect to a qdistance”
and consider measures which have volume doubling property.

Theorem 2.3.17. Let L be a rationally ramified self-similar structure and let
S be an elliptic scale on Σ. Also let µ ∈ M(K). Then µ has the volume doubling
property with respect to S (i.e. (VD) is satisfied) if and only if the following condition
(VDd) is satisfied:
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(VDd) There exist a qdistance d on K which is adapted to S, α ∈ (0, 1) and c > 0
such that µ(Bs(x, d)) ≤ cµ(Bαs(x, d)) for any s ∈ (0, 1] and any x ∈ K.

Proof. If (VD) holds, then S is locally finite by Theorem 1.3.5. Hence by
Corollary 2.3.15, there exists a qdistance on K which is adapted to S. Now (VD)
immediately implies (VDd). Conversely (VDd) implies (VD)n for some n. Hence
we obtain (VD). �





CHAPTER 3

Heat Kernel and Volume Doubling Property of

Measures

3.1. Dirichlet forms on self-similar sets

We now begin to study heat kernels derived from “self-similar” Dirichlet forms
on self-similar sets. More precisely, we will establish an equivalence between certain
type of upper heat kernel estimate and the volume doubling property. See the
next section for details. In this section, we will give a framework on “self-similar”
Dirichlet forms. Let L = (K,S, {Fi}i∈S) be a self-similar structure. Hereafter we
will always assume that K 6= V 0 and that K is connected.

The following lemma is easy to verify.

Lemma 3.1.1. Let µ be an elliptic probability measure on K. Then, for any w ∈
W∗, there exists a unique elliptic probability measure µw on K such that µw(A) =
µ(Fw(A))/µ(Kw) for any Borel set A ⊆ K. Moreover, define ρw : L2(K,µ) →
L2(K,µw) by ρwu = u◦Fw. Then ρw is a bounded operator.

Remark. If µ is a self-similar measure on K with weight (µi)i∈S , then µw = µ
for any w ∈ W∗

Now we define the notion of self-similar Dirichlet forms.

Definition 3.1.2. Let µ be an elliptic probability measure on K and let (E ,F)
be a local regular Dirichlet form on L2(K,µ).
(1) We say that (E ,F , µ) is self-similar, (SSF) for short, if and only if it satisfies
the following two conditions:
(SSF1) u ◦ Fi ∈ F for any i ∈ S and any u ∈ F . There exists (ri)i∈S ∈ (0,∞)S

such that

(3.1.1) E(u, v) =
∑

i∈S

1

ri
E(u◦Fi, v◦Fi)

for any u, v ∈ F . If g(w) =
√
rwµ(Kw), then g(w) is a gauge function and the scale

S∗ induced by g is elliptic.
(SSF2) Let Γ1 and Γ2 be subsets of W∗ which are L-similar and let ψ be the
associated L-similitude between K(Γ1) and K(Γ2). If u ∈ F , supp(u) ⊆ K(Γ1)
and u◦ψ|∂K(Γ2) ≡ 0, then there exists v ∈ F such that supp(v) ⊆ K(Γ2) and
v|K(Γ2) = u◦ψ.

The ratio (ri)i∈S is called the resistance scaling ratio. If ri < 1 for any i ∈ S,
then (E ,F , µ) is said to be recurrent.

Remark. (1) If µ is a self-similar measure with weight (µi)i∈S , then g(w) is
a gauge function if and only if riµi < 1 for any i ∈ S. In this case S∗ is always
elliptic.

59
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(2) If (E ,F , µ) is recurrent, then g(w) is always a gauge function and S∗ is always
elliptic.

Definition 3.1.3. Let µ be an elliptic probability measure on K and let (E ,F)
be a local regular Dirichlet form on L2(K,µ). We say that (E ,F , µ) satisfy Poincaré
inequality, (PI) for short, if and only if there exists c > 0 such that

(PI) E(u, u) ≥ c
∫

K

(u − (ū)µw ))2dµw

for any w ∈ W∗ and any u ∈ ρw(F), where (ū)ν =
∫
K udν.

Remark. If µ is a self-similar measure, then µw = µ for any w ∈ W∗. There-
fore, in this case, (PI) holds if and only if

E(u, u) ≥ c
∫

K

(u − ū)2dµ

for any u ∈ F , where c is a positive constant. Furthermore assume that (E ,F)
is conservative, i.e. 1 ∈ F and E(1, 1) = 0. Let −∆ be the non-negative self-
adjoint operator associated with the Dirichlet form (E ,F) on L2(K,µ). Then by
the variational principle, (PI) holds if and only if 0 is the eigenvalue of H whose
multiplicity is one and the spectrum of −∆ is contained in {0} ∪ [c,∞) for some
c > 0.

Hereafter we always assume that µ is an elliptic probability measure on (K, d)
and that (E ,F) is a local regular Dirichlet form on L2(K,µ). From the self-similarity
(SSF) and the Poincaré inequality (PI), we can establish the existence of heat
kernels and their diagonal estimates.

Theorem 3.1.4. Assume that (E ,F , µ) satisfy the conditions (SSF) and (PI).
Let {Tt}t>0 be the strongly continuous semigroup on L2(K,µ) associated with the
Dirichlet form (E ,F). Then {Tt}t>0 is ultracontractive and there exist α > 0 and
c > 0 such that ||Tt||1→∞ ≤ ct−α/2 for any t ∈ (0, 1]. Moreover, there exists
p : (0,+∞)×K ×K → [0,+∞) such that p(t, ·, ·) ∈ L∞(K ×K) and

(Ttu)(x) =

∫

K

p(t, x, y)u(y)µ(dy)

for any u ∈ L2(K,µ). p(t, x, y) is called the heat kernel associated with the Dirichlet
form (E ,F) on L2(K,µ). In particular, if (E ,F , µ) is recurrent, then α ∈ (0, 2).

We need the next two lemmas to show the above theorem.

Lemma 3.1.5. Let Λ be a partition of Σ. For any u ∈ F , define Λ(u) = {w|w ∈
Λ,Kw∩supp(u) 6= ∅}. Assume that (E ,F , µ) satisfy the conditions (SSF) and (PI).
Then

E(u, u) +
c

minw∈Λ(u) rwµ(Kw)2
||u||21 ≥

c

maxw∈Λ(u) rwµ(Kw)
||u||22,

where c is the constant appearing in (PI).
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Proof. Using (3.1.1) and (PI), we see that

E(u, u) =
∑

w∈Λ(u)

1

rw
E(u ◦ Fw, u ◦ Fw)

≥
∑

w∈Λ(u)

c

rw

(∫

K

(u ◦ Fw)2dµw −
( ∫

K

u ◦ Fwdµw
)2)

≥
∑

w∈Λ(u)

c

rwµ(Kw)

∫

Kw

u2dµ−
∑

w∈Λ(u)

c

rwµ(Kw)2
( ∫

Kw

udµ
)2

≥ c

maxw∈Λ(u) rwµ(Kw)
||u||22 −

c

minw∈Λ(u) rwµ(Kw)2
||u||21.

�

Lemma 3.1.6. Assume that (E ,F , µ) satisfy the conditions (SSF) and (PI). Let
S∗ = {Λs}s∈(0,1]. Then there exist positive constants c1 and c2 such that

(3.1.2) E(u, u) +
c1

s2 minw∈Λs(u) µ(Kw)
||u||21 ≥

c2
s2
||u||22

for any u ∈ F and any s ∈ (0, 1].

Proof. Since µ is elliptic, µ(Kw1...wm) ≥ αµ(Kw1...wm−1) for any w1 . . . wm ∈
W∗, where α > 0 is independent of w. Hence for any w ∈ Λs, it follows that
αrs2 ≤ g(w) ≤ s2, where r = mini∈S ri. This along with Lemma 3.1.5 immediately
implies (3.1.2). �

Proof of Theorem 3.1.4. Since µ and S∗ is elliptic, there exist δ, η ∈ (0, 1),
c1 > 0 and c2 > 0 such that µ(Kw) ≥ c1δ

|w| and g(w) ≤ c2η
|w| for any w ∈ W∗.

Therefore, there exist positive constants α and c3 such that µ(Kw) ≥ c3g(w)α for
any w ∈ W∗. This with (3.1.2) implies that

(3.1.3) E(u, u) +
c4
s2+α

||u||21 ≥
c5
s2
||u||22

for any u ∈ F ∩ L1(K,µ). By [30, Theorem 3.2], (3.1.3) turn out to be equivalent
to the Nash inequality (A.1). Using Theorem A.2, we deduce that {Tt}t>0 is
ultracontractive and ||Tt||1→∞ ≤ ct−α/2. The existence of the heat kernel follows
from Theorems A.2 and A.3.

If (E ,F , µ) is recurrent, there exist c > 0 and γ > 0 such that µ(Kw) ≥ c(rw)γ

for any w ∈ W∗. Choose α so that γ = (α/2)/(1 − (α/2)). Then α ∈ (0, 2) and
µ(Kw) ≥ c2g(w)α for any w ∈W∗. �

We also need the following two properties to establish a suitable framework for
heat kernel estimate.

Definition 3.1.7. Assume that (E ,F , µ) satisfy the conditions (SSF) and (PI).
(1) (E ,F , µ) is said to have the continuous heat kernel, (CHK) for short, if and if
(CHK) The heat kernel p(t, x, y) associated with the Dirichlet form (E ,F) on
L2(K,µ) is jointly continuous, i.e. p : (0,+∞)×K ×K → [0,+∞) is continuous.
(2) Let (Ω, {Xt}t≥0, {Px}x∈K) be the diffusion process associated with the local
regular Dirichlet form (E ,F) on L2(K,µ). For any A ⊆ K, we define the hitting
time of A, hA, by hA = inf{t ≥ 0|Xt ∈ A}. (E ,F , µ) is said to have uniform
positivity of hitting time, (UPH) for short, if and only if
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(UPH) infx∈B Ex(hA) > 0 for all closed sets A and B with A ∩B = ∅.

In the subsequent sections, we will study heat kernels associated with a local
regular Dirichlet form (E ,F) on L2(K,µ) which satisfy (SSF), (PI), (CHK) and
(UPH). A similar set of assumptions on Dirichlet forms on self-similar sets has
given in [8, Assumption 2.3]

In the recurrent case, (SSF) along with (PI) implies (CHK) and (UPH).

Theorem 3.1.8. Assume (SSF) and (PI). If (E ,F , µ) is recurrent, then (CHK)
and (UPH) are satisfied.

Lemma 3.1.9. Assume (SSF), (PI) and that (E ,F , µ) is recurrent. Then F ⊆
C(K, d). Let U be an open subset of K. Define FU = {u|u ∈ F , u|K\U = 0}
and EU = E|FU×FU . Also let µ|U be the Borel regular measure on U defined by
µ|U (A) = µ(A) for any Borel subset A of U . Then (EU ,FU ) is a local regular
Dirichlet form on L2(U, µ|U ). The associated semigroup, {TUt }t>0, on L2(U, µ|U )
is ultracontractive and the associated heat kernel pU : (0,+∞)×K ×K → [0,+∞)
is continuous.

The heat kernel pU itself is only defined on (0,+∞) × U × U by definition.
However, we can extend pU (t, x, y) by letting pU (t, x, y) = 0 if x or y belongs to
K\U .

Proof. By Theorem 3.1.4, it follows that ||Tt||1→∞ < ctα/2, where α ∈ (0, 2).
Hence applying Theorem A.6, we obtain that F ⊆ C(K, d). Then (EU ,FU ) is a
local regular Dirichlet form on L2(U, µ|U ) by [15, Theorem 4.4.3]. Starting from
(3.1.3), we follow the same discussion as in the proof of Theorem 3.1.4 and obtain
||TUt ||1→∞ ≤ ct−α/2. Hence Theorem A.6 shows that pU is continuous. �

Proof of Theorem 3.1.8. We already verify (CHK) in Lemma 3.1.9. Let A
be a non-empty closed subset of K. For x ∈ K,

(3.1.4) Ex(hA) =

∫ ∞

0

∫

X

pY (t, x, y)µ(dy)dt,

where Y = Ac. Since A 6= ∅, EY (u, u) = 0 if and only if u = 0. Therefore, if λ1

is the smallest eigenvalue of the non-negative self-adjoint operator associated with
the Dirichlet form (EY ,FY ) on L2(Y, µ|Y ), −∆Y , then λ1 > 0. By (A.2), there
exists c1 > 0 such that

pY (t, x, y) ≤ c1e−λt
for any x, y ∈ K and any t ≥ 1. For t ∈ (0, 1], By Lemma 3.1.9, there exists c2 > 0
such that p(t, x, y) ≤ c2t−α/2 for any x, y ∈ K and t ∈ (0, 1]. Therefore, define

F (t) =

{
c2t

−α/2 if t ∈ (0, 1],

c1e
−λ1t if t > 1.

Then pY (t, x, y) ≤ F (t) and
∫ 1

0

∫
X
F (t)µ(dy)dt < +∞. Note that pY (t, x, y) is

continuous. By the Lebesgue dominated convergence theorem, (3.1.4) implies that
Ex(hA) is continuous with respect to x ∈ K. Assume that B is a closed subset
of K and A ∩ B = ∅. Since the process is a diffusion process, Px(hA = 0) > 0
for any x ∈ B. Hence Ex(hA) > 0 for any x ∈ B. Therefore, infx∈B Ex(hA) =
minx∈B Ex(hA) > 0. Thus we obtain (UPH). �
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Proposition 3.1.10. Assume (SSF), (PI) and (CHK). If (E .F) is conservative,
i.e. 1 ∈ F and E(1, 1) = 0, then the heat kernel p(t, x, y) is positive, i.e. p(t, x, y) >
0 for any (t, x, y) ∈ (0,+∞)×K ×K.

Proof. By [28, Theorem 1.6.2], K is arcwise connected. Hence the desired
result follows from Theorem A.4. �

3.2. Heat kernel estimate

In this section, we will give our main result on heat kernels associated with self-
similar Dirichlet forms on self-similar sets. Let L = (K,S, {Fi}i∈S) be a self-similar
structure. Hereafter we will always assume that K 6= V 0, that K is connected and
that (K,S, {Fi}i∈S) is rationally ramified with a relation set R. Moreover, µ is an
elliptic probability measure on K and (E ,F) is a local regular Dirichlet form on
L2(K,µ).

Definition 3.2.1. Assume that (E ,F , µ) satisfy (SSF). The resistance scal-
ing ratio (ri)i∈S of (E ,F) is said to be arithmetic on R1-relations if and only if
log rw/ log rv ∈ Q for any ({w}, {v}, ϕ, x, y) ∈ R1.

For the lower off-diagonal estimate of heat kernels, we need a “geodesic” be-
tween a pair of points.

Definition 3.2.2. Let (X, d) be a metric space. For x, y ∈ X , a curve γ :
[0, d(x, y)]→ X is called a geodesic between x and y if and only if γ(0) = x, γ(1) = y
and d(γ(t), γ(s)) = |t− s| for any t, s ∈ [0, d(x, y)]. We call (x, y) ∈ X2 a geodesics
pair for (X, d) if and only if there exists a geodesic between x and y. The distance
d is called a geodesic distance if and only if every pair (x, y) ∈ X2 is a geodesic
pair.

Theorem 3.2.3. Assume that (E ,F) is conservative and that (E ,F , µ) satisfy
(SSF), (PI), (CHK) and (UPH). Let S∗ be the scale induced by the gauge function

g(w) =
√
rwµ(Kw). Suppose either that

(I) (E ,F) is recurrent
or that
(II) µ is a self-similar measure on K and the resistance scaling ratio (ri)i∈S is
arithmetic on R1-relations.
Then, the following four conditions (a) - (d) are equivalent.
(a) µ is volume doubling with respect to the scale S∗.
(b) There exists a qdistance d on K adapted to S∗ such that µ is volume doubling
with respect to the qdistance d.
(c) There exist c > 0 such that

(DUHK’) p(t, x, x) ≤ c

µ(U√
t(x))

for any t ∈ (0, 1] and any x ∈ K.
(d) There exist a qdistance d on K which is adapted to S∗ and c > 0 such that

(DUHK) p(t, x, x) ≤ c

µ(B√
t(x, d))

for any t ∈ (0, 1] and any x ∈ K.
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Moreover, suppose that any of the above conditions holds. Let d be a qdistance
adapted to S∗. If dα is a distance on K, then α < 2 and there exist positive constants
c1, c2 and c3 such that, for any t ∈ (0, 1] and any x, y ∈ K,

(DLHK)
c1

µ(B√
t(x, d))

≤ p(t, x, x)

and

(UHK) p(t, x, y) ≤ c2
µ(B√

t(x, d))
exp

(
− c3

(d(x, y)2
t

) 1
β−1
)
,

where β = 2/α. Also in the recurrent case, there exist positive constants c4 and c5
such that

(LHK)
c4

µ(B√
t(x, d))

exp
(
− c5

(d(x, y)2
t

) 1
β−1
)
≤ p(t, x, y)

for any t ∈ (0, 1] and any geodesic pair (x, y) ∈ K2 for (K, dα).

Remark. At a glance, it seems that the inequalities (DUHK), (DLHK) and
(UHK) may depend on the choice of a qdistance d. Using Us(x) and δ(1)(x, y),
however, we may rewrite those inequalities. Namely, if δ(1)(x, y)α is equivalent to
a distance on K, then

γ1

µ(U√
t(x))

≤ p(t, x, x) ≤ γ2

µ(U√
t(x))

and

p(t, x, y) ≤ γ2

µ(U√
t(x))

exp
(
− γ3

(δ(1)(x, y)2
t

) 1
β−1
)
,

where β = 2/α. Note that γ1 and γ2 are independent of α. The constant γ3 is the
only place where the value of α may be involved.

We will give a proof of Theorem 3.2.3 in Section 3.5.
There are two classes of self-similar sets, p. c. f self-similar sets and Sierpinski

carpets, where a local regular Dirichlet form with (SSF), (PI), (CHK) and (UPH)
has been constructed. We will apply the above theorem to those classes in the next
two sections.

3.3. P. c. f. self-similar sets

In this section, we will consider post critically finite self-similar structures. In
this case, one can easily determine when the assumptions of Theorem 3.2.3 hold.
Throughout this section, L = (K,S, {Fi}i∈S) is a post critically finite self-similar
structure whose relation set is {({w(i)}, {v(i)}, ϕi, x(i), y(i))|i = 1, . . . ,m}, where
w(i), v(i), x(i), y(i) ∈W# and ϕi(w(i)) = v(i).

There is an established way of constructing self-similar Dirichlet forms on a
post critically finite self-similar sets in [28]. It starts from a harmonic structure
(D, r), where D is a “Laplacian” on V0, which is a finite set for a p. c. f. self-similar
set, and r = (ri)i∈S ∈ (0,∞)S . From (D, r), we obtain a quadratic form (E ,F)
which satisfies u ◦ Fi ∈ F for any i ∈ S and

E(u, u) =
∑

i∈S

1

ri
E(u ◦ Fi, u ◦ Fi)

for any u ∈ F . See [28] for details.
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We assume that µ is an elliptic probability measure on K for the rest of this
section.

Proposition 3.3.1. Assume either that (D, r) is recurrent, i.e. r ∈ (0, 1)S, or
that µ is a self-similar measure with weight (µi)i∈S which satisfies riµi < 1 for any
i ∈ S. Then (E ,F) is an local regular Dirichlet form on L2(K,µ) which satisfies
(SSF), (PI), (CHK) and (UPH).

Proof. If (D, r) is recurrent, then the conditions (RFA1), (RFA2) and (RFA3)
are immediately verified. Hence the statement follows by Theorem B.3. Next
assume that µ is a self-similar measure with weight (µi)i∈S which satisfies riµi < 1
for any i ∈ S. Then we have (SSF) by the method of construction of F . See [28,
Sections 3.1 and 3.2] for details. Also by [28, Theorem 3.4.6], (E ,F) is a local regular
Dirichlet form on L2(K,µ) and the associated non-negative self-adjoint operator H
has compact resolvent. Also the kernel of H is equal to constants. Therefore, by
the remark after Definition 3.1.3, we obtain (PHI). By [28, Prposition 5.1.2], we
also have (CHK). Finally, we show (UPH). Let A and B be closed subsets of K with
A ∩ B = ∅. Set Am = K(W (Wm, A)). Then Am ∩ B = ∅ for sufficiently large m.
Since A ⊆ Am, we have Ex(hAm) ≤ Ex(hA). Therefore, we may replace A by Am
to show (UPH). In other word, we may regard A as ∪w∈ΓKw for some finite subset
Γ of W∗. In such a case, ∂A is a finite subset of V∗ and hA = h∂A for any path
starting from B. By [28, Section A.2], the heat kernel p∂A(t, x, y) corresponding to
the Dirichlet form (E ,F∂A) on L2(K,µ) is jointly continuous on (0,∞)×K2. Also,
we have

Ex(hA) =

∫

K\A

∫ ∞

0

p∂A(t, x, y)dtµ(dy)

for any x ∈ K\A. Define

F (x) =

∫

K\A

∫ ∞

0

p∂A(t, x, y)dtµ(dy).

By definition, 0 ≤ F (x) ≤ Ex(hA) for any x ∈ B. By [28, Theorem A.2.1], the
nonnegative self-adjoint operator −∆∂A associated with (E ,F∂A) on L2(K,µ) has
compact resolvent. Let λ∗ be the smallest eigenvalue of −∆∂A. If E(u, u) = 0, then
u is constant and u|∂A ≡ 0. This implies that λ∗ > 0. Hence there exists C > 0
such that

p∂A(t, x, y) ≤ Ce−λ∗t

for any (t, x, y) ∈ [1,∞)×K2. Hence F (x) is continuous on K\A by the Lebesgue
dominated convergence theorem. Moreover by [28, Theorem A.2.19], we have
p∂A(t, x, x) > 0 for any x ∈ K\A. Hence F (x) > 0 for any x ∈ K\A. Since
B is compact, we deduce that 0 < infx∈B F (x) ≤ infx∈B Ex(hA). Thus we obtain
(UPH). �

From now on, we confine ourselves to the second case in the above proposition,
namely, µ is a self-similar measure with weight (µi)i∈S which satisfies riµi < 1 for
any i ∈ S. Note that if (D, r) is recurrent, then the assumption (I) of Theorem 3.2.3
is satisfied. If not, the resistance scaling ratio r should be arithmetic onR1-relations
in order to satisfy the assumption (II) of Theorem 3.2. Note that every relation is
an R1-relation for p. c. f. self-similar structure.

Proposition 3.3.2. The assumption (II) of Theorem 3.2.3 holds if and only
if log rw(i)/ log rv(i) ∈ Q for any i = 1, . . . ,m.
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Proof. This is immediate by Definition 3.2.1. �

We have the following simple condition which is equivalent to the statement
(a) of Theorem 3.2.3

Proposition 3.3.3. Let S∗ be the scale induces by the gauge function g(w) =√
rwµw. Then µ has the volume doubling property with respect to S∗ if and only if

log rw(i)

logµw(i)
=

log rv(i)

log µv(i)

for any i = 1, . . . ,m.

Proof. Corollary 1.6.13 suffices to show the desired statement. �

If µ has the volume doubling property with respect to S∗, we can apply Theo-
rem 3.2.3 and obtain heat kernel estimates. As is seen in the last section, if

(3.3.1) max{α|Dγα is a distance on K}
exists, then it plays an important role in off-diagonal heat kernel estimates like
(UHK) and (LHK). Next we study how to calculate the value of maximum in
(3.3.1).

Definition 3.3.4. (1) Define

CHm(x, y) = {(w(j))j=1,...,k|(w(j))j=1,...,k ∈ CH(x, y),

w(j) ∈Wm for any j = 1, . . . , k},
for x, y ∈ K and m ≥ 0. We regard CH1(x, y) as a subset of W# by identifying

(w(j))j=1,...,k ∈ CH1(x, y) with w(1)w(2) . . . w(k) ∈W#.
(2) (A, τ) is called a recursive system of paths if A is a non-empty finite subset of

⋃

p,q∈V0:p6=q
{(w, p, q), w ∈ CH1(p, q)},

and τ : A → ∪n≥1An satisfies the following condition: τ((w, p, q)) ∈ A|w| for any

(w, p, q) ∈ A. If τ((w1 . . . wk, p, q)) = ((w(j), pj , qj))j=1,...,k, then p = Fw1(p1), q =
Fwk

(qk) and Fwj (qj) = Fwj+1(pj+1) for any j = 1, . . . , k − 1.
(3) Let (A, τ) be a recursive system of paths. (A, τ) is called irreducible if and
only if B = A whenever B ⊆ A and (B, τ |B) is a recursive recursive system of paths.
(4) Let (A, τ) be recursive and let a = (aj)j∈S ∈ (0, 1)S. Then the relation matrix
M = MA,τ,a is a #A×#A-matrix defined by

Mw,w′ =
∑

j:w(j)=w
′

awj

where w = (w1 . . . wk, p, q) and τ(w) = ((w(1), . . . ,w(k))).

In some cases, the following results are useful in determining whether Da is
a distance or not. In fact, later in this section, we will make use of them to
characterize the value (3.3.1) for an example.

Proposition 3.3.5. Let a = (aj)j∈S ∈ (0, 1)S.

(1) If
∑k

j=1 awj ≥ 1 for any w1 . . . wk ∈ ∪p,q∈V0:p6=qCH1(p, q), then Da is a dis-
tance on K.
(2) If there exists a recursive (A, τ) such that the maximum eigenvalue of the
relation matrix MA,τ,a is less than one, then Da is not a distance.
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The following notations are convenient in proving the above proposition.

Notation. Let w = (w(j))j=1,...,k ∈ CH(x, y).
(1) For v = (v(j))j=1,...,l ∈ CH(y, z), we use w ∨ v to denote the chain between
x and z defined by ((w(1), . . . , w(k), v(1), . . . , v(l)). In the same manner, we define
∨ni=1wi ∈ CH(x1, xn) if wi ∈ CH(xi, xi+1) i = 1, . . . , n− 1.
(2) For v ∈ W∗, define vw = (vw(j))j=1,...,k, which is a chain between Fv(x) and
Fv(y).
(3) For a = (aj)j∈S ∈ (0, 1)S and w = (w(j))j=1,...,k ∈ CH, define

aw =

k∑

j=1

aw(j).

Proof. (1) Assume that p, q ∈ V0 and p 6= q. Let (w(j))j=1,...,n ∈ CH(p, q).
We will show that

(3.3.2)

n∑

j=1

aw(j) ≥ 1

by using induction on n. If n = 1, then w(1) = ∅. Since a∅ = 1, (3.3.2) holds.
Also if (w(j))j=1,...,n ∈ CH1(p, q), then (3.3.2) also holds by the assumption of the
proposition. Otherwise, there exist w ∈ W#, j∗ ∈ {1, . . . , n} and i1, . . . , il ∈ S
such that w(j∗ + k − 1) = wik for k = 1, . . . , l and (ik)k=1,...,l ∈ CH1(p

′, q′) for
some p′, q′ ∈ V0 with p′ 6= q′. Let (w′(1), . . . , w′(n − l + 1)) = (w(1), . . . , w(j∗ −
1), w, w(j∗ + l), . . . , w(n)). Then (w′(1), . . . , w′(n − l + 1)) ∈ CH(p, q). Using the
assumption of the proposition and induction, we obtain

n∑

j=1

aw(j) =

j∗−1∑

j=1

aw(j) + aw

l∑

k=1

aik +
n∑

j=j∗+l

aw(j) ≥
n−l+1∑

m=1

aw′(m) ≥ 1.

Therefore, (3.3.2) holds for any element of CH(p, q). This immediately implies that
Da(p, q) ≥ aw for any w ∈W∗ and any p, q ∈ Fw(V0) with p 6= q.

Next, define Km(x) = ∪w∈Wm:x∈KwKw. For any x, y ∈ K with x 6= y, we
may choose m ≥ 1 such that Km(x) ∩Km(y) = ∅. Then for any (w(j))j=1,...,n ∈
CH(x, y), there exist j∗, l and p, q ∈ Vm with p 6= q such that (w(j∗), . . . , w(j∗ + l−
1)) ∈ CH(p, q). This shows that Da(x, y) ≥ minp,q∈Vm:p6=qDa(p, q) > 0. Thus Da

is a distance.
(2) Let (A, τ) be a recursive system of paths. First define τm(w, p, q) ∈

CHm(p, q) for (w, p, q) ∈ A inductively as follows. Set τ1(w, p, q) = w for any
(w, p, q) ∈ A. If τ(w, p, q) = ((w(j), pj , qj))j=1,...,k, then we define τm(w, p, q) =
∨kj=1wjτm−1(w(j), pj , qj), where w = w1 . . . wk.

Let a = (aj)j∈S ∈ (0, 1)S . Then aτm(w,p,q) = (Mme)(w,p,q) for any (w, p, q) ∈
A, where M = MA,τ,a and e ∈ ℓ(A) is the transpose of (1, . . . , 1). Assume that
the maximum eigenvalue of M is less than one. It follows that the maximum
eigenvalue of MB,τ |B,a is less than one if B ⊆ A and (B, τ |B) is a recursive system
of paths. On the other hand, there exists an irreducible recursive system of paths
(B, τ ′) where B ⊆ A and τ ′ = τ |B. Therefore, A may be assumed to be irreducible
without loss of generality. Let λ be the maximum eigenvalue of M Then by the
Perron-Frobenius theorem, 0 < λ < 1 and we can choose a positive vector f as an
associated eigenvector. Since e ≤ cf for some c > 0, Mne ≤ cλnf as n→∞. Hence
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Figure 3.1. the modified Sierpinski gasket

limm→∞ aτm(w,p,q) = 0. This implies that Da(p, q) = 0 if (w, p, q) ∈ A. Therefore
Da is not a distance. �

Finally, we apply the above results to a particular example.

Definition 3.3.6. Set p1 = e
√−1π/6, p2 = 0, p3 = 1, p4 = (p2 + p3)/2, p5 =

(p3 + p1)/2 and p6 = (p1 + p2)/2. Define Fi : C → C by Fi(z) = (z − pi)/3 + pi
for i = 1, . . . , 6. Let K be the unique non-empty compact set that satisfies K =
∪i∈SFi(K), where S = {1, . . . , 6}. K is called the modified Sierpinski gasket.

In the rest of this section, K is assumed to be the modified Sierpinski gas-
ket and L = (K,S, {Fi}i∈S) is the associated self-similar structure defined above.
Immediately by the above definition, we obtain the following.

Proposition 3.3.7. The relation set of L is

{({1}, {2}, ϕ12, i, j)|(i, j) = (6, 1), (2, 6), (4, 5)}
∪ {({2}, {3}, ϕ23, i, j)|(i, j) = (4, 2), (3, 4), (5, 6)}

∪ {({3}, {1}, ϕ31, i, j)|(i, j) = (1, 5), (5, 3), (6, 4)},
where ϕkl(k) = l for (k, l) = (1, 2), (2, 3), (3, 1). In particular, L is post critically
finite, P = {(1)∞, (2)∞, (3)∞) and V0 = {p1, p2, p3}.

Proposition 3.3.8. Let D =
(−2 1 1

1 −2 1
1 1 −2

)
and let r = ( 7

15 , . . .
7
15 ).

(1) (D, r) is a recurrent harmonic structure on (K,S, {Fi}i∈S).
(2) Let µ be a self-similar measure on K with weight (µi)i∈S and let S∗ be a
self-similar scale with weight {γi}i∈S, where γi =

√
µiri. Then µ has the volume

doubling property with respect to S∗ if and only if µ1 = µ2 = µ3.

Proof. (1) This can be shown by the ∆-Y transform. See [28] for details.
(2) Apply Proposition 3.3.3. �
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Figure 3.2. Self-similar volume doubling measures on the modi-
fied Sierpinski gasket

Hereafter, we fix (D, r) and S∗ as in the above proposition. Also µ is assumed
to be a self-similar measure which satisfies µ1 = µ2 = µ3. See Figure 3.2. Note
that we may assume that µ4 ≤ µ5 ≤ µ6 without loss of generality.

Proposition 3.3.9. Assume that µ4 ≤ µ5 ≤ µ6. Let α∗ be the unique α which
satisfies

(3.3.3) 2(γ1)
α + (γ4)

α = 1.

Then

α∗ = max{α|Dγα is a distance on K},
where γα = ((γi)

α)i=1,...,6.

Note that γi =
√

7µi/15 for any i.

Proof. Let w = (243, p2, p3). Note that 243 ∈ CH1(p2, p3). Set A = {w} and
define τ : A → A3 by τ(w) = (w,w,w). Then (A, τ) is a recursive system of paths
and MA,τ,γα = (2(γ1)

α + (γ4)
α). If α > α∗, the maximum eigenvalue of MA,τ,γα is

less than one. Hence Proposition 3.3.5-(2) implies that Dγα is not a distance. On
the other hand, for α = α∗, we may verify the assumption of Proposition 3.3.5-(1)
and show that Dγα is a distance. �

Theorem 3.3.10. Assume that µ4,≤ µ5 ≤ µ6. Let (E ,F) be the Dirichlet
form associated with (D, r) on L2(K,µ) and let p(t, x, y) be the corresponding heat
kernel.Also define d = (Dγα∗ )1/α∗ , where α∗ is the unique solution of (3.3.3).
(1) Suppose that µ4 < µ5. Then, (UHK) and (DLHK) holds for any x, y ∈ K
and any t ∈ (0, 1] with β = β∗. Moreover, (LHK) holds if the line segment xy is
contained in K and is parallel to the real axis.
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(2) If µ4 = µ5, then (UHK) and (LHK) holds for any x, y ∈ K and any t ∈ (0, 1]
with β = β∗.

Proof. In both cases, Theorem 3.2.3 immediately implies (UHK). Assume
that the line segment xy is contained in K and is parallel to the real axis. Then
we see that (x, y) is a geodesic pair for (K,Dγα∗ ). Hence by Theorem 3.2.3, we
have (LHK) for such a pair. In the case (2), it follows that Dγα∗ is equivalent to a
geodesic distance. Hence (LHK) holds for any x, y ∈ K. �

3.4. Sierpinski carpets

In this section, we discuss another class of self-similar sets, the generalized
Sierpinski carpets. The following definition is given by Barlow-Bass[7].

Definition 3.4.1. Let H0 = [0, 1]n, where n ∈ N, and let l ∈ N with l ≥ 2.
Set Q = {∏n

i=1[(ki − 1)/l, ki/l] | (k1, . . . , kn) ∈ {1, . . . , l}n}. For any Q ∈ Q, define
FQ : H0 → H0 by FQ(x) = x/l + aQ, where we choose aQ so that FQ(H0) = Q.
Let S ⊆ Q and let GSC(n, l, S) be the self-similar set with respect to {FQ}Q∈S,
i.e. GSC(n, l, S) is the unique nonempty compact set satisfying GSC(n, l, S) =
∪Q∈SFQ(GSC(n, l, S)). Set H1(S) = ∪Q∈SFQ(H0). GSC(n, l, S) is called a gener-
alized Sierpinski carpet if and only if the following four conditions (GSC1), . . . ,
(GSC4) are satisfied:
(GSC1) (Symmetry) H1(S) is preserved be all the isometries of the unit cube H0.
(GSC2) (Connected) H1(S) is connected.
(GSC3) (Non-diagonality) For any x ∈ H1(S), there exists r0 > 0 such that
int(H1(S) ∩Br(x)) is nonempty and connected for any r ∈ (0, r0), where Br(x) =
{y|y ∈ Rn, |x− y| < r}.
(GSC4) (Border included) The line segment between 0 and (1, 0, . . . , 0) is contained
in H1(S).

The Sierpinski carpet (Example 1.7.4) is equal to GSC(2, 3, S), where S =
Q− {[1/3, 2/3]2}. Also [0, 1]n = GSC(n, l,Q) for any l ≥ 2.

In the rest of this section, we fix a generalized Sierpinski carpet GSC(n, l, S)
and write K = GSC(n, l, S). Also L is the self-similar structure associated with K,
i.e. L = (GSC(n, l, S), S, {FQ}Q∈S). Let ν be a self-similar measure with weight
(1/N, . . . , 1/N), where N = #(S).

Definition 3.4.2. For k ∈ {1, . . . , n} and s ∈ [0, 1], define Sk,s = {Q|Q ∈
S,Q ∩Φk,s}, where Φk,s is a hyperplane in Rn defined by

Φk,s = {(x1, . . . , xn)|xk = s}.
Also let Ψk,l be the parallel translation in k-direction by 1/l; Ψk,l(x1, . . . , xn) =

(y1, . . . , yn), where yi = xi if i 6= k and yk = xk + 1/l. For Q1, Q2 ∈ S, Q1 and Q2

are called k-neighbors if and only if Ψk,l(Q1) = Q2 or Ψk,l(Q2) = Q1.

Let rfk : Rn → Rn be the reflection in the hyperplane Φk,1/2. The symmetry
condition (GSC1) ensures that rfk(Q) ∈ Sk,1 for any Q ∈ Sk,1. In this sense, we
regard rfk as a map from Sk,0 to Sk,1. Note that rfk is a bijection between Sk,0 and
Sk,1.
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Proposition 3.4.3. The self-similar structure L associated with a generalized
Sierpinski carpet is rationally ramified with a relation set

R∗ = {(Sk,0, Sk,1, rfk,Q1,Q2) | k ∈ {1, . . . ,n},
Q1, Q2 ∈ S and they are k-neighbors.}

Combining the above proposition with Theorem 1.6.1, we obtain the following
fact.

Proposition 3.4.4. A self-similar scale S(a) is locally finite with respect to L.
if and only if arfk(Q) = aQ for any k = 1, . . . , n and any Q ∈ Sk,0.

In the series of papers [2, 3, 4, 5, 6, 7], Barlow and Bass have constructed a
diffusion process on a generalized Sierpinski carpet and studied it extensively. For
example, they have obtained elliptic and parabolic Harnack inequalities, Poincaré
inequality and sub-Gaussian heat kernel estimate. Unfortunately, the Dirichlet form
on L2(K, ν) associated with their diffusion process is not necessarily self-similar. On
the other hand, in [34], Kusuoka and Zhou have given a prescription of construction
a self-similar Dirichlet form on a generalized Sierpinski carpet.

Combining the methods and results in [7] and [34] as in [22], we obtain a
local regular Dirichlet form (E ,F) on L2(K, ν) which has the self-similarity in the
following sense: for any u ∈ F and any Q ∈ S, u◦FQ ∈ F and there exists r > 0
such that

E(u, u) =
1

r

∑

Q∈S
E(u◦FQ, u◦FQ)

for any u ∈ Q. In fact, from Kusuoka-Zhou’s method, we have (SSF). Moreover, the
corresponding diffusion process enjoys the same inequalities and estimates as the
original one studied by Barlow and Bass. See [7, Remark 5.11] and the discussion
after it. In particular, the associated heat kernel satisfies UHK and LHK for any
x, y ∈ K, where β > 2, µ = ν and a distance d is the Euclidean distance. Note that
ν(Br(x, d)) = crn for any r > 0.

Barlow-Kumagai have studied a time change of this process in [8]. Let µ be a
self-similar measure on L with weight (µi)i∈S . Define

Fµ = {u|u ∈ L2(K,µ), there exists f ∈ Fe such that u = f for µ-a.e. x ∈ K}

and set Eµ(u, u) = E(H̃Af, H̃Af) for u ∈ Fµ, where f ∈ Fe and u = f for µ-a.e.

x ∈ K, A is the quasi support of µ and (H̃Au)(x) = Ex(u(XhA)). (See [15, Section
6.2] for details on time changes of a diffusion process associated with a Dirichlet
form in general. Also see [8, p. 9].) In [8], they have shown that if µQr < 1 for
any Q ∈ S, then (Eµ,Fµ) is a local regular Dirichlet form on L2(K,µ) and the
associated diffusion process is a time change of the diffusion associated with (E ,F).
By their discussion, we can verify (SSF), (PI), (CHK) and (UPH).

Here after, we fix a self-similar measure µ with weight (µQ)Q∈S and assume
that µQr < 1 for any Q ∈ S. The following lemma is immediate by Theorems 1.3.5,
1.6.6 and Proposition 3.4.4.

Theorem 3.4.5. Define S∗ = S(γ), where γQ =
√
µQr for any Q ∈ S and

γ = (γQ)Q∈S. Then µ has the volume doubling property with respect to S∗ if and
only if µQ = µrfk(Q) for any k = 1, . . . , n and any Q ∈ Sk,0.
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a b a

c c

a b a

a = µ1 = µ3 = µ5 = µ7

b = µ2 = µ6

c = µ4 = µ8

Figure 3.3. Self-similar volume doubling measures on the Sier-
pinski carpet

This theorem shows when the condition (a) of Theorem 3.2.3 holds. Conse-
quently, the claims of Theorem 3.2.3 follows if µQ = µrfk(Q) for any k = 1, . . . , n
and any Q ∈ Sk,0. In particular, if Dγα is a distance, set β = 2/α and d(x, y) =

Dγα(x, y)1/α. Then

c1
µ(B√

t(x, d))
≤ p(t, x, x) ≤ c2

µ(B√
t(x, d))

and

p(t, x, y) ≤ c3
µ(B√

t(x, d))
exp

(
− c4

(d(x, y)2
t

) 1
β−1
)

for any t ∈ (0, 1] and any x, y ∈ K, where p(t, x, y) is the heat kernel associated
with the Dirichlet form (Eµ,Fµ) on L2(K,µ). Moreover, we have the elliptic Har-
nack inequality by [7]. (Note that harmonic functions associated with (Eµ,Fµ) on
L2(K,µ) are the same as those associated with (E ,F) on L2(K, ν).) Also we have
the exit time estimate (E) by Lemma 3.5.13. Using the arguments in [17], we have
the near diagonal lower estimate (3.5.8). Hence, if Dγα is equivalent to a geodesic
distance, then the classical arguments in [1, 8, 18, 30] imply the lower off-diagonal
Li-Yau estimate (LHK).

Finally we present two examples.

Example 3.4.6 (the Sierpinski carpet). Let L = (K,S, {Fi}i∈S) be the self-
similar structure associated with the Sierpinski carpet appearing in Examples 1.5.12
and 1.7.4. By [2, 3] and [34], the resistance scaling ratio r is less than one and hence
we are in the recurrent case. By Theorem 3.4.5, the condition (a) of Theorem 3.2.3
follows if and only if µ1 = µ3 = µ5 = µ7, µ2 = µ6 and µ4 = µ8. See Figure 3.3.
Furthermore, if µ2 = µ4 and µ1 ≤ µ4 as well, then

(0, α∗] = {α|Dγα is a distance},
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A B A

B B

A B A

A = (µ1r)
α∗/2

B = (µ2r)
α∗/2

A ≤ B

2A + B = 1

Figure 3.4. Geodesic distances on the Sierpinski carpet

where α∗ is given by 2(µ1r)
α∗/2 + (µ2r)

α∗/2 = 1, and Dγα∗ is equivalent to a
geodesic distance. See Figure 3.4. Details on the construction of geodesic distances
on the Sierpinski carpet can be found in [32]. In this case, we have the upper and
lower off-diagonal Li-Yau estimates (UHK) and (LHK):

c1
µ(B√

t(x, d))
exp

(
− c2

(d(x, y)2
t

)1/(β∗−1)
)
≤ p(t, x, y)

≤ c3
µ(B√

t(x, d))
exp

(
− c4

(d(x, y)2
t

)1/(β∗−1)
)

for any x, y ∈ K and any t ∈ (0, 1], where d(x, y) = (Dγα∗ )1/α∗ and β∗ = 2/α∗.

Example 3.4.7 (Cubes). Let l = 3 and let S = Q. Then K = [0, 1]n. In this
case, ν is the restriction of the Lebesgue measure,

F = H1(K) = {f |f : K → R, all the partial derivatives of f

in the sense of distribution belong to L2(K, ν)}
and

E(u, v) =

n∑

k=1

∫

K

∂u

∂xk

∂v

∂xk
dν,

where ∂u/∂xi is the derivative in the sense of distribution. The diffusion process
associated with the Dirichlet form (E ,F) on L2(K, ν) is the reflected Brownian
motion. In this case, for any u, v ∈ F ,

E(u, v) = 32−n
∑

Q∈S
E(u◦FQ, v◦FQ).
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Hence r = 3n−2. Hence we are not in the recurrent case unless n = 1. If µQ < 32−n

for any Q ∈ S, then we have a local regular Dirichlet form (Eµ,Fµ) on L2(K,µ),
where µ is the self-similar measure with weight (µQ)Q∈S . The corresponding diffu-
sion process is the time change of the reflected Brownian motion on n-dimensional
cube [0, 1]n. In particular, if n = 2, then r = 1 and (Eµ,Fµ) is a local regular Dirich-
let form on L2(K,µ) for any self-similar measure µ. Applying Theorem 3.4.5, we
obtain Theorem 0.2.5.

3.5. Proof of Theorem 3.2.3

As in Section 3.2, (K,S, {Fi}i∈S) is a rationally finite self-similar structure
and (E ,F) is a local regular Dirichlet form on L2(K,µ) which is conservative and
satisfies (SSF), (PI), (CHK) and (UPH). Also S∗ is the scale induced by the gauge

function g(w) =
√
rwµ(Kw). We write S∗ = {Λs}0<s≤1.

First note that Theorem 2.3.17 implies the following equivalence.

Lemma 3.5.1. (a) is equivalent to (b).

Definition 3.5.2. Let U be a nonempty open subset of K. Define DU =
{u|u ∈ F ∩ C(K), u|K\U ≡ 0} and

λ∗(U) = inf
u∈DU

E(u, u)
||u||22

.

Also define FU by the closure of DU with respect to the inner product E∗(u, v) =
E(u, v) +

∫
K
uvdµ.

Proposition 3.5.3. Let U be a nonempty open subset of K. If EU = EFU×FU ,
then (EU ,FU ) is a local regular Dirichlet form on L2(K,µ) (or L2(U, µ|U )). If −∆U

is the self-adjoint operator on L2(K,µ) associated with (EU ,FU ), then −∆U has
compact resolvent and λ∗(U) is the minimal eigenvalue of −∆U . Also if pU (t, x, y)
is the heat kernel associated with the Dirichlet form (EU ,FU ), then. for any t > 0,

0 ≤ pU (t, x, y) ≤ p(t, x, y)
for µ× µ-a.e. (x, y) ∈ K2.

Lemma 3.5.4. There exists c > 0 such that, for any w ∈ W∗,

λ∗(Bw) ≤ c

rwµ(Kw)
,

where Bw = Kw\Fw(V 0).

Proof. Choose v ∈W∗ so that Kv ⊆ K\V 0. Since (E ,F) is a regular Dirichlet
form, there exists ϕ ∈ C(K) ∩ F such that supp(ϕ) ⊆ K\V 0 and ϕ(x) ≥ 1 for any
x ∈ Kv. Define ϕw by

ϕw(x) =

{
ϕ((Fw)−1(x)) if x ∈ Kw,

0 otherwise.

Then by (SSF), ϕw ∈ FBw and E(ϕw , ϕw) = (rw)−1E(ϕ,ϕ). Since µ is elliptic,
||ϕw||22 ≥ µ(Kwv) ≥ c′µ(Kw), where c′ is independent of w. Therefore,

λ∗(Bw) ≤ E(ϕw , ϕw)

||ϕw||22
≤ E(ϕ,ϕ)

c′rwµ(kw)
.

�
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Lemma 3.5.5. (d) implies (b).

Proof. Choose α > 0 so that dα is a distance. Let D(x, y) = d(x, y)α and let
β = 2/α. Then by (d),

p(t, x, x) ≤ c1
µ(Bt1/β (x,D))

.

Since d is adapted to the scale S∗, there exists c2 > 0 such that Uc2s(x) ⊆ Bs(x, d)
for any x ∈ K and any s ∈ (0, 1]. Hence for any r > 0, Uc2s(x) ⊆ Bs(x, d) =
Br(x,D), where s = r1/α. Let w ∈ Λc2s,x. Then by Lemma 3.5.4,

λ∗(B(r,D)) ≤ λ∗(Bw) ≤ c3
rwµ(Kw)

≤ c4r−β .

Using Theorem C.3, we have the volume doubling property of µ with respect to the
distance D. This immediately implies (b). �

Lemma 3.5.6. If there exist positive constants c1 and c2 such that

p(t, x, x) ≤ c1
µ(Uc2

√
t(x))

for any x ∈ X and any t ∈ (0, 1], then µ has the volume doubling property with
respect to S∗. In particular, (c) implies (a).

Remark. In the following proof, we don’t need the assumption (I) neither (II).

Proof. Let s = c2
√
t and let x ∈ K. If w ∈ Λs,x, then Us(y) = Us(w) ⊆ Us(x)

for any y ∈ Bw, where Us(w) = K(W (Λs,Kw)). By (c) and Proposition 3.5.3,

pBw(t, y, y) ≤ p(t, y, y) ≤ c1
µ(Us(y))

.

Integrating this over Bw, we see that

e−λ∗(Bw)t ≤
∫

Bw

pBw(t, y, y)µ(dy) ≤ c1µ(Kw)

µ(Us(y))
.

By Lemma 3.5.4, it follows that c∗ ≤ e−λ∗(Bw)t, where c∗ is independent of x, t and
w ∈ Λs,x. Hence,

c∗µ(Us(w)) ≤ c1µ(Kw)

for any w ∈ Λs,x. Since ∪w∈Λs,xUs(w) = Us(x),

c∗µ(Us(x)) ≤ c∗
∑

w∈Λs,x

µ(Us(w)) ≤ c1
∑

w∈Λs,x

µ(Kw) = c1µ(Ks(x)).

This is the condition (A)1 in Section 1.3. Since both µ and S∗ are elliptic, Theo-
rem 1.3.10 implies the condition (VD)0. Hence by Theorem 1.3.5, we have (a). �

Lemma 3.5.7. (d) implies (c).

Proof. Note that by the previous lemmas, we have (b) and (a). Since d is

adapted to the scale S∗, there exist n ≥ 1 and c1 > 0 such that U
(n)
c1s (x) ⊆ Bs(x, d)

for any x ∈ X and any s ∈ (0, 1]. Therefore by (d),

p(t, x, x) ≤ c

µ(U
(n)

c1
√
t
(x))

≤ c

µ(Uc1
√
t(x))

.

Now the volume doubling property of µ with respect to the scale S∗ immediately
implies (c). �
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Lemma 3.5.8. If (a) is satisfied, then there exists c > 0 such that rw ≤ crv for
any s ∈ (0, 1] and any w, v ∈ Λs with Kw ∩Kv 6= ∅.

Proof. By Theorem 1.3.5, µ is gentle with respect to S∗. Hence there exists
c1 > 0 such that µ(Kw) ≤ cµ(Kv) and rwµ(Kw) ≤ c1rvµ(Kv) for any s ∈ (0, 1] and
any w, v ∈ Λs with Kw ∩Kv 6= ∅.This shows that rw ≤ (c1)

2rv. �

Proposition 3.5.9. Assume that (E ,F) is recurrent. For any closed subset B
of K, there exists gB : K ×K → [0,∞) which has the following properties:
(GF1) gB(x, y) = gB(y, x) ≤ gB(x, x) for any x, y ∈ K.For any x ∈ K, define gxB
by gxB(y) = gB(x, y). Then gxB ∈ FX\B and E(gxB, u) = u(x) for any x ∈ K and
any u ∈ FX\B.
(GF2) |gB(x, y)− gB(x, z)| ≤ R(y, z) for any y, z ∈ K.
(GF3) For x /∈ B, define

R(x,B) =
(
min{E(u, u)|u ∈ FX\B, u(x) = 1}

)−1
.

Then gB(x, x) = R(x,B) > 0.
(GF4) For x /∈ B,

Ex(hB) =

∫

K

gB(x, y)µ(dy).

gB is called the B-Green function.

Proof. Since (E ,F) is recurrent, (E ,F) is a resistance form on K. If B is
a finite set, the above results are shown in [29]. Generalization to a closed set is
straight forward. See [27] for details. �

Lemma 3.5.10. Assume (a). Set V
(n)
s (x) = int(U

(n)
s (x)) for any (s, x) ∈ (0, 1]×

K and define Es,x(·, ·) by

Es,x(u, u) =
∑

v∈Λn
s,x

E(u ◦ Fv, u ◦ Fv)

for u ∈ F
V

(n)
s (x)

.Then there exist c1, c2 > 0 such that

c1
rw
Es,x(u, u) ≤ EV (n)

s (x)
(u, u) ≤ c2

rw
Es,x(u, u)

for any (s, x) ∈ (0, 1]×K and any u ∈ F
V

(n)
s (x)

.

Proof. By (SSH), if u ∈ F
V

(n)
s (x)

,

E
V

(n)
s (x)

(u, u) =
∑

v∈Λn
s,x

1

rv
E(u ◦ Fv, u ◦ Fv)

Using Lemma 3.5.8, we immediately deduce the desired inequality. �

Lemma 3.5.11. Assume (a) and that (E ,F) is recurrent. For (s, x) ∈ (0, 1]×K,
define

Rs,x = sup
y∈Ks(x)

Rs,x(y) and Rs,x = inf
y∈Ks(x)

Rs,x(y),

where
Rs,x(y) =

(
inf{Es,x(u, u)|u ∈ FV (n)

s (x)
, u(y) = 1}

)−1
.

Then, 0 < Rs,x ≤ Rs,x < +∞ and

(c2)
−1rwRs,x ≤ R(x, V (n)

s (x)c) ≤ (c1)
−1rwRs,x
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for any w ∈ Λs,x, where c1 and c2 are the same constants as in Lemma 3.5.10

Proof. By Lemma 3.5.10, for any w ∈ Λs,x,

(3.5.1) (c2)
−1rwRs,x(y) ≤ R(y, V (n)

s (x)c) ≤ (c1)
−1rwRs,x(y).

Since R(y, V
(n)
s (x)c) = g

V
(n)

s (x)c(y, y), it follows that

c1gV (n)
s (x)c(y, y) ≤ rwRs,x(y) ≤ c2gV (n)

s (x)c(y, y).

Note that g
V

(n)
s (x)c(y, y) is continuous with respect to y and is positive for any

y ∈ Ks(x) ⊆ V (n)
s (x). Therefore we see that 0 < Rs,x ≤ Rs,x < +∞ because Ks(x)

is compact. Now the desired result is straight forward from (3.5.1). �

Lemma 3.5.12. Assume that (E ,F) is recurrent. If (a) holds, then there exist
positive constants c3 and c4 such that

(RES) c3rw ≤ R(x, V (n)
s (x)c) ≤ c4rw

for any x ∈ K, any s ∈ (0, 1] and any w ∈ Λs,x.

Proof. Suppose that (s, x) ∼
n+1

(t, y). Let ψ be the n+1-isomorphism between

(s, x) and (t, y) and let φ be the associated L-similitude between U
(n+1)
s (x) and

U
(n+1)
t (y). Note that ψ(Λks.x) = Λkt,y for k = 0, 1, . . . , n+ 1, φ(U

(n)
s (x)) = U

(n)
s (y)

and φ(Ks(x)) = Ks(y). Since φ(∂U
(n)
s (x)) = ∂U

(n)
t (y), it follows from (SSH) that

φ∗ : F
V

(n)
t (y)

→ F
V

(n)
s (x)

defined by φ∗(u) = u◦φ is bijective. Moreover,

Es,x(φ∗(u), φ∗(u)) =
∑

v∈Λn
s,x

E(φ∗(u) ◦ Fv, φ∗(u) ◦ Fv)

=
∑

v∈Λn
s,x

E(u ◦ Fψ(v), u ◦ Fψ(v)) = Et,y(u, u).

Hence Rs,x(z) = Rt,y(φ(z)). So Rs,x and Rs,x depend only on the equivalence
classes under ∼

n+1
. By Theorem 1.3.5, (a) implies that S∗ is locally finite. Hence by

Theorems 2.2.7 and 2.2.13, the number of equivalence classes under ∼
n+1

is finite.

Now Lemma 3.5.11 suffices to deduce the lemma. �

Lemma 3.5.13. Assume that (E ,F) is recurrent. If (a) holds, then there exists
c5, c6 > 0 such that

(E) c5s
2 ≤ Ex(hV (n)

s (x)c) ≤ c6s2

for any (s, x) ∈ (0, 1]×K.

Proof. First we show the upper estimate. By Proposition 3.5.9,

Ex(hV (n)
s (x)c) =

∫

V
(n)

s (x)

g
V

(n)
s (x)c(x, y)µ(dy) ≤ R(x, V (n)

s (x)c)µ(V (n)
s (x)).

Since µ is gentle with respect to S∗ and S∗ is locally finite, µ(V
(n)
s (x)) ≤ cµw for

w ∈ Λs,x, where c is independent of s, x and w.This along with Lemma 3.5.12 yields

Ex(hV (n)
s (x)c) ≤ cc4rwµw ≤ c6s2.
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For the lower estimate, note that (SSH) implies

(3.5.2) R(Fv(y), Fv(z)) ≤ rvR(y, z)

for any y, z ∈ K and any v ∈ W∗. (See [28, Lemma 3.3.5] for details.) Hence
supy,z∈Kv

R(y, z) ≤ Mrv for any v ∈ W∗, where M = supp,q∈K R(p, q). Choose m
so that M(maxi∈S ri)m ≤ c3/2. Then, for any w ∈ Λs,x, there exists v ∈ Wm such
that x ∈ Kwv and R(x, y) ≤ c3rw/2 for any y ∈ Kwv. By (GF2) and Lemma 3.5.12,

g
V

(n)
s (x)c(x, y) ≥ gV (n)

s (x)c(x, x) −R(x, y) ≥ c3rw/2
for any y ∈ Kwv. Therefore,

Ex(hV (n)
s (x)c) ≥

∫

Kwv

g
V

(n)
s (x)c(x, y)µ(dy) ≥ c3rwµ(Kwv)/2.

Since µ is elliptic, µ(Kwv) ≥ bµ(Kw), where b is independent of s, x and w. There-
fore we obtain the lower estimate. �

Lemma 3.5.14. Assume (a). For any (s, x) ∈ (0, 1]×K, define µs,x by

µs,x =
∑

v∈Λn
s,x

µ(F−1
w (A ∩Kv))

for any Borel set A ⊆ K. If µ is self-similar, then there exist c5, c6 > 0 such that

c5µwµs,x(A) ≤ µ(A) ≤ c6µwµs,x(A)

for any (s, x) ∈ (0, 1]×K, any w ∈ Λs,x and any Borel set A ⊆ Us(x).
Lemma 3.5.15. For (s, x, w) ∈ (0, 1] × K × Λs,x, let {Es,x,wy (·)}

y∈V (n)
s (x)

be

the expectation with respect to the diffusion process associated with the local regular
Dirichlet form (rwEV (n)

s (x)
,F

V
(n)

s (x)
) on L2(K,µs,x). Define

Es,x,w = inf
y∈Ks(x)

Es,x,wy (h
V

(n)
s (x)c) and E

s,x,w
= sup

y∈Ks(x)

Es,x,wy (h
V

(n)
s (x)c).

If (a) is satisfied, then 0 < Es,x,w ≤ Es,x,w < +∞ and

c7E
s,x,ws2 ≤ Ex(hV (n)

s (x)c) ≤ c8E
s,x,w

s2,

where c7 and c8 are independents of (s, x, w).

Proof. Use h(t, y, z) to denote the heat kernel associated with the Dirichlet
form (rwEV (n)

s (x)
,F

V
(n)

s (x)
) on L2(K,µs,x). Recall that pVs(x)(t, y, z) is the heat ker-

nel associated with the Dirichlet form (E
V

(n)
s (x)

,F
V

(n)
s (x)

) on L2(K,µ). Therefore,

by Lemma 3.5.14,
∫

V
(n)

s (x)

h(
t

c5µwrw
, y, z)µs,x(dz) ≤

∫

V
(n)

s (x)

p
V

(n)
s (x)

(t, y, z)µ(dz)

≤
∫

V
(n)

s (x)

h(
t

c6µwrw
, y, z)µs,x(dz),

where c5 and c6 are the same constants as in Lemma 3.5.14. Integrating this on
[0,∞) with respect to t, we obtain

(3.5.3) c5µwrwE
s,x,w
y (hB) ≤ Ey(hB) ≤ c6µwrwEs,x,wy (hB),

where B = V
(n)
s (x)c. Note that h(t, y, z) has uniform exponential decay for suf-

ficiently large t, i.e. there exist c, λ > 0 and t∗ > 0 such that h(t, y, z) ≤ ce−λt
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for any y, z and t ≥ t∗. Hence E
s,x,w

< +∞. By (UPH),
∫
y∈Ks(x)

Ey(hB) > 0.

Hence (3.5.3) implies that Es,x,w > 0. Again using (3.5.3), we obtain the desired
inequality. �

Lemma 3.5.16. For any (s, x), (t, y) ∈ (0, 1] × K, we write (s, x) ∼
∗

(t, y) if

and only if (s, x) ∼
n+1

(t, y) and there exists c > 0 such that rψ(w) = crw for any

w ∈ Λns,x, where ψ : Λn+1
s,x → Λn+1

t,y is the n + 1-isomorphism between (s, x) and
(t, y). Assume (a). If (II) is satisfied, i.e. µ is self-similar and the resistance
scaling ratio is arithmetic on R1-relations, then (0, 1]×K/∼

∗
is finite.

Proof. By Theorem 1.3.5, S∗ is locally finite and S∗ ∼
GE

Sµ, where Sµ is the

scale induced by µ. Hence by Theorem 1.4.3-(1), Sµ is locally finite as well. Let
(X,Y, ϕ, x, y) ∈ R2, where R is the relation set of L. If (X,Y, ϕ, x, y) ∈ R2, then
Theorem 1.6.1 yields that rwµw = rϕ(w)µϕ(w) and µϕ(w) = µϕ(w) for any w ∈ X .
Hence rw = rϕ(w) for any w ∈ X .

Next we show that {rw/rv|(w, v) ∈ IP(L, S)} is a finite set. At first, let
(w, v) ∈ IP(L, S,R2). Then the above discussion along with Lemma 3.5.8 implies
that the choice of the values rw/rv is finite.If (w, v) ∈ IP(L, S,R1, then we also
have finite number of choices of rw/rv, because (ri)i∈S is arithmetic on R1-relation.
Hence {rw/rv|(w, v) ∈ IP(L, S,R)} is a finite set. Now let (w, v) ∈ IP(L, S). As
in the proof of Theorem 2.2.7, we have {w(i)}i=1,...,m+1 which satisfies w(1) =
w,w(m + 1) = v and (w(i), w(i + 1)) ∈ IP(L, S,R) for any i. Note that m+ 1 ≤
infp∈K #(π−1(p)) < ∞. This fact along with the finiteness of {rw/rv|(w, v) ∈
IP(L, S,R)} implies that {rw/rv|(w, v) ∈ IP(L, S)} is a finite set.

Now by Theorems 2.2.7 and 2.2.13, the number of equivalence classes under
∼
n+1

is finite. Since we only have finite number of choices of rw/rv for (w, v) ∈
IP(L, S∗), one equivalent class of ∼

n+1
contains finite number of equivalent classes

of ∼
∗
. Therefore, (0, 1]/∼

∗
is a finite set. �

Lemma 3.5.17. Under the assumption (II), (a) implies (E).

Proof. Let (s, x) ∼
∗

(t, y), let ψ : Λn+1
s,x → Λn+1

t,y be the associated n + 1-

isomorphism and let φ : U
(n+1)
s (x) → U

(n+1)
t (y) be the associated similitude.

Choose w ∈ Λs,x. Then φ gives a natural correspondence between the Dirichlet

forms (rwEV (n)
s (x)

) on L2(V
(n)
s (x), µs,x) and (rψ(w)EV (n)

t (y)
) on L2(V

(n)
t (y), µt,y).

Therefore, Es,x,w = Et,y,ψ(w) and E
s,x,w

= E
t,y,ψ(w)

. Hence Lemmas 3.5.15 com-
bined with 3.5.16 suffices for (E). �

Lemma 3.5.18. Assume (b). Then (DLHK) and (UHK) holds with β > 1. In
particular, (b) implies (d).

Proof. Note that we have (a) as well due to Theorem 2.3.17. Since d is

adapted to S∗, U
(n)
cr (x) ⊆ Br(x, d) ⊆ U (n)

c′r (x). Hence by Lemmas 3.5.13 and 3.5.17,

c5c
2r2 ≤ Ex(hBr(s,d)c) ≤ c6c

′2r2. Let D(·, ·) = d(·, ·)α.Recall that β = 2/α. Then,
we have the exit time estimate with respect to the distance D:

(3.5.4) a1r
β ≤ Ex(hBr(x,D)c) ≤ a2r

β .
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Since µ is gentle with respect to S∗ and S∗ is locally finite, there exists γ > 0 such
that

(3.5.5) γµ(U (n)
s (x)) ≤ µ(Kw) ≤ µ(U (n)

s (x))

for any (s, x) ∈ (0, 1]×K and any w ∈ Λs,x. Recall that Λs(u) = {w|w ∈ Λs,Kw ∩
supp(u) 6= ∅} for u ∈ F . By (3.5.5),

γ min
x∈supp(u)

µ(U (n)
s (x)) ≤ min

w∈Λs(u)
µ(Kw) ≤ min

x∈supp(u)
µ(U (n)

s (x)).

Combining this with (3.1.2), we obtain the local Nash inequality:

E(u, u) +
a

rβ infx∈supp(u) µ(Br(x,D))
||u||21 ≥

b

rβ
||u||22

for any u ∈ F and any r ∈ (0, 1], where a and b are independent of u.
Now using [30, Theorem 2.9 and Theorem 2.13], we see that β > 1 and obtain

(DLHK) and (UHK). �

By the above lemmas, we see that (a), (b), (c) and (d) are all equivalent.
Now the remaining part of a proof is to show (LHK) under given assumptions.

Lemma 3.5.19. Assume (a). For any ǫ > 0, there exists γ > 0 such that

R(x, y)µ(U
(n)
s (x)) ≤ ǫs2 for any x ∈ K, any y ∈ U (n)

γs (x) and any s ∈ (0, 1].

Proof. Write V (s, x) = µ(U
(n)
s (x)). By (a), S∗ is locally finite and µ is gentle

with respect to S∗. Let (s, x) ∈ (0, 1]×K and let w ∈ Λs,x. Then V (s, x) ≤ cµ(Kw)
and s2 ≥ crwµ(Kw), where c is independent of (s, x, w). Hence,

(3.5.6)
R(x, y)V (s, x)

s2
≤ c′R(x, y)

rw
.

Now since S∗ is elliptic, for any m ≥ 1, we can choose γ ∈ (0, 1) so that |v| ≥ m

if w′ ∈ Λs and w′v ∈ Λγs. For any y ∈ U (n)
γs (x), there exists {w(i)v(i)}ni=0 ∈ Λnγs,x

such that w(0) = w,w(k) ∈ Λns,x and Kw(k−1)v(k−1) ∩ Kw(k)v(k) 6= ∅ for any k =

1, . . . , n. Since rw′ ≤ arw for any w′ ∈ U (n)
s (x), where a is independent of s, x and

w, (3.5.2) shows that

R(x, y) ≤ R∗

n∑

k=0

rw(k)rv(k) ≤ a(n+ 1)Mrw(r∗)
m,

where M = supp,q∈K R(p, q) and r∗ = maxi∈S ri. Choosing a sufficiently large m,
we verify the statement of the lemma from (3.5.6). �

Lemma 3.5.20. Assume (a). In the recurrent case, (LHK) holds for any geo-
desic pair for dα.

Proof. Let pt,x(y) = p(t, x, y) for any t, x, y. Then pt,x belongs to the domain
of the self-adjoint operator associated with the Dirichlet from (E ,F) on L2(K,µ).
By the definition (RF4),

(3.5.7) |p(t, x, y)− p(t, x, x)|2 ≤ E(pt,x, pt,x)R(x, y)

≤ −∂p
∂t

(2t, x, x)R(x, y) ≤ p(t, x, x)R(x, y)

t
.
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(This inequality has been obtained in [14, Lemma 6.4] and [21, Lemma 5.2].)
Combining (3.5.7) with (DLHK) and (c), we obtain

p(t, x, y) ≥ p(t, x, x)
(

1−
√

R(x, y)

tp(t, x, x)

)

≥ c

µ(B√
t(x, d))

(
1− c′

√
R(x, y)µ(U

(n)
s (x))

t

)

By Lemma 3.5.19, there exists γ > 0 such that R(x, y)µ(U
(n)√
t
(x))/t ≤ (c′/2)2 for

any y ∈ U (n)

γ
√
t
(x). Since d is adapted to S∗,

p(t, x, y) ≥ c′′

µ(B√
t(x, d))

for any y ∈ Bδ√t(x, d). Let D = sα. Rewriting this in terms of D, we have

(3.5.8) p(t, x, y) ≥ c′′′

µ(Bt1/β (x,D))

for any y ∈ Bδ′t1/β (x,D). This is so called the near diagonal lower estimate. Note
that we also have the exit time estimate (3.5.4) and the volume doubling property.
By the argument of the proof of [30, Theorem 2.13], we obtain (LHK) for geodesic
pairs. �

Remark. In [30, Theorem 2.13], it is assumed that the distance is a geodesic
distance. However, the discussion of the proof of [30, Theorem 2.13] can get through
if there exists a geodesic between given two points. The constants are determined
by those appeared in the near diagonal estimate and the volume doubling property,
and hence they do not depends on the points.





Appendix

A. Existence and continuity of a heat kernel

Let (X, d) be a locally compact metric space and let µ be a Radon measure on
(X, d). Let (E ,F) be a regular Dirichlet form on L2(X,µ). We use H to denote
the non-negative self-adjoint operator from L2(X,µ) to itself. Also let {Tt}t>0 be
the strongly continuous semigroup associated with H , i.e.Tt = e−tH .

Definition A.1. The semigroup {Tt}t>0 is said to be ultracontractive if and
only if Tt can be extended to a bounded operator from L2(X,µ) to L∞(X,µ) for
any t > 0.

Note that Tt is self-adjoint. Using the duality, Tt can be extended to a bounded
operator from L1(X,µ) to L∞(X,µ) as well if {Tt}t>0 is ultracontractive.

One of the conditions implying the ultracontractivity is the Nash inequality.

Notation. ||·||p is the Lp-norm of Lp(X,µ) Also.||A||p→q is the operator norm
of a bounded linear operator A : Lp(X,µ)→ Lq(X,µ).

Theorem A.2. For α > 0, the following conditions (1), (2) and (3) are equiv-
alent.
(1) There exist positive constants c1 and c2such that

(A.1) (E(u, u) + c1||u||22)||u||2/α1 ≥ c2||u||2+4/α
2

for any u ∈ F ∩ L1(X, d) ∩ F .
(2) Tt can be extended to a bounded operator from L1(X,µ) to L∞(X,µ) and there
exist c > 0 such that ||Tt||1→∞ ≤ ct−α/2 for any t ∈ (0, 1].
(3) {Tt}t>0 is ultracontractive and there exists c > 0 such that ||Tt||2→∞ ≤ ct−α/4
for any t ∈ (0, 1].

(A.1) is called the Nash inequality which was introduced in [36]. See [10, 11,

28] for the proof of Theorem A.2.
If µ(X) < +∞, then it is known that the ultracontractivity implies the existence

of the heat kernel. The next theorem follows from the results in [11, Section 2.1].

Theorem A.3. Assume that µ(X) < +∞ and that {Tt}t>0 is ultracontractive.
Then there exists p : (0,∞)×X ×X → [0,+∞) such that p ∈ L∞(X2, µ× µ) and

(Ttu)(x) =

∫

X

p(t, x, y)u(y)µ(dy)

for any t > 0, x ∈ X and u ∈ L2(X,µ). p(t, x, y) is called the heat kernel associated
with the Dirichlet form (E ,F) on L2(X,µ). Moreover, H has compact resolvent,
i.e. (H + I)−1 is a compact operator. Let (ϕk)k≥1 be a complete orthonormal
system of L2(X,µ) consisting of the eigenvalues of H. Assume that Hϕk = λkϕk

83
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and 0 ≤ λk ≤ λk+1 for any k ≥ 1 and λk → ∞ as k → ∞. Then ϕk ∈ L∞(X,µ)
for any k and

(A.2) p(t, x, y) =

∞∑

n=1

e−λntϕn(x)ϕn(y),

where the infinite sum is uniformly convergent on [T,+∞)×X×X for any T > 0. In
particular, if ϕk ∈ C(X, d), then p(t, x, y) is jointly continuous, i.e. p : (0, 1]×X×X
is continuous.

The next theorem gives a sufficient condition for the heat kernel being positive.

Theorem A.4. Assume that µ(X) < +∞, that {Tt}t>0 is ultracontractive and
that (X, d) is arcwise connected. If the heat kernel is jointly continuous and (E ,F)
is conservative, then p(t, x, y) > 0 for any (t, x, y) ∈ (0,+∞)×X ×X.

Proof. Since E(1, 1) = 0, 1 is an eigenfunction of H . Hence by (A.2),
p(t, x, x) > 0 for any x ∈ X . Fix x, y ∈ X . Note that if t > s, then

(A.3) p(t, x, y) =

∫

X

p(s, x, z)p(t− s, z, y)µ(dy).

Assume that p(s, x, y) > 0. Since p(s, x, y)p(t − s, y, y) > 0, (A.3) implies that
p(t, x, y) > 0. Hence there exists t∗ ∈ [0,+∞] such that p(t, x, y) = 0 for any t ∈
(0, t∗] and p(t, x, y) > 0 for any t ∈ (t∗,+∞). Next we show that t∗ < +∞. Since
(X, d) is arcwise connected, there exists γ : [0, 1] → X such that γ is continuous,
γ(0) = x and γ(1) = y. For any s ∈ [0, 1], we have an open neighborhood Os of
γ(s) that satisfies, p(1, z, w) > 0 for any z, w ∈ Os. Since γ([0, 1]) is compact, there
exits {si}mi=0 such that 0 = s0 < s1 < . . . < sm−1 < sm = 1 and xi ∈ Osi+1 for any
i = 0, 1, . . . ,m− 1, where xi = γ(si). By (A.3),

p(m,x, y) =

∫

X

. . .

∫

X

p(1, x, y1)p(1, y1, y2). . .p(1, ym−1, y)µ(dy1) . . . µ(dym−1).

Since p(1, xi, xi+1) > 0 for any i = 0, 1, . . . ,m − 1, it follows that p(m,x, y) > 0.
Therefore, t∗ < m. Now let HR = {z|z ∈ C,Re(z) > 0}. Then the infinite sum

∞∑

i=1

e−λnzϕn(x)ϕn(y)

is uniformly convergent on HR. Hence p(z, x, y) is extended to a holomorphic
function on HR. If t∗ > 0, then p(t, x, y) = 0 for any t ∈ (0, t∗]. This implies that
p(z, x, y) = 0 for any z ∈ HR. This obviously contradicts the fact that t∗ < +∞.
Hence t∗ = 0. �

Definition A.5. Let X be a set. A pair (E ,F) is called a resistance form on
X if it satisfies the following conditions (RF1) through (RF5).
(RF1) F is a linear subspace of ℓ(X) containing constants and E is a non-negative
symmetric quadratic form on F . E(u, u) = 0 if and only if u is constant on X .
(RF2) Let ∼ be an equivalent relation on F defined by u ∼ v if and only if u − v
is constant on X . Then (F/∼, E) is a Hilbert space.
(RF3) For any finite subset V ⊂ X and for any v ∈ ℓ(V ), there exists u ∈ F such
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that u|V = v.
(RF4) For any p, q ∈ X ,

sup

{ |u(p)− u(q)|2
E(u, u)

∣∣∣∣u ∈ F , E(u, u) > 0

}

is finite. The above supremum is denoted by R(p, q).
(RF5) If u ∈ F , then ū ∈ F and E(ū, ū) ≤ E(u, u), where

ū(x) =





1 if u(x) ≥ 1,

u(x) if 0 ≤ u(x) < 1,

0 if u(x) < 0.

R(p, q) in the above definition is called the effective resistance between p and
q. It is known that R(·, ·) is a distance on X . We call R(·, ·) the resistance metric
associated with the resistance form (E ,F). See [28] and [29] for more details on
resistance forms.

Theorem A.6. Assume that µ(X) < +∞, that {Tt}t>0 is ultracontractive and
that there exist α ∈ (0, 2) and c > 0 such that

(A.4) ||Tt||1→∞ ≤ ct−α/2

for any t ∈ (0, 1]. Then, we may choose M > 0 so that

(A.5) E∗(u, u) ≥M ||u||2∞
for any u ∈ F , where E∗(u, u) = E(u, u) + ||u||22. In particular, F ⊆ C(X, d) and
the heat kernel p(t, x, y) associated with the Dirichlet form (E ,F) on L2(X,µ) is
jointly continuous. Moreover if (E ,F) is conservative and there exists c′ > 0 such
that

(A.6) E(u, u) ≥ c′
∫

X

(u− ū)2dµ

for any u ∈ F , where ū = µ(X)−1
∫
X udµ, then (E ,F) is a resistance form on X.

Also if R is the resistance metric associated with (E ,F), then (X,R) is bounded.

Proof. Define G∗u =
∫∞
0 e−tTtudµ. By (A.4),

∫∞
0 e−t||Tt||1→∞dt < +∞.

Hence G∗ : L1(X,µ) → L∞(X,µ) is a bounded operator. Since G∗ϕk = (λk +
1)−1ϕk for any k ≥ 1, we have G∗|L2(X,µ) = (H + I)−1. Note that E∗(G∗u,G∗u) =

(u,G∗u) for any u ∈ L2(X,µ). Hence,

||G∗u||2∗ ≤ ||u||1||G∗u||∞ ≤M ||u||21,

where ||v||∗ =
√
E∗(v, v) and M = ||G∗||1→∞. Now E∗(u,G∗v) = (u, v) for any

u ∈ F and any v ∈ L2(X,µ). Therefore

|(v, u)| ≤ |E∗(u,G∗v)| ≤M ||u||∗||G∗u||∗ ≤
√
M ||u||∗||v||1.

Since L2(X,µ) is dense in L1(X,µ), we have u ∈ L∞(X,µ) and (A.5).Since (E ,F)
is regular, there exist a core C ⊆ F ∩ C0(X, d) such that C is dense in C0(X, d)
with respect to || · ||∞ and in F with respect to || · ||∗. By (A.5), it follows that
F ⊆ C(X, d). Now that ϕk ∈ C(X, d), Theorem A.3 shows the continuity of the
heat kernel.
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Next we will verify the conditions (RF1) - (RF5) to show that (E ,F) is a
resistance form of X . (RF1) is immediate from the fact that 1 ∈ F , E(1, 1) = 0
and (A.6). By (A.6) and (A.5),

(A.7) (1 + c′)E(u, u) ≥ E(u − ū, u− ū) + ||u − ū||22 = ||u− ū||2∗ ≥M ||u− ū||2∞
If F∗ = {u|u ∈ F , ū = 0}, then (A.7) says that E and E∗ are equivalent on F∗.
Since (F , E∗) is complete, (F∗, E) is complete. This implies (RF2). Again by (A.7),
there exists c1 > 0 such that

c1E(u, u) ≥ c1||u− ū||2∞
for any u ∈ F . Therefore, for any p, q ∈ X and any u ∈ F ,

|u(p)− u(q)|2 ≤ (|u(p)− ū|+ |u(q)− ū|)2 ≤ 2c1E(u, u).
Hence

(A.8) sup

{ |u(p)− u(q)|2
E(u, u)

∣∣∣∣E(u, u) > 0

}
≤ 2c1

for any p, q ∈ X . So we have (RF4). (RF3) holds because F is dense in C0(X, d).
(RF5) is immediate from the Markov property of (E ,F). Thus we obtain the
conditions (RF1) through (RF5). Finally by (A.8), supp,q∈X R(p, q) ≤ 2c1. �

B. Recurrent case and resistance form

Let (K,S, {Fi}i∈S) be a self-similar structure and let d be a metric on K which
gives the natural topology of K associated with the self-similar structure. We
will consider a resistance from (E ,F) on K which satisfies the following conditions
(RFA1), (RFA2) and (RFA3):
(RFA1) u ◦Fi ∈ F for any i ∈ S. Moreover there exists (ri)i∈S ∈ (0, 1)S such that

E(u, v) =
∑

i∈S

1

ri
E(u◦Fi, v◦Fi)

for any u, v ∈ F .
(RFA2) Let R be the resistance metric on K associated with (E ,F). Then (K,R)
is bounded.
(RFA3) F ⊆ C(K, d) and F is dense in C(K, d).

Proposition B.1. Under the above situation, R gives the same topology as the
one given by d.

Proof. Using the same arguments as in [28, Lemma 3.3.5], we have

(B.1) rwR(p, q) ≥ R(Fw(p), Fw(q))

for any w ∈ W∗ and any p, q ∈ K.
Let R(xn, x)→ 0 as n→∞. Since (K, d) is compact, there exists x∗ ∈ K such

that d(xni , x∗)→ 0 as i→∞ for some {ni}i. Since f ∈ C(K, d) ∩C(K,R) for any
f ∈ F , we see that f(x) = limi∈∞ f(xni) = f(x∗). Hence x = x∗ because (E ,F) is
a resistance form. This implies that d(xn, x)→ 0 as n→∞.

Conversely, assume limn→∞ d(xn, x) = 0. Define Km(x) = ∪w∈Wm:x∈KwKw.
Then for any m ≥ 0, xn ∈ Km(x) for sufficiently large n. Hence (B.1) along with
(RFA2) implies that R(xn, x) ≤ rw(supp,q∈X R(p, q)) if w ∈ Wm and x ∈ Kw.
Therefore R(xn, x)→ 0 as n→∞. �
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Lemma B.2. Assume (RFA1), (RFA2) and (RFA3). There exists c > 0 such
that

(B.2) E(u, u) ≥ c
∫

K

(u− (ū)µ)
2dµ

for any u ∈ F and any elliptic probability measure µ on K, where (ū)µ =
∫
X
udµ.

Proof. (RFA2) implies that M = supp,q∈K R(p, q) is finite. Then,

ME(u, u) ≥ R(p, q)E(u, u) ≥ |u(p)− u(q)|2

for any u ∈ F and any p, q ∈ K. Integrating this with respect to p and q, we
immediately obtain (B.2). �

Theorem B.3. Let µ be an admissible measure on (K, d). The following two
conditions (RE1) and (RE2) are equivalent.
(RE1) µ is elliptic. (E ,F) is a resistance form on K which satisfies (RFA1),
(RFA2) and (RFA3).
(RE2) (E ,F) is a local regular Dirichlet form on L2(K,µ). 1 ∈ F and E(1, 1) = 0.
(E ,F , µ) satisfies (SSF) and (PI) and is recurrent.

Moreover if (RE1) or (RE2) holds, then (CHK) and (UPH) are satisfied.

Proof. Note that both (RE1) and (RE2) implies 0 < ri < 1 for any i ∈ S∗.
Therefore, if µ is elliptic, than S∗ is elliptic as well.

First we assume (RE1). By [28, Theorem 2.4.2], (E ,F) is a regular Dirichlet
from on L2(K,µ). To show the local property, suppose that u, v ∈ F and supp(u)∩
supp(v) = ∅. Then we may choose m so that Kw ∩ supp(u) ∩ supp(v) = ∅ for any
w ∈ Wm. Then by (RFA1), E(u, v) =

∑
w∈Wm

(rw)−1E(u ◦ Fw, v◦Fw) = 0. Hence
(E ,F) has the local property. (SSF) is immediate form (RFA1). (PI) follows from
Lemma B.2.

Conversely, assume (RE2). Then by Theorem 3.1.4, we have all the properties
required in Theorem A.6. Therefore, we have (RE1).

Finally if (RE2) holds, then by Theorem 3.1.8, we have (CHK) and (UPH). �

C. Heat kernel estimate to the volume doubling property

In this section, (X, d) is a locally compact metric space where every bounded set
is precompact, µ is a Radon measure on (X, d) and (E ,F) is a local regular Dirichlet
form on L2(X,µ). Let H be the non-negative self-adjoint operator on L2(X,µ)
associated with (E ,F) and let {Tt}t>0 be the strongly continuous semigroup on
L2(X,µ) associated with H .Also let ({Xt}t>0, {Px}x∈X) be the diffusion process
associated with (E ,F). We assume that {Tt}t>0 is ultracontractive.

Let U be a nonempty open subset of X and let µU be the restriction of µ on
U . Define DU = {u|u ∈ F ∩ C(X), u|X\U ≡ 0}. Let FU be the closure of DU with

respect to the inner product E∗(u, v) = E(u, v) +
∫
X
uvdµ and let EU = E|FU×FU .

By [15, Theorem 4.3], (EU ,FU ) is a local regular Dirichlet form on L2(U, µU ).
Moreover, if ({XU

t }t>0, {PUx }x∈U) is the diffusion process associated with (EU ,FU )
and τU = inf{t|Xt /∈ U}, then

(C.1) PUx (XU
t ∈ A) = Px(Xt ∈ A, τU ≥ t}.

Proposition C.1. Let {TUt }t>0 be the strongly continuous semigroup associ-
ated with (E ,F). Then {TUt }t>0 is ultracontractive.
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Proof. By (C.1),if u ≥ 0, then

(C.2) (TUt u)(x) ≤ (Ttu)(x)

for µ-a.e. x ∈ X . This immediately shows the desired statement. �

Definition C.2. Let U be a nonempty open subset of X .Define λ∗(U) be

λ∗(U) = inf
u∈FU ,u6=0

EU (u, u)

||u||22
.

By the variational formula, λ∗(U) is the bottom of the spectrum of −∆U ,
where −∆U is the non-negative self-adjoint operator on L2(U, µU ) associated with
(EU ,FU ).

Theorem C.3. Assume that the heat kernel p(t, x, y) associated with (E ,F) is
jointly continuous. Suppose that the following two conditions (RFK) and (DUHK)
are satisfied for some β > 0:
(RFK) There exist r∗ > 0 and c1 > 0 such that

λ∗(Br(x)) ≤ c1r−β

for any r ∈ (0, r∗] and any x ∈ X.
(DUHK) There exist positive constants t∗, c2 and c3 such that

p(t, x, x) ≤ c2
µ(Bc3t1/β (x))

for any t ∈ (0, t∗] and any x ∈ X.
Then for any r ∈ (0,min{c3(t∗)1/β/3, r∗}],

µ(B2r(x)) ≤ cµ(Br(x)),

where c > 0 is a constant which is independent of x and r.

Proof. Let r ∈ (0,min{c3(t∗)1/β/3, r∗}]. For any y ∈ Br(x), (DUHK) implies
that

(C.3) p(c∗r
β , y, y) ≤ c2

µ(B3r(y))
≤ c2
µ(B2r(x))

,

where c∗ = (3/c3)
β . Note that µ(Br(x)) < +∞. Hence by Theorem A.3, there

exists a heat kernel pBr(x)(t, y, z) associated with (EBr(x),FBr(x)).Using (C.2), we
see that

pBr(x)(t, y, z) ≤ p(t, y, z)
for µ× µ-a.e. (y, z) ∈ X2. Therefore,

e−λ∗(Br(x))t ≤
∑

i≥1

e−λit =

∫

Br(x)2
pBr(x)(t/2, y, z)

2µ(dy)µ(dz)

≤
∫

Br(x)×X
p(t/2, y, z)2µ(dy)µ(dz) =

∫

Br(x)

p(t, y, y)µ(dy),

where {λi}i≥1 be the eigenvalues of −∆U . This and (C.3) along with (RFK) show
that

e−c1c∗ ≤ e−λ∗(Br(x))c∗r
β ≤ c2

µ(Br(x))

µ(B2r(x))
.

�
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Probab. Theory Related Fields 93 (1992), 169–196.
[35] P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge

Phil. Soc. 42 (1946), 15–23.
[36] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958),

931–954.
[37] R. T. Rockafeller, Convex Analysis, Princeton Univ. Press, 1970.
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Assumptions, Conditions and Properties in Parentheses

(A)n, 17
(AS1), 28
(AS2), 28
(AS3), 28
(CHK), 61
(D1), 45
(D2), 45
(DLHK), 64
(DUHK), 63, 88
(EL1), 12
(EL2), 12
(ELm), 14
(ELmg), 19
(G1), 11
(G2), 11
(GE), 17
(GF1), 76
(GF2), 76
(GF3), 76
(GF4), 76
(GSC1), 70
(GSC2), 70
(GSC3), 70
(GSC4), 70
(LF), 17
(LHK), 64
(M1), 14
(M2), 14
(M3), 14
(P1), 3
(P2), 3
(P3), 3
(PI), 60
(R1), 31
(R2), 31
(RE1), 87
(RE2), 87
(RF1), 84
(RF2), 84
(RF3), 84
(RF4), 85
(RF5), 85
(RFA1), 86
(RFA2), 86
(RFA3), 86
(RFK), 88

(S1), 10
(S2), 10
(SC1), 36
(SC2), 36
(SSF), 59
(SSF1), 59
(SSF2), 59
(UHK), 64
(UPH), 61
(VD), 17
(V D)n, 17
(VDd), 57
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List of Notations

AX,x(w), 28
Cw, 10
DS, 44
GSC(n, l, s), 70
hA, 61
K(Γ), 16
K[X ], 23
K(n)(Γ, A), 16
Ks(x), 16
Kw[X ], 23
Lw, 10
MA,τ,a, 66
nA(S), 55
NX,x(w), 29
OΣ0,x(ω), 25
pU (t, x, y), 62, 74
Qm, 24
R(w, v,R), 48
rfk, 70
Rw, 10
Sk,s, 70
Us(x), 16

U
(n)
s (x), 16

V0, 13
W (Γ, A), 16
W (n)(Γ, A), 16
W 1,2(K), 7
W∗(S), 9
Wm(S), 9
W#(S), 9
#(·), 13
EU , 62, 74
FU , 62, 74
ℓ(V ), 9
A, 47
CH, 43
CHm(x, y), 66
CH(x, y), 43
CL, 13
ES(Σ), 22
IP(L), 47
IP(L, S), 47
IP(L, S,R), 48
IT (L), 47
IT (L, S), 47
IT (L, S,R), 48

M(K), 14
M1(K), 14
MVD(L, S), 22
PL, 13
R1, 33
R2, 33
RL, 25
S(a), 13
SLF(Σ,L), 33
S(Σ), 13
δ(n)(·, ·), 53
∆U , 62, 74
ιwX , 24
Λs(a), 13
Λs,w, 16
ΛR
s,w, 30

Λs,x, 16
Λns,x, 16
Φk,s, 70
Ψk,l, 70
ρm, 23
ρm,n, 24
Σ(S), 9
Σw[X ], 23
Σ[X ], 23
σi, 9
∼
GE

, 22

(·, ·)V , 9
∼
n
, 50
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Index

adapted, 52
n-, 53

arithmetic, 63

chain, 43
conservative, 60
corresponding pair, 25
critical set, 13

diamond fractal, 39

effective resistance, 85
elliptic

measure, 14
scale, 12

empty word, 9

gauge function, 11
induced by measure, 16
of scale, 11
self-similar, 13

generalized Sierpinski carpet, 70
generator

of relations, 26
gentle, 17

among scales, 21
geodesic, 63

distance, 63
pair, 63

Green function, 76

hitting time, 61

independent, 23
intersection pair, 47
intersection type, 47

finite, 47
irreducible, 66

k-neighbors, 70

length of a word, 9
L-isomorphism, 49
locally finite, 17
L-similar, 50
L-similitude, 50

modified Sierpinski gasket, 68

n-adapted, 53
Nash inequality, 83
near diagonal lower estimate, 81

partition, 9
Poincaré inequality, 60
post critical set, 13
post critically finite, 34
pseudodistance, 43

associated with a scale, 44

qdistance, 51
quasidistance, 51

rationally ramified, 26
recurrent, 59

harmonic structure, 65
recursive system, 66
refinement, 10
relation, 25

generated by, 26
relation matrix, 66
relation set, 26
resistance form, 84
resistance metric, 85
resistance scaling ratio, 59
right continuous scale, 11

scale, 10
elliptic, 12
induced by gauge function, 11
right continuous, 11
self-similar, 13

self-similar
Dirichlet form, 59
gauge function, 13
measure, 15
scale, 13
set, 13

self-similar structure, 13
strongly finite, 13

shift
map, 9
space, 9

Sierpinski carpet
generalized, 70

Sierpinski cross, 37
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Sierpinski gasket, 26
sub-relation, 26

ultracontractive, 83
uniform positivity of hitting time, 61

volume doubling property
with respect to scale, 17

weakly symmetric, 6
word

empty, 9
length of, 9

word space, 9




