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Abstract

In this paper, time changes of the Brownian motions on generalized
Sierpinski carpets including n-dimensional cube [0, 1]n are studied. Time
change corresponds to alteration in density of the medium of the heat
flow associated with the Brownian motion. Our study includes densities
which is singular to the homogeneous one. We establish a rather rich class
of measures called measures having weak exponential decay containing
non-volume doubling measures such as the Liouville measure on [0, 1]2

and show the existences of time changed process and associated jointly
continuous heat kernel for this class of measures. Furthermore, we obtain
diagonal lower and upper estimate of the heat kernel as time tends to
0. In particular, to express the principal part of the lower diagonal heat
kernel estimate, we introduce “protodistance” associated with the density
as a substitute of ordinary metric. If the density has the volume doubling
property with respect to the Euclidean metric, this protodistance is shown
to produce metrics under which the heat kernel enjoys upper off-diagonal
sub-Gaussian estimate and lower near diagonal estimate.
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1 Introduction

The reflected Brownian motion on the n-dimensional cube [0, 1]n is associated
with the Dirichlet form

E(u, v) =
∫

[0,1]n

n∑
j=1

∂u

∂xj

∂v

∂xj
ν∗(dx) = −

∫
[0,1]n

u∆vν∗(dx),

where ν∗ is the Lebesgue measure and ∆ =
∑n
j=1

∂2

∂xj
2 is the Laplacian. In this

case, we regard [0, 1]n as a homogeneous medium and consider associated heat
flow on it. By introducing density of a medium, speed of heat flow changes
according to the given density at each point while the paths stay the same as
the original Brownian motion. To be precise, if f : [0, 1]n → [0,∞) gives the
density relative to the Lebesgue measure ν∗, then our (inhomogeneous) medium
is represented by the measure f(x)ν∗(dx) and the corresponding Laplacian can
be identified with f−1∆. In this manner, we may even consider a density µ
which is singular to the Lebesgue measure ν∗. Such a change of density of a
medium, whether it is absolutely continuous to the Lebesgue measure or not, is
called a time change of the original process, namely, the Brownian motion. The
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abstract theory of time change has been developed in the framework of Dirichlet
forms by many authors. See [19] for example.

In this paper, we study time changes of Brownian motions on generalized
Sierpinski carpets. The Brownian motion on a generalized Sierpinski carpet
has been constructed and studied by Barlow and Bass [4, 5, 6, 7, 8, 9]. As a
special case, it includes the reflected Brownian motions on [0, 1]n. Let K be
a generalized Sierpinski gasket which is invariant under the collection of finite
number of contraction mappings {Fi}i∈S , i.e.

Fi(x) =
1
l
(x− xi) + xi and K =

∪
i∈S

Fi(K),

where S is a finite set and l ≥ 2 is an integer, and let ν∗ be the normalized Haus-
dorff measure of K. Combining Barlow-Bass’s results with the uniqueness of
the Brownian motion shown in[10], we now know that the local regular Dirichlet
form (E ,F) on L2(K, ν∗) associated with the Brownian motion is self-similar in
the following sense:

E(u, v) =
∑
i∈S

1
r∗

E(u ◦ Fi, v ◦ Fi) (1.1)

for any u, v ∈ F . The constant r∗ is called the resistance scaling ratio whose
value is 2n−2 in the case of K = [0, 1]n with l = 2. Given a density µ of the
medium, which is a Borel regular probability measure in general, we are going
to study the following questions:

A When can one have time changed process?

B Dose time changed process possess a continuous heat kernel?

C What are asymptotic behaviors of the process/the heat kernel?

D Is there any “metric” suitable to describe the time changed process?

In this direction, Barlow-Kumagai [11] has studied time changes of the Brow-
nian motions on generalized Sierpinski carpets in the case where the density is
a self-similar measure. They have determined the condition when time change
is possible, shown the existence of jointly continuous heat kernel and studied
the pointwise asymptotic behavior of the hear kernel as the time tends to 0. In
their case, the self-similarity of the measure has played important roles in the
study and made their analysis possible.

If r∗ ∈ (0, 1), then the quadratic form (E ,F) is known to be a resistance form
extensively studied in [33]. In this case, there exists a resistance metric which
is intrinsic to the resistance form (E ,F). For any Borel regular radon measure,
time change is possible and the associated jointly continuous heat kernel exists.
In particular, if the measure has the volume doubling property with respect to
the resistance metric, one can construct a metric which is quasisymmetric to the
resistance metric and the heat kernel satisfies sub-Gaussian estimates as (1.7)
and (1.8). As a next step, we will address the case when r∗ ≥ 1 in this paper.
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Naturally, we must start with the question (A). Roughly speaking, the key
roll to answer this question is played by the (0-order) Green function g(x, y).
Note that the domain of the quadratic form E should be modified so that under
the new domain Fµ, (E ,Fµ) is a Dirichlet form on L2(K,µ). On the other hand,
the Green function, which is the integral kernel of the Dirichlet Laplacian, stays
the same as that of the original process before time change. By introducing

h(x, y) =

{
− log |x− y| + C if r∗ = 1
|x− y|− log r∗/ log l if r∗ > 1,

which has the same singularity as the Green function, we are going to give some
criteria to make the time change possible in Section 6. In the later sections, these
criteria are shown to be reasonably wide to include many interesting examples.

To establish the existence and the continuity of a heat kernel of time changed
process, the principal tool of our approach is the Poincaré inequality with respect
to the density of the medium µ, that is,

E(u, u) ≥ c1
hµ(∅)2

∫
K

(u(y) − (u)µ)2µ(dy), (1.2)

where (u)µ = 1
µ(K)

∫
K
u(y)µ(dy),

hµ(∅) = sup
x∈K

∫
K

h(x, y)µ(dy)

and c1 is independent of µ and u. In the case of self-similar measures studied
in [11], the Poincarè inequality could be obtained straightforward by combining
the self-similarities of both the Dirichlet form, (1.1), and the measure. Without
self-similarity of the measure µ, we need to employ the method developed by
Bass in [13] to show a weaker form of (1.2). Then by a tricky argument using
self-similarity (1.1) of the form, we will manage to get the strong version of the
Poincaré inequality (1.2) in Section 9.

Making use of the Poincaré inequality (1.2), we will show Nash type in-
equality which leads us to the existence and the continuity of heat kernel in
Section 10. Based on those results, we are going to establish a class of measures
called measures having weak exponential decay in Section 11. In particular, a
Borel regular probability measure on [0, 1]2 has weak exponential decay if and
only if there exist c1, c2, α1, α2 > 0 such that

c1r
α1 ≤ µ(B∗(x, r)) ≤ c2r

α2 , (1.3)

for any x ∈ [0, 1]2 and any r ∈ (0, 1], where B∗(x, r) = {y|y ∈ [0, 1]2, |x − y| <
r}. The collection of measure having weak exponential decay is a rich class
containing all the measures having the volume doubling property with respect
to the Euclidean metric. It also contains many measures without the volume
doubling property, for example a class of statistically random measures studied
by Falconer [17]. See Section 14 for details. Moreover, due to [20, Theorem 2.2]
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and [1, Lemma 3.1], one can confirm that the condition (1.3) is satisfied by the
Liouville measure on [0, 1]2, which has been extensively studied recently. See
[20, 21, 35, 1] for example. For measures having weak exponential decay, time
changed processes do exist, the associated heat semigroups are ultracontractive,
and time changed processes possess jointly continuous heat kernels.

About asymptotic behaviors of the hear kernel, we will have uniform upper
estimate thought the Nash type inequality. This upper estimate turns out to be
the best one when we assume further conditions on µ. For the Liouville measure,
however, our general result is not as sharp as what are obtained in the recent
works in [35] and [1]. To consider the pointwise lower diagonal estimate and to
give our partial answer to the above question (D), we introduce the quantity
δµ(x, y) called the protodistance1. This protodistance is not even symmetric
nor satisfying triangle inequality but the “ball” Bδµ(x, r) = {y|δµ(x, y) < r}
plays the key roll in the lower diagonal heat kernel estimate. Namely, we will
show in Section 12 that 1/µ(Bδµ(x, t)) is the principal part of the lower estimate
of pµ(t, x, x) for µ-a.e.x ∈ K. The protodistance δµ(x, y) roughly corresponds
(but not exactly equal) to |x− y|− log r∗/ log lµ(B∗(x, |x− y|)), which is denoted
by Dµ(x, y). In case µ has the volume doubling property, our protodistance
is actually bi-Lipschitz equivalent to both Dµ(x, y) and powers of nice metrics
under which one obtain sub-Gaussian heat kernel estimate. See Theorem 1.2
for example. We present the following theorem for the case of time changes of
2-dimensional Brownian motion as a showcase of our results without the volume
doubling property.

Theorem 1.1. Let µ be a Borel regular probability measure on [0, 1]2. If µ has
weak exponential decay, then time change with respect to µ is possible, the time
changed process possesses jointly continuous heat kernel pµ(t, x, y) on (0,∞) ×
K ×K, and there exist γ∗ > 0, Tx ≥ 0 and c1 > 0 such that Tx > 0 for µ-a.e.
x ∈ [0, 1]2 and

c1
t| log t|9

≤ c1
µ(Bδµ(x, γ∗t))| log t|9

≤ pµ(t, x, x)

for any t ∈ (0, Tx]. Furthermore, if there exists a monotonically non-increasing
function f : (0,∞) → [1,∞) such that for any x ∈ K and any r > 0

µ(B∗(x, 2r)) ≤ f(r)µ(B∗(x, r)), (1.4)

and

lim
r↓0

log f(r)
log r

= 0, (1.5)

then

lim
t↓0

− log pµ(t, x, x)
log t

= 1

for any x ∈ K.
1Our protodistance is not related to the notion of protometric given by Deza and Cheb-

otarev in [15]
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See Section 13 for the proof of this theorem. It is not known whether (1.4)
and (1.5) hold for the Liouville measure or not.

Finally from Section 15, we study the case where the density µ has the
volume doubling property with respect to the Euclidean metric, i.e.

µ(B∗(x, 2r)) ≤ Cµ(B∗(x, r))

for any x ∈ K and any r > 0, where C is independent of x and r. By the
preceding works, for example, [26, 32, 27], the volume doubling property has
been known to be one of indispensable parts to deduce sub-Gaussian heat kernel
estimates. This is the case in our framework as well. What matters is to find a
suitable metric in order to show additional conditions leading to sub-Gaussian
heat kernel estimates. Our candidate of such a metric is the protodistance even
though it is not a metric. As is mentioned above, however, with the volume
doubling property, the protodistance δµ has simpler expression Dµ and is bi-
Lipschitz equivalent to a power of certain metric, which is, in fact, the desired
metric. More precisely, in the case of time changes of the Brownian motion on
[0, 1]n for example, our results can be stated as follows;

Theorem 1.2. Let µ be a Borel regular measure on [0, 1]n. Assume that there
exist c > 0 and ε > 0 such that

Dµ(x, z) ≤ c

(
|x− z|
|x− y|

)ε
Dµ(x, y) (1.6)

whenever x, y, z ∈ [0, 1]n and |x−y| ≥ |x−z| and that µ has the volume doubling
property with respect to the Euclidean distance. Define

Bµ = {β|(Dµ)1/β is bi-Lipschitz equivalent to a metric on K}.

Then Bµ = [β∗,∞) or Bµ = (β∗,∞) for some β∗ ≥ 2. Furthermore, for any
β ∈ Bµ, if d is a metric which is bi-Lipschitz equivalent to (Dµ)1/β, then d is
quasisymmetric to the Euclidean metric and there exist c1, c2, c3, c4 > 0 such
that

pµ(t, x, y) ≤
c1

µ(Bd(x, t1/β))
exp

(
− c2

(d(x, y)β
t

) 1
β−1

)
. (1.7)

for any x, y ∈ K and any t ∈ (0,∞), and if d(x, y)β ≤ c3t, then

c4
µ(Bd(x, t1/β))

≤ pµ(t, x, y). (1.8)

This theorem is obtained as a special case of combination of Theorems 15.7
and 15.11. The condition (1.6) only requires mild decay of µ which is always
fulfilled under the volume doubling condition if n = 2. The lower heat kernel
estimate (1.8) is called near diagonal lower estimate which is know to be the
best substitute of off-diagonal sub-Gaussian estimate

c5
µ(Bd(x, t1/β))

exp

(
− c6

(d(x, y)β
t

) 1
β−1

)
≤ pµ(t, x, y) (1.9)
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when the metric does not satisfy the chain condition introduced in Section 15. In
fact, if the metric d has the chain condition, then the volume doubling property
of the density µ and (1.8) imply (1.9). See [32] for example. In light of the
above theorem and the remark about the lower estimate (1.9), we will raise an
open problem concerning the legitimate definition of the “walk” dimension and
“the” intrinsic metric associated with the density µ in Section 15.

The followings are conventions in notations in this paper.
(1) The lower case c and the upper case C (with or without a subscript) repre-
sent a constant which is independent of the variables in question and may have
different values from place to place (even in the same line).
(2) The constants cnk.l, ck.l and mk.l where k, l, n ∈ N are constants appearing
first time in the equation (k. l). For example, c15.2, c

2
5.2, c

3
5.2 and c45.2 are constants

appearing in (5.2). In particular, mk.l is used for non-negative integer.
(3) For a metric space (X, d), we define C(X) as the collection of continuous
functions on X.

2 Generalized Sierpinski carpets

In this section, we introduce the definition of generalized Sierpinski carpet and
give fundamental geometric and topological properties of them. The following
definition is given by Barlow-Bass[9].

Definition 2.1. Let H0 = [0, 1]n, where n ∈ N, and let l ∈ N with l ≥ 2. Set
Q = {

∏n
i=1[(ki − 1)/l, ki/l] | (k1, . . . , kn) ∈ {1, . . . , l}n}. For any Q ∈ Q, define

FQ : H0 → H0 by FQ(x) = x/l+ aQ, where we choose aQ so that FQ(H0) = Q.
Let S ⊆ Q and let GSC(n, l, S) be the self-similar set with respect to {FQ}Q∈S ,
i.e. GSC(n, l, S) is the unique nonempty compact set satisfying

GSC(n, l, S) = ∪Q∈SFQ(GSC(n, l, S)).

Set H1(S) = ∪Q∈SFQ(H0). GSC(n, l, S) is called a generalized Sierpinski carpet
if and only if the following four conditions (GSC1), . . . , (GSC4) are satisfied:
(GSC1) (Symmetry) H1(S) is preserved by all the isometries of the unit cube
H0.
(GSC2) (Connected) H1(S) is connected.
(GSC3) (Non-diagonality) For any x ∈ H1(S), there exists r0 > 0 such that
int(H1(S) ∩ B∗(x, r)) is nonempty and connected for any r ∈ (0, r0), where
B∗(x, r) = {y|y ∈ Rn, |x− y| < r}.
(GSC4) (Border included) The line segment between 0 and (1, 0, . . . , 0) is con-
tained in H1(S).

If no confusion may occur, we useK to denote a generalized Sierpinski carpet
GSC(n, l, S). We define d∗ as the restriction of the Euclidean metric of Rn on
the generalized Sierpinski carpet GSC(n, l, S).

Example 2.2. The standard plane Sierpinski carpet is equal to GSC(2, 3, S),
where S = Q− {[1/3, 2/3]2}. Also [0, 1]n = GSC(n, l,Q) for any l ≥ 2.
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In the rest of this paper, we fix a generalized Sierpinski carpet GSC(n, l, S).
The followings are a standard set of notations on self-similar sets.

Definition 2.3. Let m ≥ 0. For w = (w1, . . . , wm) ∈ Qm, we write w =
w1 . . . wm and define Fw = Fw1◦ · · · ◦Fwm and Hw = Fw(H0). Moreover, we set

Σ = SN = {ω|ω = ω1ω2 . . . , ωi ∈ S for any i ∈ N}

and
Wm = Sm = {w1 . . . wm|wi ∈ S for i = 1, . . . ,m}.

In particular, we write W0 = {∅}. Set W∗ = ∪m≥0Wm. For w ∈ W∗, we
define |w| = m if w ∈ Wm. Define F∅ as the identity map. Moreover, for any
w = w1 . . . wm ∈W∗, define

Σw = {ω|ω = ω1ω2 . . . ∈ Σ, ωi = wi for any i ∈ {1, . . . ,m}}

and
Kw = Fw(K).

The following proposition is well-known. See [30, Theorem 1.2.3] for exam-
ple.

Proposition 2.4. ∩m≥1Kω1...ωm is a single point for any ω = ω1ω2 . . . ∈ Σ.
Denote the single point by π(ω). Then π is a continuous surjection.

In fact, the triple L = (K,S, {Fs}s∈S) consists a self-similar structure defined
in [30, Section 1.2]. Here we recall some of basic notions introduced in [30]
associated with a self-similar structure.

Definition 2.5. Define the critical set C and the post critical set P associated
the self-similar structure L by

C =
∪

Q1,Q2∈S,Q1 6=Q2

π−1(KQ1 ∩KQ2)

and
P =

∪
m≥1

π−m(C).

Furthermore, we define V0 = π(P).

The set V0 is though of as the “boundary” of the self-similar set K. In [30,
Section 1.2], it is shown that if w, v ∈W∗ and Σw ∩ Σv = ∅, then

Kw ∩Kv ⊆ Fw(V0) ∩ Fv(V0). (2.10)

In the case of generalized Sierpinski carpets, the boundary V0 is equal to K ∩
∂H0, where ∂H0 is the topological boundary of H0 as a subset of Rn.
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Proposition 2.6. Let Ii,j = {(x1, . . . , xn)|(x1, . . . , xn) ∈ H0, xi = j} for i =
1, . . . , n and j = 0, 1. Define Bi,j = K ∩ Ii,j and Si,j = {Q|Q ∈ S,Q∩ Ii,j 6= ∅}.
Then for any (i, j) = {1, . . . , n} × {0, 1},

Bi,j =
∪

Q∈Si,j

FQ(Bi,j) and V0 =
∪

i=1,...,n,j=0,1

Bi,j

Note that
∂H0 =

∪
i=1,2,...,n,j=0,1

Ii,j .

We remark that Bi1,j1 and Bi2,j2 are isometric under the natural isometry be-
tween Ii1,j1 and Ii2,j2 for any i1, i2, j1, j2 and hence #(Si1,j1) = #(Si2,j2). Define
NB = #(Si,j). Then as Si,j ⊆ S, it follows that N > NB > 1.

One can easily see the following fact by (2.10).

Lemma 2.7. Define Vm = ∪w∈WmFw(V0) and V∗ = ∪m≥0Vm. Then for any
x ∈ K\V∗, π−1(x) is a single point. Moreover,

sup
x∈K

#(π−1(x)) ≤ 2n.

By this lemma, the self-similar structure L = (K,S, {Fs}s∈S) is strongly
finite. See [32, Definition 1.2.1] for the definition of strongly finiteness. Further-
more, we have the following fact proven in [32, Proposition 3.4.3].

Proposition 2.8. The self-similar structure L = (K,S, {Fs}s∈S) associated
with the generalized Sierpinski carpet is rationally ramified.

See [32, Definition 1.5.10] for the definition of rationally ramified self-similar
structure. This fact enable us to apply results in [32] in the following sections.

Definition 2.9. Let Γ ⊆W∗. Define

K(Γ) = ∪w∈ΓKw

∂K(Γ) = K(Γ) ∩K\K(Γ),
Ko(Γ) = K(Γ)\∂K(Γ).

Γ is said to be independent if and only if Σw ∩ Σv = ∅ for any w, v ∈ Γ with
w 6= v. If Γ is independent and ∪w∈ΓΣw = Σ, then Γ is called a partition of Σ.

Definition 2.10. Let U ⊆ K. We define Γkm(U) ⊆ Wm and V km(U) ⊆ K for
k = 0, 1, . . . inductively by

Γ0
m(U) = {w|w ∈Wm,Kw ∩ U 6= ∅},
V km(U) = K(Γkm(U)) and Γk+1

m (U) = Γ0
m(V km(U)).

In particular, if U = {x} for some x ∈ K, then we write Γm(x) = Γ1
m(U) and

Vm(x) = V 1
m(U).

9



Remark. #(Γm(x)) ≤ 4n.
By the above definition and Lemma 2.7, we immediately obtain the next

lemma.

Lemma 2.11. Let µ be a Radon measure on K. If Γ ⊆ W∗ is independent,
then ∫

K(Γ)

f(x)µ(dx) ≤
∑
w∈Γ

∫
Kw

f(x)µ(dx) ≤ 2n
∫
K(Γ)

f(x)µ(dx)

for any non-negative function f ∈ L1(K,µ).

Finally in this section, we define self-similar measures which form an impor-
tant class of Borel regular probability measures on K.

Proposition 2.12. Let (µi)i∈S ∈ (0, 1)S satisfy
∑
i∈S µi = 1. Then there exists

a unique Borel regular probability measure µ on K such that

µ(Kw1...wm
) = µw1 · · ·µwm

for any w1 . . . wm ∈ W∗. The measure µ is called the self-similar measure with
weight (µi)i∈S.

3 Standing prerequisite and notations

In the rest of this paper, we fix n, l ∈ N and a generalized Sierpinski carpet
GSC(n, l, S) and write K = GSC(n, l, S) and N = #(S), where #(A) is the
number of elements in a set A. Also L is the self-similar structure associated
with K, i.e. L = (GSC(n, l, S), S, {FQ}Q∈S).

Notation. (1) We use d∗ to denote the restriction of the Euclidean metric to
K.
(2) For a metric d on K, we define Bd(x, r) as the ball with center x and radius
r with respect to d, i.e.Bd(x, r) = {y|y ∈ K, d(x, y) < r}. In particular, we
write B∗(x, r) = Bd∗(x, r).
(2) Define ν∗ as the self-similar measure with weight (1/N, . . . , 1/N). Define
dH = logN/ log l. Then dH is the Hausdorff dimension of K with respect to d∗
and ν∗ is the normalized dH -dimensional Hausdorff measure.
(3) Let µ be a Borel regular measure on K. We use ||f ||µ,p to denote the Lp-
norm of f ∈ Lp(K,µ). If no confusion may occur, we omit µ in ||f ||µ,p and
write simply ||f ||p.

4 Gauge function

In this section, we introduce the notion of a gauge function which has been
formulated and extensively studied in [32] in order to investigate geometry of
self-similar sets. In this paper, gauge functions will play an essential role as a
fundamental tool to characterize underlying geometry associated with a time
change of the Brownian motion. See Section 10 for example.
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Definition 4.1. Let g : W∗ → (0, 1]. We say that g is a gauge function on W∗
if and only if the following two conditions (G1) and (G2) hold:
(G1) g(∅) = 1 and 0 < g(wi) ≤ g(w) for any i ∈ S and any w ∈W∗.
(G2) supw∈Wm

g(w) → 0 as m→ 0
In addition, if
(EL) There exist λ1, λ2 ∈ (0, 1) and c1 > 0 such that g(wv) ≤ c1(λ1)|v|g(w)
for any w, v ∈W∗ and g(wi) ≥ λ2g(wi) for any i ∈ S,
then gauge function g is said to be elliptic.

If g is a gauge function, we think of g(w) for w ∈ W∗ as the “diameter” of
Kw under the gauge function g, although there is no associated distance under
which g(w) is the real diameter at the moment.

There exists a natural gauge function associated with a Borel regular prob-
ability measure on K. By elementary arguments, we may easily verify the
following fact.

Proposition 4.2. Let µ be a Borel regular probability measure on K. Assume
that µ({x}) = 0 for any x ∈ K and that µ(Kw) > 0 for any w ∈ W∗. Define
µ(w) = µ(Kw) for any w ∈W∗. Then µ : W∗ → (0, 1] is a gauge function.

Definition 4.3. The gauge function constructed in Proposition 4.2 from a
probability measure µ is called the gauge function associated with the measure
µ. Furthermore, µ is said to be elliptic if the associated gauge function is elliptic.

In Proposition 4.2, we abuse a notation by using µ to denote the gauge
function associated with a measure µ. We do this if no confusion can occur.

Next we define a kind of “balls” associated with a gauge function.

Definition 4.4. Let g be a gauge function on W∗. Define

Λg
ρ = {w|w = w1 . . . wm ∈W∗,g(w1 . . . wm−1) > ρ ≥ g(w)}

for ρ ∈ (0, 1] and call {Λg
ρ}ρ∈(0,1] the scale of W∗ associated with the gauge

function g. For x ∈ K and ρ ∈ (0, 1], define

Λgρ(x) = {w|w ∈ Λg
ρ , x ∈ Kw},

Kg(x, ρ) = ∪w∈Λg
ρ(x)Kw,

Λg
ρ,1(x) = {w|w ∈ Λg

ρ ,Kw ∩Kg
ρ (x) 6= ∅}

Ug(x, ρ) = ∪w∈Λg
ρ,1(x)

Kw.

Moreover, a gauge function g is said to be locally finite if

sup
x∈X,ρ∈(0,1]

#(Λg
ρ(x)) < +∞. (LF)

The set Λg
ρ is a collection of Kw’s whose “diameter” under the gauge func-

tion g is almost ρ and the set Ug(x, ρ) is a kind of “ball” with center x and
radius ρ. Under some conditions on gauge function, there exists a distance such
that Ug(x, ρ) is (equivalent to) the real ball with respect to the distance. See
Section 17 for details.

The following proposition is immediate from the above definition.

11



Proposition 4.5. If g is a gauge function on W∗, then Λg
ρ is a partition of Σ.

Example 4.6. (1) For w ∈ W∗, define g∗(w) = l−|w|. g∗ is a locally finite
elliptic gauge function on W∗. Write Λ∗

ρ = Λg∗
ρ , K∗(x, ρ) = Kg∗(x, ρ), Λ∗

ρ,1(x) =
Λg∗
ρ,1(x) and U∗(x, ρ) = Ug∗(x, ρ) for any ρ ∈ (0, 1] and any x ∈ K. Note that

there exist c1, c2 > 0 such that B∗(x, c1ρ) ⊆ Ug∗(x, ρ) ⊆ B∗(x, c2ρ) for any
x ∈ K and any ρ ∈ (0, 1]. In this sense, the gauge function g∗ gives (restriction
of) the Euclidean metric d∗ on K. More precisely, in Definition 17.3, g∗ will be
said to be adapted to the Euclidean distance. Note that

Γm(x) = Λ∗
l−m,1(x) and Vm(x) = U∗(x, l−m). (4.1)

for any x ∈ K and any m ≥ 0.
(2) The gauge function associated with the self-similar measure ν∗ is given by
ν∗(w) = ν∗(Kw) = N−|w|. Recall that N = #(S). This gauge function ν∗ is
elliptic. Moreover, for any w ∈W∗,

g∗(w)dH = ν∗(w).

In the next definition, we formulate two kinds of similarities with are closely
related among subsets of words.

Definition 4.7. Let Γ1 and Γ2 be independent finite subsets of W∗.
(1) We say that Γ1 and Γ2 are similar if and only if there exist a bijective map
ψ : Γ1 → Γ2 and a similitude ϕ : Rn → Rn such that ϕ(x) = l−Mx + a for
some (M,a) ∈ Z×Rn, ϕ(K(Γ1)) = K(Γ2) and ϕ(Kw) = Kψ(w) for any w ∈ Γ1.
ψ is called an isomorphism between Γ1 and Γ2 and ϕ is called the similitude
associated with ψ. Set

n(Γ1,Γ2) = M.

We write Γ1 ∼ Γ2 if and only if Γ1 and Γ2 are similar.
(2) We say that Γ1 and Γ2 are similar up to their boundaries, or B-similar for
short, if and only if Γ1 and Γ2 are similar and ϕ(Ko(Γ1)) = Ko(Γ2), where
ϕ : Rn → Rn is the similitude associated with the isomorphism ψ : Γ1 → Γ2

between Γ1 and Γ2. In this case, ψ is called an B-isomorphism between Γ1 and
Γ2 and ϕ is called the B-similitude associated with ψ. We write Γ1 ∼

B
Γ2 if and

only if Γ1 and Γ2 are B-similar.

The following lemma is straight forward by the above definition.

Proposition 4.8. Both the relations ∼ and ∼
B

are equivalence relations among

independent finite subsets of W∗.

The following theorem will be the key to the proofs of Lemmas 7.6 and 20.3.
It concerns finiteness of the equivalent classes under ∼ and ∼

B
on a restricted

class given by a gauge function.

Theorem 4.9. Let g be a gauge function. Assume that g is elliptic and locally
finite. Then {Λg

ρ,1(x)|x ∈ K, ρ ∈ (0, 1]}/∼ and {Λg
ρ,1(x)|x ∈ K, ρ ∈ (0, 1]}/∼

B

are finite sets.
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Proof. Note that the self-similar structure L associated with the generalized
Sierpinski carpet is strongly finite and rationally ramified. Therefore, by [32,
Theorem 2.2.7], g is intersection type finite. (See [32, Definition 2.2.3] for the
definition of being intersection type finite.) Since Λg

ρ1,1
(x) ∼ Λg

ρ2,1
(y) if and only

if (ρ1, x) ∼
1

(ρ2, y), where ∼
1

is defined in [32, Definition 2.2.11], the finiteness

of {Λg
ρ,1(x)|x ∈ K, ρ ∈ (0, 1]}/∼ follows from [32, Theorem 2.2.13]. Note that

Λg
ρ1,1

(x) ∼
B

Λg
ρ2,1

(y) if and only if Λg
ρ1,1

(x) ∼ Λg
ρ2,1

(y) and ϕ(∂Ug(x, ρ1)) =

∂Ug(y, ρ2). Since g is intersection type finite, once an equivalence class of
Λg
ρ,1(x) is fixed, then there exist only finite number of possibility in choosing

the boundary of Ug(ρ, x). Hence we deduce that the number of equivalence
classes of {Λg

ρ,x|x ∈ K, ρ ∈ (0, 1]} under ∼
B

is finite as well.

5 The Brownian motion and the Green function

In this section, we are going to review the basic results on the Brownian motions
on generalized Sierpinski carpets by Barlow-Bass[4, 5, 6, 7, 8, 9] and study
properties of the associated Green function and Dirichlet heat kernels. As we
have stated in the last section, K is always a generalized Sierpinski carpet, ν∗
is the normalized Hausdorff measure and d∗ is the (restriction of) Euclidean
metric. The following theorem is a collection of Barlow-Bass’s results.

Theorem 5.1. There exist r∗ ∈ (0, N) and a local regular Dirichlet form (E ,F)
on L2(K, ν∗) such that u◦FQ ∈ F for any u ∈ F and any Q ∈ S and

E(u, v) =
1
r∗

∑
Q∈S

E(u ◦ FQ, v ◦ FQ). (5.1)

for any u ∈ F . The diffusion process ({Xt}t>0, {Px}x∈K) associated with this
Dirichlet form is called the Brownian motion of K. Moreover, there is a jointly
continuous transition density/heat kernel p(t, x, y) associated with the Brownian
motion, i.e. p(t, x, y) is positive and continuous on (0,∞) × K × K and, for
any bounded Borel measurable function f : K → R,

Ex(f(Xt)) =
∫
K

p(t, x, y)f(y)ν∗(dy)

for any x ∈ K and any t > 0. Let

dS = 2
logN

logN − log r∗
and dw =

logN − log r∗
log l

.

Then there exist c15.2, c
2
5.2, c

3
5.2, c

4
5.2 > 0 such that

c15.2
tds/2

exp

(
− c25.2

(
|x− y|dw

t

) 1
dw−1

)
≤ p(t, x, y)

≤ c35.2
tds/2

exp

(
− c45.2

(
|x− y|dw

t

) 1
dw−1

)
(5.2)
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for any t ∈ (0, 1] and any x, y ∈ K. Moreover, (E ,F) satisfies elliptic Harnack
inequality with respect to d∗, i.e. there exists c > 0 such that if u is positive and
harmonic on B∗(x, 2r), then

sup
y∈Bd∗ (x,r)

u(y) ≤ c inf
y∈Bd∗ (x,r)

u(y). (5.3)

The constants dS and dw are called the spectral dimension and the walk
dimension of the generalized Sierpinski carpet respectively. In [9], Barlow and
Bass have shown the transition density estimate (5.2) for the Brownian motions
on Sierpinski carpets. Later in [10], the self-similarity of the Dirichlet form
(E ,F), (5.1), has been established along with the uniqueness of a local regular
Dirichlet form with local symmetries. In this paper, (E ,F) is always the unique
local regular Dirichlet form on L2(K, ν∗) associated with the Brownian motion
given in the above theorem. The constant r∗ in (5.1) is called the resistance
scaling ratio.

As we mentioned in the introduction, if r∗ ∈ (0, 1), then (E ,F) is a resistance
form. In such a case, time change has been studied extensively in [33]. In this
paper, we will study the remaining case. Namely, we always assume that r∗ ≥ 1
hereafter.

By [9], we have additional properties of (E ,F) and p(t, x, y) as follows.

Proposition 5.2. Let H be the non-negative self-adjoint operator associated
with the Dirichlet form (E ,F) on L2(K, ν∗) and let Tt = e−Ht.
(1) {Tt}t>0 is ultracontractive.
(2) There exist {λ∗i }i≥1 and {ψi}i≥1 ⊆ L2(K, ν∗) such that λ∗1 = 0, 0 < λ∗i ≤
λ∗i+1 for any i ≥ 2, limi→∞ λ∗i = ∞, ψi ∈ Dom(H) ∩ C(K), {ψi}i≥1 is a
complete orthonormal system of L2(K, ν∗) and Hψi = λ∗iψi for any i.
(3)

p(t, x, y) =
∞∑
i=1

e−λ
∗
i tψi(x)ψi(y) (5.4)

where the right-hand side converges uniformly and absolutely on [L,∞)×K×K
for any L > 0.
(4)

sup
t≥1,(x,y)∈K2

p(t, x, y) < +∞.

(5) If u ∈ C(K), then ||Ttu− u||∞ → 0 as t ↓ 0, where ||f ||∞ = supx∈K |f(x)|
for f : K → R.

Next we define the γ-order resolvent kernel gγ(x, y).

Definition 5.3. Let γ > 0. Define

gγ(x, y) =
∫ ∞

0

e−γtp(t, x, y)dt

The resolvent kernel gγ has singularities at x = y. The order of the singu-
larities of gγ is given by the following function h(x, y).
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Definition 5.4. Define
α =

log r∗
log l

and

h(x, y) =

|x− y|−α if α > 0,

− log
|x− y|√

ne
if α = 0.

Recall that we always assume r∗ ≥ 1. As a consequence, it follows that
α ≥ 0.
Remark. Let α = 0. Note that |x − y| ≤

√
n and hence h(x, y) ≥ 1. Define

h∗(x, y) = max{− log |x− y|, 1}. Then there exist c1, c2 > 0 such that

c1h∗(x, y) ≤ h(x, y) ≤ c2h∗(x, y)

for any x, y ∈ K.

Lemma 5.5. For any γ > 0, there exists c(γ) > 0 such that

gγ(x, y) ≤ c(γ)h(x, y)

for any x, y ∈ K.

Proof. This is immediate form (5.2) and (4) of Proposition 5.2.

Let U be an open subset of K. We introduce the Brownian motion which is
killed upon exiting U . Define DU = {u|u ∈ F ∩ C(K), u|K\U ≡ 0}. We define
FU be the closure of DU with respect to the inner-product E(u, v) +

∫
K
uvdν∗.

Note that FU ⊆ F and that u(x) = 0 for ν∗-a.e.x ∈ K\U . Hence FU is regarded
as a subspace of L2(U, ν∗|U ). Define EU (u, v) = E(u, v) for any u, v ∈ FU . Using
the results in [19, Section 4.4], we see that (EU ,FU ) is a local regular Dirichlet
form on L2(K, ν∗). We denote the diffusion process associated with the Dirichlet
form (EU ,FU ), which is called the Brownian motion killed upon exiting U , by
({PUx }x∈K , {XU

t }t>0) and the corresponding expectation by {EUx }.

Lemma 5.6. Let Γ ⊂ W∗ be finite. Assume that Ko(Γ) is connected. Let
U = Ko(Γ). Then the Brownian motion killed upon exiting U has a jointly
continuous transition density pU (t, x, y) on (0,∞) ×K ×K which satisfies:
(a)

0 < pU (t, x, y) ≤ p(t, x, y)

for any (t, x, y) ∈ (0,∞) × U × U .
(b) pU (t, x, y) = 0 if either x /∈ U or y /∈ U .
Moreover if U 6= K, then

gU (x, y) =
∫ ∞

0

pU (t, x, y)dt

is continuous on K ×K and positive on U ×U . There exists c5.5 > 0 such that

gU (x, y) ≤ c5.5h(x, y) (5.5)

for any x, y ∈ K.
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Remark. The constant c5.5 only depends on Γ. To clarify the dependence, we
use c5.5(Γ) in place of c5.5, if necessary.

Definition 5.7. For a measurable set U ⊆ K, τU is the exit time from U
defined by τU = inf{t|t > 0, Xt /∈ U}.

Proof of Lemma 5.6. The existence of jointly continuous transition density is
due to [9, Proposition 6.15]. In fact, the case considered in [9, Proposition 6.15]
corresponds to the case where Γ is a single word. One can easily adapt, however,
the arguments in the proof of [9, Proposition 6.14] to our situation. By the
similar modification of the arguments in [9], it follows that

pU (t, x, y) =
∑
i≥1

e−λ
U
i tψUi (x)ψUi (y)

where {λUi }i≥1 is a monotonically increasing sequence of non-negative numbers
with limi→∞ λUi = +∞ and ψUi is an eigenfunction with the eigenvalue λUi of the
self-adjoint operator associated with the Dirichlet form (EU ,FU ) on L2(K, ν∗)
whose support is in K(Γ). Moreover, ψUi is continuous on K and {ψUi }i≥1

is a complete orthonormal system of L2(K, ν∗|U ). Now, if pU (t, x, x) = 0 for
some x ∈ U and some s > 0, then ψUi (x) = 0 for any i ≥ 1. This implies
pU (t, x, x) = 0 for any t > 0. Since

∫
K
pU (t, x, y)2ν∗(dy) = p(2t, x, x), it follows

that p(t, x, y) = 0 for any y ∈ K and any t > 0. On the other hand, the same
argument as in the proof of [9, Proposition 6.20] shows that pU (t, x, y) > 0 if
|x− y| is small enough. Therefore, pU (t, x, x) > 0 for any t > 0 and any x ∈ U .
Now, the same discussion as in the proof of [30, Proposition 5.1.10] yields the
positivity of pU (t, x, y) if both x and y belong to U .

Next assume that K 6= U . Then ν∗(K\U) > 0. This implies

inf
x∈U

∫
K\U

p(t, x, y)ν∗(dy) > 0.

Denote the above infimum by δ(t). Hence

Px(τU > t) =
∫
K

pU (t, x, y)ν∗(dy) ≤ 1 −
∫
K\U

p(t, x, y)ν∗(dy) ≤ 1 − δ(t) < 1.

By the Markov property,∫
K

pU (kt, x, y)µ(dy) ≤ (1 − δ(t))k.

for any x ∈ K. Hence as k → ∞,

pU (2kt, x, x) =
∫
K

pU (kt, x, y)2µ(dy) ≤ c

∫
K

pU (kt, x, y)µ(dy) → 0,

where c = supx,y∈K pU (t, x, y). On the other hand, if λUi = 0 for some i, then
pU (kt, x, x) ≥ ψUi (x)2 for any k ≥ 0. Therefore, we conclude that λU1 > 0. This
shows that there exists λ > 0 such that

pU (t, x, y) ≤ Ce−λt
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for any x, y ∈ K and any t ≥ 1. Combining this fact with the transition density
estimate (5.2), we obtain the continuity and the estimate of gU (x, y).

Strictly speaking, pU (t, x, y) and gU (x, y) is defined if U is an open set.
We abuse notations, however, and define pK(Γ)(t, x, y) = pKo(Γ)(t, x, y) and
gK(Γ)(x, y) = gK

o(Γ)(x, y).
In the rest of this section, we investigate properties of the heat kernel

pB∗(x,R)(t, x, y) and the Green function gB∗(x,R)(x, y) near the diagonal part
{(x, x)|x ∈ K2}.

Lemma 5.8. There exist c25.6 ∈ (0, 1
2 ] and c15.6 > 0 such that if R ≤ diam(K, d∗),

x ∈ K and |x− y| ≤ c25.6R, then

c15.6
tdS/2

≤ pB∗(x,R)(t, x, y) (5.6)

for any t ∈
[
|x− y|dw , 2(c25.6R)dw

]
.

Proof. Let R = diam(K, d∗). By the heat kernel estimate (5.2), standard argu-
ments as in [23] or [32] imply that there exist c15.7, c

2
5.7 > 0 such that

Px(τB∗(x,r) ≤ t) ≤ c15.7 exp

(
− c25.7

(rdw

t

) 1
dw−1

)
(5.7)

for any r ∈ (0, R] and any t > 0. If R ≤ R and y ∈ B∗(x,R/2), then by [23,
Theorem 10.4], we see that

p(t, x, y) ≤ pB∗(x,R)(t, x, y) + Px(τB∗(x,R) ≤ t/2) sup
s∈[t/2,t]

sup
v∈B∗(x,R+ε)

p(t, v, y)

+ Py(τB∗(y,R/2) ≤ t/2) sup
s∈[t/2,t]

sup
u∈B∗(y,R/2+ε)

p(t, x, u).

Using (5.2) and (5.7) and letting ε→ 0, we see that there exist positive constants
c15.8 and c25.8, which are determined by c35.2, c

1
5.7 and c25.7, such that

c15.2
tds/2

exp

(
− c25.2

(
|x− y|dw

t

) 1
dw−1

)

≤ pB∗(x,R)(t, x, y) +
c15.8
tds/2

exp

(
− c25.8

(
Rdw

t

) 1
dw−1

)
(5.8)

for any t ∈ (0, 1]. Choose positive δ so that

c15.8 exp
(
− c25.8δ

dw
dw−1

)
≤ c15.2

2
exp

(
− c25.2

)
(5.9)

max
{

(R)dw , 2dw−1
}
≤ δ. (5.10)
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Define c15.6 = c15.2
2 exp

(
− c25.2

)
. By (5.8) and (5.9), if Rdw

t ≥ δ and |x−y|dw

t ≤

1, i.e. if t ∈
[
|x − y|dw , R

dw

δ

]
, then (5.6) holds. Set c25.6 =

( 1
2δ

)1/dw

. Since

0 < R ≤ R, (5.10) implies that Rdw

δ = 2(c25.6R)dw ≤ 1. Also by (5.10) we have
c25.6 ≤ 1/2.

Lemma 5.9. Let R = diam(K, d∗).
(1) Suppose α > 0. There exists c5.11 > 0 such that if R ≤ R, x ∈ K and
|x− y| ≤ c25.6R, then

c5.11h(x, y) ≤ gB∗(x,R)(x, y). (5.11)

(2) Suppose α = 0. There exists c5.12 > 0 such that if R ≤ R, x ∈ K and
|x− y| ≤ c25.6R, then

c5.12h
( x

c25.6R
,

y

c25.6R

)
≤ gB∗(x,R)(x, y) (5.12)

Proof. If |x − y| ≤ c25.6R, then 2|x − y|dw ≤ 2(c25.6R)dw . Hence by Lemma 5.9,
(5.6) holds for t ∈ [|x− y|dw , 2|x− y|dw ]. This implies

gB∗(x,R)(x, y) =
∫ ∞

0

pB∗(x,R)(t, x, y)dt ≥
∫ 2|x−y|dw

|x−y|dw

c15.6
tdS/2

dt (5.13)

Assume α > 0. Recall that α = dw(dS/2−1). Hence by (5.13), we immediately
obtain (5.11). If α = 0, then dS = 2 and (5.13) implies gB∗(x,R)(x, y) ≥ log 2.
Since (5.6) holds for t ∈ [|x− y|dw , 2(c25.6R)dw ], we see that

gB∗(x,R)(x, y) ≥
∫ 2(c25.6R)dw

|x−y|dw

c15.6
t
dt = −dw log

|x− y|
c25.6R

+ log 2.

Now (5.12) follows by a routine calculation.

6 Time change of the Brownian motion

In this section, we are going to study under what kind of measures one can
constructed time changed process of the Brownian motion. The main tool is
the potential theory based on Dirichlet forms presented, for example, in [19]. As
in the last section, K = GSC(n, l, S) is a generalized Sierpinski gasket and (E ,F)
is the Dirichlet form associated with the Brownian motion on K. Moreover, we
only consider the case where r∗ ≥ 1 and hence α = log r∗/ log l ≥ 0.

In this section, we assume the following property.

Assumption 6.1. l ≥ 4

This is a technical assumption to make several statements, conditions and
proofs simple. Even if l = 2 or 3, by modifying technical arguments properly,
all the theorems in the rest of this paper hold without any change.

For example, under the above assumption, we have the following fact which
makes our discussion slightly simpler.
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Lemma 6.2. For any s ∈ S, there exists s′ ∈ S such that Ks ∩Ks′ = ∅.
The quantity hµ(w) defined below plays a crucial role in this paper. Since

h(x, y) has the same singularity as the Green function, hµ(w) corresponds
roughly to the escape time from Kw. The square of hµ(∅) will be show to
behave as the Poincaré constant in Theorem 9.1 for example.

Definition 6.3. Let µ be a Borel regular probability measure µ on K. We
define

hµ(w) = sup
x∈Kw

∫
Kw

h(x, y)µ(dy).

for any w ∈W∗. Moreover, define a Borel regular probability measure µw on K
by µw(A) = µ(Fw(A))/µ(Kw) for any Borel set A ⊆ K. Set

MP (K) = {µ|µ is a Borel regular probability measure on K,
µ(Kw) > 0 for any w ∈W∗, µ({x}) = 0 for any x ∈ K

and hµ(∅) < +∞}

Note that if µ ∈ MP (K), then hµ(w) < +∞ for any w ∈W∗.
We immediately have the following lemmas by direct calculations.

Lemma 6.4. (1) If α > 0, then h(Fw(x), Fw(y)) = (r∗)|w|h(x, y) for any
w ∈W∗ and any x, y ∈ K.
(2) If α = 0, then

h(x, y) = h(Fw(x), Fw(y)) − |w| log l

for any w ∈W∗ and any x, y ∈ K.

Lemma 6.5.

hµw(∅) =


1

(r∗)|w|µ(Kw)
hµ(w) if α > 0,

1
µ(Kw)

hµ(w) − |w| log l if α = 0

for any µ ∈ MP (K) and any w ∈W∗.

Proof. ∫
K

h(x, y)µw(dy) =
1

µ(Kw)

∫
Kw

h(x, (Fw)−1(y))µ(dy).

Now Lemma 6.4 suffices.

Lemma 6.6. Let ν be a Borel regular measure on K with ν(K) < +∞. If∫
K
h(x, y)ν(dx)ν(dy) < +∞, then ν is of energy finite integrals or equivalently,

belongs to the class S0, which is defined in [19, Section 2.2]. Moreover, if
hν(∅) < +∞, then ν ∈ S00 and, for any compact subset M of K,

Cap(M) ≥ ν(M)

sup
x∈M

∫
M

g1(x, y)ν(dy)
, (6.1)

where Cap(·) is the 1-capacity defined in [19, Section 2.1].
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Proof. Set (Gγν)(x) =
∫
K
gγ(x, y)ν(dy) and let ai =

∫
K

(Gγν)(x)ψi(x)ν∗(dx),
where ψi is an eigenfunction ofH appearing in Proposition 5.2. Then by Fubini’s
theorem,

ai =
∫ ∞

0

∫
K

∫
K

e−γtp(t, x, y)ψi(x)ν∗(dx)ν(dy)dt

=
∫ ∞

0

∫
K

e−(γ+λ∗
i )ψi(y)ν(dy) =

1
γ + λ∗i

∫
K

ψi(y)ν(dy).

Since the convergence in (5.4) is uniform, it follows that

∫ ∞

L

e−γtp(t, x, y)dtν(dx)ν(dy) =
∞∑
i=1

e−(γ+λ∗
i )L

γ + λ∗i

(∫
K

ψi(x)ν(dx)

)2

.

Letting L ↓ 0, we obtain

∫
K

gγ(x, y)ν(dx)ν(dy) =
∞∑
i=1

1
γ + λ∗i

(∫
K

ψi(x)ν(dx)

)2

< +∞

This implies
∞∑
i=1

λ∗i (ai)
2 ≤

∫
K

gγ(x, y)ν(dx)ν(dy) < +∞.

Therefore, Gγν ∈ F . Let u =
∑
i≥1 biψi ∈ L2(K, ν∗).

Eγ(Gγν, Ttu) =
∑
i≥1

(λ∗i + γ)aibie−λ
∗
i t =

∑
i≥1

∫
K

e−λ
∗
i tbiψi(x)ν(dx)

Now by the same argument as in the proof of Lemma 10.9, there exist a, c > 0
such that ||ψi||∞ ≤ c(λ∗i )

a for any i ≥ 1. Note that |bi| ≤ ||u||2 for any i ≥ 1 by
the Schwartz inequality. This implies that

∑
i≥1 e

−λ∗
i tbiψi converges uniformly

on K for any t > 0. Therefore,

Eγ(Gγν, Ttu) =
∫
K

(Ttu)(x)ν(dx)

In particular if u ∈ F ∩ C(K), then by Proposition 5.2-(5), we have

Eγ(Gγν, u) =
∫
K

u(x)ν(dx).

By [19, (2.2.2)], we see that ν ∈ S0. If supx∈K
∫
K
h(x, y)ν(dy) < +∞, then

Lemma 5.5 shows that Gγν is bounded for any γ > 0. This immediately implies
ν ∈ S00. If M is compact, then νM belongs to S00 as well, where νM (A) = ν(A∩
M) for any ν-measurable set A. By [19, Problem 2.2.2], we obtain (6.1).
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Definition 6.7. Define MTC
P (K) by

MTC
P (K) = {µ|µ ∈ MP (K)and Px(τY ) = 0 for any x ∈ K,

where Y is the quasi-support of µ.}

Now we use the theory of Dirichlet form and see that time change is possible
if µ ∈ MTC

P (K).

Theorem 6.8. If µ ∈ MTC
P (K), then we have a local regular Dirichlet form

(E ,Fµ) on L2(K,µ) corresponding a time change of the Brownian motion. More
precisely, let Fµ be the completion of F ∩C(K) with respect to the inner product
Eµ,1(u, v) = E(u, v) +

∫
K
uvdµ. Then (E ,Fµ) is a local regular Dirichlet form

on L2(K,µ).

Proof. By Lemma 5.5, g1(x, y) ≤ γ(1)h(x, y). Hence supx∈K
∫
K
g1(x, y)µ(dy) ≤

γ(1)hµ(∅). Hence by Lemma 6.6, we see that

γ(1)hµ(∅)Cap(M) ≥ µ(M)

for any compact set M ⊆ K. Hence µ charges no set of 0 capacity. Moreover,
Px(τY = 0) = 1 for any x ∈ K, where Y is the quasisupport of µ. Using these
facts and following the general theory of Dirichlet forms in [19], we verify that
(E ,Fµ) is a local regular Dirichlet form on L2(K,µ). See detailed discussion
after Lemma 2.5 of [11].

We use ({Xµ
t }t>0, {Pµx }x∈K) to denote the diffusion process associated with

the Dirichlet form (E ,Fµ) on L2(K,µ) and Eµx to denote the corresponding
expectation. Let U be an open subset of K. Define DU = {u|u ∈ F ∩
C(K), u|K\U ≡ 0}. We define FU,µ be the closure of DU with respect to the
inner-product E(u, v) +

∫
K
uvdµ. Note that FU,µ ⊆ Fµ and that u(x) = 0 for

µ-a.e. x ∈ K\U . Hence FU,µ is regarded as a subspace of L2(U, µ|U ). Define
EU,µ(u, v) = E(u, v) for any u, v ∈ FU,µ. Using the results in [19, Section 4.4],
we see that (EU,µ,FU,µ) is a local regular Dirichlet form on L2(U, µ|U ). We
denote the diffusion process associated with the Dirichlet form (EU,µ,FU,µ) by
({XU,µ

t }t>0, {PU,µx }x∈U ) and the expectation by {EU,µx }.
The next theorem gives a sufficient condition for a measure µ to belong to

MTC
P (K).

Theorem 6.9. Let µ ∈ MP (K). If
∞∑
m=0

inf
s∈S

µ(Kω1...ωms)(r∗)
m

hµ(ω1 . . . ωms)
= +∞ if α > 0,

∞∑
m=0

m inf
s∈S

µ(Kω1...ωms)
hµ(ω1 . . . ωms)

= +∞ if α = 0
(6.2)

for any ω = ω1ω2 . . . ∈ Σ, then µ ∈ MTC
P (K).
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To prove the above theorem we need the following lemma, which is a conse-
quence of Assumption 6.1.

Lemma 6.10. Let x ∈ K and let w ∈Wm. Suppose x ∈ Kw. Then there exists
s ∈ S such that Kws ∩ Vm+2(x) = ∅.

Proof. There exists i ∈ S such that x ∈ Kwi. By Lemma 6.2, we find s ∈ S
which satisfies Kwi∩Kws = ∅. Then since l ≥ 4, it follows that Kws∩Vm+2(x) =
∅.

Proof of Theorem 6.9. First we show that if A is a measurable set with µ(A) =
1, then for any x ∈ K,{∑

m≥1(r∗)
mCap(Am(x)) = +∞ if α > 0,∑

m≥1mCap(Am(x)) = +∞ if α = 0,
(6.3)

where Am(x) = A ∩ (Vm−2(x)\Vm(x)) for m ≥ 2.
Assume that α > 0. There exists a compact subset M of A ∩Kw such that

µ(M) ≥ µ(A ∩Kw)/2. Note that µ(Kw) = µ(Kw ∩A). Then

1
µ(M)

∫
M

g1(x, y)µ(dy) ≤ c(1)
1

µ(M)
hµ(w) ≤ 2c(1)

hµ(w)
µ(Kw)

By (6.1), we obtain

Cap(Kw ∩A) ≥ Cap(M) ≥ 1
2c(1)

µ(Kw)
hµ(w)

for any w ∈W∗.
Fix ω ∈ Σ which satisfies π(ω) = x. By (6.2), we have either

∞∑
k=0

inf
s∈S

µ(Kω1...ω2k+1s)(r∗)
2k+1

hµ(ω1 . . . ω2k+1s)
= +∞

or
∞∑
k=0

inf
s∈S

µ(Kω1...ω2ks)(r∗)
2k

hµ(ω1 . . . ω2ks)
= +∞

Assume the latter. By Lemma 6.10, for any k ≥ 1, there exists i ∈ S such that
Kω1...ω2k−2i ⊆ V2k−2(x)\V2k(x). Set w(k) = ω1 . . . ω2k−2. Then

(r∗)2kCap(A2k(x)) ≥ (r∗)2kCap(A ∩Kw(k)i) ≥
1

2c(1)
µ(Kw(k)i)(r∗)2n

hµ(w(k)i)

≥ 1
2c(1)

inf
s∈S

µ(Kw(k)s)(r∗)2k

hµ(w(k)s)

Summing these up from k = 1 to ∞, we obtain (6.3). The case where α = 0
can be shown by entirely the same arguments.

Now, (6.3) enable us to use the classical Wiener test argument and show
that Px(τY ) = 0 for any x ∈ K, where Y is the quasi-support of µ. See detailed
discussion after Lemma 2.5 of [11].
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The rest of this section is devoted to finding more effective sufficient condi-
tion for (6.2). If one has information on order of decay of µ(Kw) as |w| → ∞,
the next lemma is of some use to calculate the value of hµ(w).

Lemma 6.11. Let w ∈W∗. Assume that there exist fw : N → (0, 1) such that

µ(Kwv) ≤ fw(|v|)µ(Kw) (6.4)

for any v ∈W∗. If α > 0, then

hµ(w) ≤ c6.5µ(Kw)(r∗)|w|
∞∑
k=0

(r∗)kfw(k) (6.5)

If α = 0, then

hµ(w) ≤ c6.6µ(Kw)
(
(|w| + 1)

∞∑
k=0

fw(k) +
∞∑
k=1

kfw(k)
)
. (6.6)

The constants c6.5 and c6.6 are independent of µ and w.

Proof. Note that
|x− y| ≥ l−m. (6.7)

for any x ∈ K, any m ≥ 0 and any y /∈ Vm(x). Write |w| = m. Assume α > 0.
By (6.7), we have∫

Kw

h(x, y)µ(dy) =
∞∑
k=0

∫
Kw∩Vm+k(x)\Vm+k+1(x)

h(x, y)µ(dy)

≤
∞∑
k=0

lα(m+k+1)µ(Vm+k(x) ∩Kw) ≤ 4nNµ(Kw)
∞∑
k=0

lα(m+k+1)fw(k)

≤ 4nNµ(Kw)(r∗)|w|lα
∞∑
k=0

lαkfw(k)

for anyx ∈ Kw. The constant 4nN appears in the above inequality because
{v|v ∈Wm+k+1,Kv ⊆ Vm+k(x)} contains at most 4nN elements. If α = 0,∫

Kw

h(x, y)µ(dy) =
∞∑
k=0

∫
Kw∩Vm+k(x)\Vm+k+1(x)

h(x, y)µ(dy)

≤
∞∑
k=0

(
(m+ k + 1) log l + log

√
ne
)
µ(Vm+k(x) ∩Kw)

≤ 4nNµ(Kw)
∞∑
k=0

(
m log l + (k + 1) log l

)
fw(k)

≤ 4nN(log l)µ(Kw)
(
(m+ 1 + log

√
ne)

∞∑
k=0

fw(k) +
∞∑
k=1

kfw(k)
)
.

23



The following lemma gives a simple sufficient condition for (6.2).

Lemma 6.12. Let µ ∈ MP (K). Let {ρm}m≥0 satisfy

max
w∈Wm,s∈S

µ(Kws)
µ(Kw)

≤ ρm

for any m ≥ 0. Set δm = ρ0ρ1 · · · ρm−1 for m ≥ 1. If
∞∑
k=1

kδk < +∞ in case α = 0,∑
k≥0

(r∗)kδk < +∞ in case α > 0,
(6.8)

then (6.2) is satisfied and hence µ ∈ MTC
P (K). Moreover, if (6.8) is satisfied,

then

hµ(w) ≤


c6.6

∑
k≥m

(k + 1)δk in case α = 0,

c6.5
∑
k≥0

(r∗)|w|+kδ|w|+k in case α > 0
(6.9)

and

hµw(∅) ≤


c6.6

∑
k≥0(k + 1)δ|w|+k

δ|w|
in case α = 0,

c6.5
1

(r∗)|w|δ|w|

∞∑
k=0

(r∗)|w|+kδ|w|+k in case α > 0.
(6.10)

As is shown in Example 8.7, if (6.8) is satisfied, then the resolvent operator
associated with the time changed process is a compact operator on L∞(K,µ).

Proof. We present a proof for the case α = 0. For the case α > 1, the results
follows by entirely analogous discussion by using (6.5). If α = 0, then

µ(Kwv) ≤
δ|w|+|v|

δ|w|
µ(Kw) (6.11)

for any w, v ∈W∗. By Lemma 6.11, if m = |w|, we have

hµ(w) ≤ c6.6
(m+ 1)

∑
k≥0 δm+k +

∑
k≥1 kδm+k

δm
µ(Kw)

≤ c6.6

∑
k≥m(k + 1)δk

δm
µ(Kw) ≤ c6.6

∑
k≥m

(k + 1)δk. (6.12)

Since ρm ≥ 1/N , we see that∑
k≥m

(k + 1)δk =
∑

k≥m+1

kδk +
∑

k≥m+1

δk + (m+ 1)δm

≤ 2
∑

k≥m+1

kδk + (m+ 1)δm+1N ≤ (N + 2)
∑

k≥m+1

kδk
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Using Lemma 6.13, we see that

1
N + 2

∑
m≥1

mδm∑
k≥m+1 kδk

≤ c6.6
∑
m≥1

m min
w∈Wm

hµ(w)
µ(Kw)

= +∞.

This yields (6.2). Hence Theorem 6.9 implies that µ ∈ MTC
P (K). Since

µw(Kv) = µ(Kwv)/µ(Kw), (6.11) implies

µw(Kv) ≤
δ|w|+|v|

δ|v|
.

This and Lemma 6.11 yield (6.10).

Lemma 6.13. If
∑
n≥1 an < +∞ for a positive sequence {an}n≥1, then

∞∑
m=1

am∑
k≥m+1 ak

= +∞.

Proof. Let bm = am
P

k≥m+1 ak
and let Am =

∑∞
k=m ak. Then

m∑
i=1

bk ≥
m∑
i=1

log (1 + bk) = logA1 − logAm.

Since Am ↓ 0 as m→ ∞, we have
∑
k≥1 bk = +∞.

Making use of Lemma 6.12, we may observe how slow decay of µ(Kw) as
|w| → ∞ can be in order to have time change possible in the next example.
Note that ρm can be chosen as maxw∈Wm,i∈S µ(Kwi)/µ(Kw).

Example 6.14. We use the same notation as in Lemma 6.12. Assume α = 0.
Set

δk =
1

k2+ε

for some ε > 0. Then kδk = 1/k1+ε. Hence∑
k≥m+1

kδk � 1
mε

By Lemma 6.12, we have µ ∈ MTC
P (K). By (6.11), there exists c16.13 > 0 such

that
hµ(w) ≤ c16.13

1
|w|ε

(6.13)

for any w ∈W∗. Moreover, by (6.12), there exists c6.14 > 0 such that

hµw(∅) ≤ c6.14|w|2. (6.14)

for any w ∈W∗.

In the above example, we only present the case when α = 0. If α > 0, we
set δk = (r∗)−k 1

k1+ε . Then it follows that hµ(w) ≤ c/|w|ε and hµw(∅) ≤ c|w|.
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7 Scaling of the Green function

If two domains inK are similar to each other, by scale and translation invariance
of the Brownian motion, the Green functions of those domains are expected to
have simple relation. In this section, we are going to rationalize such an intuition
and give upper and lower estimates of integration of the Green function, which
corresponds to average exit time of the time changed process from the boundary,
by means of hµ(w)’s.

We start with exact definition of the similarity of domains.

Definition 7.1. Let Γ1 and Γ2 beB-similar independent finite subsets of W∗, let
ψ : Γ1 → Γ2 be the B-isomorphism between Γ! and Γ2 and let ϕ(x) = l−Mx+a
be the associated B-similitude from K(Γ1) → K(Γ2). We define

n(Γ1,Γ2) = M.

The following lemma is straight forward by the above definition.

Lemma 7.2. For any equivalence class C under ∼
B
, there exists Γ∗ ∈ C such

that n(Γ∗,Γ) ≥ 0 for any Γ ∈ C.

Definition 7.3. (1) For an independent finite subset of W∗, we denote the
equivalence class of Γ under the equivalence relation ∼

B
by [Γ].

(2) Let C be an equivalence class under ∼
B

. An element Γ∗ ∈ C is said to be

maximal if n(Γ∗,Γ) ≥ 0 for any Γ ∈ C. Define IB(C) = maxw∈Γ∗ |w|, where Γ∗
is a maximal element of C.

Remark. There can be more than one maximal element in an equivalence class
C under ∼

B
.

Now we give relations between Dirichlet forms and the Green functions on
B-similar domains.

Lemma 7.4. Assume that Γ1 and Γ2 are independent finite subsets of W∗ and
Γ1 ∼

B
Γ2. Let ψ : Γ1 → Γ2 be the B-isomorphism between Γ1 and Γ2 and let

ϕ : K(Γ1) → K(Γ2) be the associated B-similitude.
(1) For any u, v ∈ FKo(Γ2), u ◦ ϕ, v ◦ ϕ ∈ FKo(Γ1) and

EKo(Γ1)(u ◦ ϕ, v ◦ ϕ) = (r∗)n(Γ1,Γ2)EKo(Γ2)(u, v) (7.1)

(2)
gK

o(Γ1)(x, y) = (r∗)−n(Γ1,Γ2)gK
o(Γ2)(ϕ(x), ϕ(y)) (7.2)

for any x, y ∈ K.

Proof. Set Ui = Ko(Γi) for i = 1, 2. Note that n(Γ1,Γ2) = |ψ(w)| − |w| for any
w ∈ Γ1.
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(1) By (10.3),

EU1(u ◦ ϕ, v ◦ ϕ) =
∑
w∈Γ1

1
(r∗)|w| E(u ◦ ϕ ◦ Fw, v ◦ ϕ ◦ Fw)

=
∑
w∈Γ1

r|ψ(w)|−|w| 1
(r∗)|ψ(w)| E(u ◦ Fψ(w), v ◦ Fψ(w))

= rn(Γ1,Γ2)EU2(u, v)

(2) Let Gi = GUi,ν∗
0 for i = 1, 2, i.e.

(Giu)(x) =
∫
Ui

gUi(x, y)u(y)ν∗(dy)

for any u ∈ L2(U, ν∗|Ui). Recall that Giu ∈ FUi is also characterized by

EUi(G
iu, v) = (u, v)Ui

for any v ∈ FUi , where (u, v)Ui =
∫
Ui
u(x)v(x)ν∗(dx). Let u ∈ L2(U2, ν∗|U2).

Then for any v ∈ FU2 , by (7.1) and the definition of Gi, we have

(r∗)n(Γ1,Γ2)EU2((G
1(u ◦ ϕ)) ◦ ϕ−1, v) = EU1(G

1(u ◦ ϕ), v ◦ ϕ)

= (u ◦ ϕ, v ◦ ϕ)U1 = Nn(Γ1,Γ2)(u, v)U2 .

Hence G2u = (r∗/N)n(Γ1,Γ2)(G1(u ◦ ϕ)) ◦ ϕ−1. Therefore∫
U2

gU2(x, y)u(y)ν∗(dy) =
(r∗
N

)n(Γ1,Γ2)
∫
U1

gU1(ϕ−1(x), y)u(ϕ(y))ν∗(dy)

= (r∗)n(Γ1,Γ2)

∫
U2

gU1(ϕ−1(x), ϕ−1(y))u(y)ν∗(dy).

This immediately imply (7.2).

Next lemma shows an estimate of integration of the Green function by means
of the sum of hµ(w)’s over Γ. The important point is that the constants in the
estimates (7.3) and (7.4) only depend on the B-equivalence class of Γ.

Lemma 7.5. Let C be an equivalence class under ∼
B
. Assume that ∂K(Γ) 6= ∅

for any/some Γ ∈ C. Let Γ∗ be a maximal element of C.
(1) In case α > 0, if Γ ∈ C, µ ∈ MTC

P (K) and x ∈ Ko(Γ), then∫
Ko(Γ)

gK
o(Γ)(x, y)µ(dy) ≤ c5.5(Γ∗)

∑
w∈Γ

hµ(w) (7.3)

(2) In case α = 0, if Γ ∈ C, µ ∈ MTC
P (K) and x ∈ Ko(Γ), then∫

Ko(Γ)

gK
o(Γ)(x, y)µ(dy) ≤ c5.5(Γ∗)

∑
w∈Γ

(hµw(∅) + (|w| − n(Γ∗,Γ)) log l)µ(Kw)

(7.4)
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Proof. Let ψ : Γ∗ → Γ be the B-isomorphism and let ϕ : K(Γ∗) → K(Γ) be the
associated B-similitude. Set U∗ = Ko(Γ), U = Ko(Γ) and m = n(Γ∗,Γ). Since
Γ∗ is maximal, it follows that m ≥ 0 and hence |ψ−1(w)| = |w| − m for any
w ∈ Γ. By (7.2) and (5.5),

gU (x, y) = (r∗)mgU∗(ϕ−1(x), ϕ−1(y)) ≤ c5.5(Γ∗)(r∗)mh(ϕ−1(x), ϕ−1(y)) (7.5)

If α > 0, then by Lemma 6.4 and (7.5), we have

gU (x, y) ≤ c5.5(Γ∗)h(x, y).

Hence ∫
U

gU (x, y)µ(dy) ≤ c5.5(Γ∗)
∫
U

h(x, y)µ(dy) ≤ c5.5(Γ∗)
∑
w∈Γ

hµ(w).

If α = 0, then we have

gU (x, y) ≤ c5.5(Γ∗)(h(x, y) −m log l).

Hence∫
U

gU (x, y)µ(dy) = c5.5(Γ∗)
∫
U

(h(x, y) −m log l)µ(dy)

≤ c5.5(Γ∗)
∑
w∈Γ

(hµ(w) −m log lµ(Kw)).

By Lemma 6.5, we obtain (7.4).

Next we focus on special class of subsets {Vm(x)}m≥0,x∈K , which constitutes
a kind of standard system of neighborhoods. Note that Vm(x) = ∪w∈Γm(x)Kw.

Lemma 7.6. {Γm(x)|x ∈ K,m ≥ 1}/∼
B

is finite.

Proof. As we have seen in Example 4.6-(1), the gauge function g∗(w) = l−|w| is
locally finite and elliptic. Due to (4.1), Theorem 4.9 yields the desired conclu-
sion.

By the above lemma, we have an uniform upper estimate of integration of
the Green function of Vm(x).

Lemma 7.7. There exist c7.6, c7.7 > 0 such that∫
Vm(x)

gV
o

m(x)(y, z)µ(dz) ≤ c7.6
∑

w∈Γm(x)

hµ(w) (7.6)

and ∫
Vm(x)

gV
o

m(x)(y, z)µ(dz) ≤ c7.7

(
max

w∈Γm(x)
hµw(∅)

)
(r∗)mµ(Vm(x)) (7.7)

for any x ∈ X, any m ≥ 1 and any y ∈ V om(x).
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Proof. By Lemma 7.6, it follows that {Γm(x)|x ∈ K,m ≥ 1}/∼
B

= {C1, . . . , Ck}.
Let Γi ∈ Ci be a maximal element of Ci and define c7.6 = maxi=1,...,k c5.5(Γi).
Then Lemma 7.5 immediately shows (7.6). For α > 0, (7.7) is obvious by
Lemma 6.5. Assume α = 0. If Γm(x) ∈ Ci, then |w| − n(Γi,Γm(x)) ≤
IB(Ci). Note that hµw(∅) ≥ log l − 1. Since there exists c1 > 0 such that
x + maxi=1,...,k IB(Ci) log l ≤ c1x for any x ≥ log l − 1, (7.4) and Lemma 2.11
yield∫

Vm(x)

gV
o

m(x)(y, z)µ(dz) ≤ c
∑

w∈Γm(x)

hµw(∅)(r∗)mµ(Kw)

≤ 2nc max
w∈Γm(x)

hµw(∅)µ(Vm(x)),

where c > 0 is independent of µ, x, y and m.

Finally, we obtain an uniform lower estimate as well.

Lemma 7.8. There exists c7.8 > 0 such that if x ∈ K and Vm(x) 6= K, then

c7.8(r∗)m ≤ gV
o

m(x)(x, y) (7.8)

for any y ∈ Vm+1(x).

Proof. Fix C ∈ {Γm(x)|x ∈ K,m ≥ 1}/∼
B

and choose a maximal element Γ∗ of

C. Then Γ∗ ⊆Wm∗ for some m∗. Set

U = {Vm∗+1(z)|z ∈ K,Vm∗(z) = K(Γ∗)}.

Then U is a finite set. Hence

inf
Z∈U

(
inf

x1,x2∈Z
gK

o(Γ∗)(x1, x2)
)
> 0

Define L(C) as the above infimum.
Now assume that Γm(x) ∈ C. Let ψ : Γ∗ → Γm(x) be the B-isomorphism and

ϕ : K(Γ∗) → Vm(x) be the associated B-similitude. Then m∗ = m − n(Γ∗,Γ)
and K(Γ∗) = Vm∗(ϕ

−1(x)) and Γ∗ = Γm∗(ϕ
−1(x)). By (7.2),

inf
y∈Vm+1(x)

gV
o

m(x)(x, y) = (r∗)n(Γ∗,Γ) inf
z∈Vm∗+1(ϕ−1(x))

gK
o(Γ∗)(ϕ−1(x), z)

≥ L(C)(r∗)m−m∗

Since L(C)(r∗)−m∗ only depends on C, Lemma 7.6 implies (7.8).

8 Resolvents

In this section, we study resolvents associated with time changed processes. The
aim is to find a usable sufficient condition for the compactness of resolvent as
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an operator from L∞(K,µ) to itself. Throughout this section, we assume that
µ ∈ MTC

P (K). Recall that by Theorem 6.8, this assumption holds if (6.2) is
satisfied.

For simplicity, we write P̃x = Pµx , X̃t = Xµ
t , P̃

U
x = PU,µx , Ẽx = Eµx and

ẼUx = EU,µx .
By [9, Theorem 5.9], we immediately have the following lemma from the

elliptic Harnack inequality.

Lemma 8.1. There exist k ∈ N, c1 > 0 and ξ > 0 such that

|h(x) − h(y)| ≤ c1|x− y|ξlmξ sup
x∈Vm(x0)

|h(x)|

for any m ≥ 0, any x0 ∈ K, any harmonic function h on Vm(x0) and any
x, y ∈ Vm+k(x0).

Next we define resolvent operators associated with the time changed pro-
cesses ({X̃t}t>0, {P̃x}x∈K) and ({X̃U

t }t>0, {P̃Ux }x∈K).

Definition 8.2. Let γ ≥ 0 and let U be an open subset of K. Define

(Gµγf)(x) = Ẽx

(∫ ∞

0

e−γtf(X̃t)dt
)

and (GU,µγ f)(x) = Ẽx

(∫ τU

0

e−γtf(X̃t)dt
)

for any bounded measurable function f : K → R and any x ∈ K. If no confusion
may occur, we use Gγ and GUγ to denote Gµγ and GU,µγ respectively.

We do not define Gγ nor GUγ merely as a operator on some Lp-space. Instead,
(Gγf)(x) and (GUγ f)(x) are determined for every x ∈ K.

Proposition 8.3. Let A be an open subset of K. Then, for any γ > 0,

Gγf(x) = GAγ (f)(x) + Ẽx(e−γτAGγf(X̃τA)).

Proof.

Gγf(x) = Ẽx

(∫ ∞

0

e−γtf(X̃t)dt
)

= Ẽx

(∫ τA

0

e−γtf(X̃t)dt
)

+ Ẽx

(∫ ∞

τA

e−γtf(X̃t)dt
)

= Ẽx

(∫ τA

0

e−γtf(X̃t)dt
)

+ Ẽx

(
e−γτA

∫ ∞

0

e−γtf(X̃τA+t)dt
)

Let FτA
be the σ-algebra associated with τA. Since e−γτA is FτA

-measurable,
we have

Ẽx

(
e−γτA

∫ ∞

0

e−γtf(X̃τA+t)dt
)

=Ẽx

(
Ẽx

(
e−γτA

∫ ∞

0

e−γtf(X̃τA+t)dt|FτA

))
=Ẽx

(
e−γτAẼx

(∫ ∞

0

e−γtf(X̃τA+t)dt|FτA

))
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(See [12, (1.12) Proposition] for example.) Using the strong Markov property,
we may continue the above equality:

= Ẽx

(
e−γτAẼ

eXτA

(∫ ∞

0

e−γtf(X̃t)
))

= Ẽx

(
e−γτAGγf(X̃τA

)
)
.

Lemma 8.4. There exists c2 > 0 such that if Vm(x) 6= K, then

Ẽy(τVm(x)) ≤ c2 max
w∈Γm(x)

hµ(w)

for any x ∈ K, any m ≥ 0 and any y ∈ Vm(x).

Proof. Using the fact that Γm(x) ≤ 4n, we obtain this lemma immediately from
Lemma 7.7.

Next lemma is the main result of this section.

Lemma 8.5. Assume that

lim
m→∞

max
w∈Wm

hµ(w) = 0. (8.1)

Then there exist c8.2 > 0 and a monotonically increasing continuous function
F : [0,∞) → [0,∞) with F (0) = 0 such that for any γ > 0,

|(Gγf)(x) − (Gγf)(y)| ≤ c8.2(1 + γ−1)F (|x− y|)||f ||∞ (8.2)

for any bounded measurable function f : K → R and any x, y ∈ K, where
||f ||∞ = supx∈K |f(x)|.

By this lemma, if (8.1) holds, then Gγ maps bounded measurable functions
to continuous functions and it is bounded as an operator from L∞(K,µ) to itself.
Such a property is sometimes called strong Feller property of resolvents. More-
over, under the Feller property, if U is a bounded subset of L∞(K,µ), then by
the Arzelà-Ascoli theorem, Gγ(U) contains an uniform convergent subsequence.
As a result, one can see that Gγ can be thought of as a compact operator from
L∞(K,µ) to itself.

Proof. We adapt the discussion in the proof of [14, Proposition 3.3]. Fix k as
in Lemma 8.1. Let x, y ∈ K satisfy |x− y| < l−(2k+2). Define

m(x, y) = max{m|y ∈ V om(x)},

where V om(x) = Ko(Γm(x)). (Recall that Vm(x) = K(Γm(x)).) Then there
exists c3 > 0, which is independent of x, y and m(x, y), such that l−(m+1) ≤
|x − y| ≤ c3l

−m, where m = m(x, y). Note that m(x, y) ≥ 2k + 2. Let p =
[m(x, y)/2]. Then p ≥ k + 1. Hence

m(x, y) ≥ 2p ≥ p+ k + 1. (8.3)
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Proposition 8.3 yields

Gγf(z) = G
V o

p (x)
γ f(z) + Ẽz

(
(e−τγ − 1)Gγf(X̃τ )

)
+ Ẽz

(
Gγf(X̃τ )

)
.

for any z ∈ V op (x), where τ = τV o
p (x). Set λm = maxw∈Wm hµ(w). By

Lemma 8.4,

|GV
o

p (x)
γ f(z)| =

∣∣∣∣∣Ẽz
(∫ τ

0

e−γtf(X̃t)dt

)∣∣∣∣∣ ≤ Ẽz(τ)||f ||∞ ≤ c2λp||f ||∞. (8.4)

Again using Lemma 8.4, we have∣∣Ẽz((e−τγ − 1)Gγf(X̃τ )
)∣∣ ≤ γẼz(τ)||Gγf ||∞ ≤ c2λp||f ||∞. (8.5)

As a function of z, Ẽz(Gγf(X̃τ )) is harmonic on Vp+1(x) by [19, Theorem 4.6.5].
(8.3) shows that y ∈ Vp+1+k(x). Therefore Lemma 8.1 implies

|Ẽx(Gγf(X̃τ )) − Ẽy(Gγr(X̃τ ))| ≤ c1|x− y|ξl(p+1)ξ||Gγf ||∞

≤ c1
γ
|x− y|ξl(p+1)ξ||f ||∞. (8.6)

Since p = [m(x, y)/2], there exists c4 and c5 such that c4l−p ≤ |x−y|1/2 ≤ c5l
−p.

There exists a continuous monotonically increasing function F1 : [0,∞) → [0,∞)
such that F1(0) = 0 and F1((c4)2l−2m) = λm for any m ≥ 1. Then by (8.4),
(8.5) and (8.6), choosing a proper constant C > 0, we have

|Gγf(x) −Gγf(y)| ≤ C
(
1 +

1
γ

)
(F1(|x− y|) + |x− y|ξ/2)||f ||∞,

for any x, y ∈ K. Finally we set F (t) = F1(t) + tξ/2.

If µ(Kw) decays exponentially as |w| → ∞, then the image Gµf is Hölder
continuous.

Corollary 8.6. Let µ ∈ MTC
P (K). If there exist c > 0 and δ > α such that

µ(Kw) ≤ cl−|w|δ

for any w ∈ W∗. Then (8.1) is satisfied. In particular, (8.2) holds with F (t) =
tmin{ξ/2,(δ−α)/2} if α > 0. If α = 0, then for any ε > 0, (8.2) holds with
F (t) = tmin{ξ/2,(δ−ε)/2}.

Proof. Letting cw = cl−δ|v|/µ(Kw), we see that

µ(Kwv) ≤ cwl
−δ|v|µ(Kw).

for any v ∈W∗. If α > 0, then Lemma 6.11 yields that

hµ(Kw) ≤ c′l−(δ−α)|w|

for any w ∈W∗. Hence in this case, F1(t) = ct(δ−α)/2 if α > 0. The case where
α = 0 is entirely the same.
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Example 8.7. Let µ ∈ MP (K) and let δk be the same as in Lemma 6.12. By
Lemma 6.12, if (6.8) is satisfied, then µ ∈ MTC

P . Moreover, in case α = 0 by
(6.12), we have

max
w∈Wm

hµ(w) ≤ c6.6
∑

k≥m+1

kδk → 0 as m→ ∞.

Hence the assumption (8.1) of Lemma 8.5 holds.
In case α > 0, (6.9) implies maxw∈Wm hµ(w) ≤ c6.5

∑
k≥0(r∗)

k+mδk+m → 0
as m→ ∞. Hence (8.1) is satisfied in this case as well.

9 Poincaré inequality

In this section, we are going to show Poincar’e inequality (9.1) for the Dirich-
let form (E ,Fµ) associated with time change. Let Hµ be the non-negative
self-adjoint operator on L2(K,µ) associated with (E ,Fµ). Poincaré inequality
essentially gives a lower bound of the second eigenvalue of Hµ. Note that the
first eigenvalue of Hµ is 0 since Hµ is Neumann Laplacian. We will use the
Poincaré inequality to derive Nash type inequality in Section 10.

As in the last section, we assume that µ ∈ MTC
P (K) throughout this section.

Theorem 9.1. There exists c9.1 > 0 such that if µ ∈ MTC
P (K) and u ∈ Fµ,

then
E(u, u) ≥ c9.1

hµ(∅)2

∫
K

(u(y) − (u)µ)2µ(dy). (9.1)

We will give a proof of the above theorem at the end of this section. As a
step to prove Theorem 9.1, we first show a weak Poincaré inequality (9.5) by
adapting the method developed in [13].

Definition 9.2. For any s ∈ S, define Γ(s) = {s′|s′ ∈ S,Ks ∩Ks′ 6= ∅}.

By Assumption 6.1, Ks ⊆ Ko(Γ(s)) 6= K for any s ∈ S. Write Ko(s) =
Ko(Γ(s)). By Lemma 5.6, the Green function gK

o(s)(x, y), which is denoted by
gs(x, y), is continuous on {(x, y)|x, y ∈ K,x 6= y}. The next three lemmas lead
to the weak Poincaré inequality (9.5).

Lemma 9.3. There exists c9.2 > 0 such that

c9.2h(x, y) ≤ gs(x, y) (9.2)

for any s ∈ S and any x, y ∈ Ks.

Proof. Note that if x ∈ Ks, then B∗(x, l−1/2) ⊆ Ko(s). Define

Os = {(x, y)|(x, y) ∈ Ks ×Ks, |x− y| < c25.6/(2l)}.

By Lemma 5.9, there exists c > 0 such that ch(x, y) ≤ gs(x, y) for any (x, y) ∈
Os. Since h(x, y) and gs(x, y) are both positive and continuous on the compact
set (Ks)2\Os, there exists c′ > 0 such that c′h(x, y) ≤ gs(x, y). Letting c9.2 =
min{c, c′′}, we have (9.2).
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Lemma 9.4. There exists c9.3 > 0 such that if µ ∈ MTC
P (K), then

gs(x, y) − c9.3
hµ,s(∅)

∫
K

gs(x, z)gs(z, y)µ(dz) ≥ c9.2
2
h(x, y) (9.3)

for any s ∈ S and any x, y ∈ Ks, where hµ,s(∅) = supx∈Ks

∫
K
h(x, y)µ(dy).

Proof. Let X1 = {z|z ∈ K, |x− z| ≥ |x− y|/2} and let X2 = {z|z ∈ K, |x− z| <
|x − y|/2}. Note that |y − z| ≥ |x − y|/2 for any z ∈ X2. Hence there exists a
constant cα, which only depends on α, such that h(x, z) ≤ cαh(x, y) if z ∈ X1

and h(z, y) ≤ cαh(x, y) if z ∈ X2. Write g(x, y) = gs(x, y). By (5.5), we have∫
K

g(x, z)g(z, y)µ(dz) =
∫
X1

g(x, z)g(z, y)µ(dz) +
∫
X2

g(x, z)g(z, y)µ(dz)

≤ A2

∫
X1

h(x, z)h(z, y)µ(dz) +A2

∫
X2

h(x, z)h(z, y)µ(dz)

≤ cαA
2

∫
K

h(x, y)h(z, y)µ(dz) + cαA
2

∫
K

h(x, z)h(x, y)µ(dz)

≤ 2cαA2hµ,s(∅)h(x, y),

where A = maxs∈S c5.5(Γ(s)). Choosing c9.3 so that 2cαA2c9.3 = c9.2/2, we
deduce the desired inequality by Lemma 9.3.

Lemma 9.5. There exists c9.4 > 0 such that if µ ∈ MTC
P (K), s ∈ S, γ =

c9.3/hµ,s(∅) and u : K → [0,∞) be a bounded measurable function, then

(Gγu)(x) ≥ c9.4

∫
Ks

u(y)µ(dy) (9.4)

for any x ∈ Ks.

Proof. Let u∗ = χKs · u, where χKs is the characteristic function of Ks, and let
U = Ko(s). By the resolvent equation and Lemma 9.4,

(Gγu)(x) ≥ (Gγu∗)(x) ≥ (GUγ u∗)(x) = (GUu∗)(x) − γ(GU◦GUγ u∗)(x)
≥ (GUu∗)(x) − γ(GU◦GUu∗)(x)

=
∫
Ks

(
g(x, y) − γ

∫
K

g(x, z)g(z, y)µ(dz)

)
u(y)µ(dy)

≥ c9.2
2

∫
Ks

h(x, y)u(y)µ(dy) ≥ c9.2
2

min
x1,x2∈Ks

h(x1, x2)
∫
Ks

u(y)µ(dy).

Proposition 9.6. There exists c9.5 > 0 such that if µ ∈ MTC
P (K) and f ∈

F ∩ C(K), then

E(f, f) ≥ c9.5
µ(Ks)
hµ,s(∅)2

∫
Ks

(f(y) − (f)µ,s)2µ(dy) (9.5)

for any s ∈ S, where (f)µ,s =
∫
Ks
f(y)µ(dy)/µ(Ks).
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The inequality (9.5) can be thought of as weak Poincaré inequality. The
reason why it is “weak” is that the quantity E(f, f) reflects the values of f on
the entire space K while the right-hand side of (9.5) depends on information of
µ and f only on Ks.

Proof. Write γ = c9.3/hµ,s(∅). For any f ∈ F ∩ C(K), let u(y) = (f(y) −
γ(Gγf)(x))2. Then

γ(Gγu)(x) = γ(Gγf2)(x) − 2γ2(Gγf)(x)2 + γ3(Gγf)(x)2(Gγ1)(x)

= γ(Gγf2)(x) −
(
γ(Gγf)(x)

)2
. (9.6)

By (9.6) and Lemma 9.5,

γ(Gγf2)(x) −
(
γ(Gγf)(x)

)2 ≥ γc9.4

∫
Ks

(f(y) − γ(Gγf)(x))2µ(dy)

≥ γc9.4

∫
Ks

(f(y) − (f)µ,s)2µ(dy) (9.7)

for any x ∈ Ks.
Let Hµ be the non-negative self-adjoint operator associated with the Dirich-

let form (E ,Fµ) on L2(K,µ) and let {Zθ}θ≥0 be the spectral resolution of Hµ.
Then∫

K

(
γ(Gγf2)(x) −

(
γ(Gγf)(x)

)2)
µ(dx) = ||f ||22 − ||γGγf ||22

=
∫ ∞

0

(
1 −

( γ

γ + θ

)2
)
d〈Zθf, Zθf〉 ≤

2
γ

∫ ∞

0

θd〈Zθf, Zθf〉 =
2
γ
E(f, f). (9.8)

Note that Gγu(x) ≥ 0 for any x ∈ K. Combining (9.7) and (9.8), we obtain

E(f, f) ≥ 1
2
γ2c9.4µ(Ks)

∫
Ks

(f(y) − (f)µ,s)2µ(dy).

To prove strong Poincaré inequality (9.1) from the weaker version (9.5), we
make use of the self-similarities of the space K, the measure ν∗ and the Dirichlet
from (E ,F).

For s ∈ Q, let Ψs : H0 → Hs be the folding map introduced in [10, Defini-
tion 2.12], which is characterized by the following properties:
(FM1) Ψs : H0 → Hs is continuous and piecewise affine. Ψs(K) = Ks.
(FM2) For each s0 ∈ Q, define πs,s0 = Ψs|Hs0

. Then πs,s0 is an (affine) isome-
try from Hs0 to Hs, πs,s is an identity on Ks and πs,s0(Ks0) = Ks if s, s0 ∈ S.

Proposition 9.7. If f ∈ F and s ∈ S, then f◦F−1
s ◦Ψs ∈ F .
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Proof. Since we have the heat kernel estimate (5.2), by [25, Theorem 4.2], it
follows that u ∈ F if and only if

sup
0<r≤1

1
rdH+dw

∫
K

∫
B∗(x,r)

|u(x) − u(y)|2ν∗(dy)ν∗(dx) < +∞ (9.9)

Let 0 < r ≤ 1/l. Fix j ∈ S. If x ∈ Kj , then B∗(x, r) ∈ ∪i∈Γ1(j)Ki, where
Γ1(j) = {i|i ∈ S,Kj ∩Ki 6= ∅}. Define ρj,i : Hj ∪Hi → Hj ∪Hi as the reflection
in Hj ∩Hi. If B∗(x, r) ∩Ki 6= ∅ for i ∈ Γ1(j)\{j}, then ρj,i(B∗(x, r) ∩Ki) ⊆
B∗(x, r) ∩ Kj . Moreover, if u = f◦F−1

s ◦Ψs, then u(y) = u(ρj,i(y)) for any
y ∈ B∗(x, r) ∩Ki because Ψs(y) = Ψs(ρj,i(y)). Hence∫

B∗(x,r)∩Ki

|u(x) − u(y)|2ν∗(dy) =
∫
ρj,i(B∗(x,r)∩Ki)

|u(x) − u(y)|2ν∗(dy)

≤
∫
B∗(x,r)∩Kj

|u(x) − u(y)|2ν∗(dy)

Therefore, since #(Γ1(j)) ≤ 3n, we have∫
B∗(x,r)

|u(x) − u(y)|2ν∗(dy) ≤ #(Γ1(j))
∫
B∗(x,r)∩Kj

|u(x) − u(y)|2ν∗(dy)

≤ 3n
∫
B∗(x,r)∩Kj

|u(x) − u(y)|2ν∗(dy)

This implies∫
Kj

∫
B∗(x,r)

|u(x) − u(y)|2ν∗(dy)ν∗(dx)

≤ 3n
∫
Kj

∫
B∗(x,r)∩Kj

|u(x) − u(y)|2ν∗(dy)ν∗(dx)

= 3n
∫
Ks

∫
B∗(x,r)∩Ks

|u(x) − u(y)|2ν∗(dy)ν∗(dx)

=
3n

l2

∫
K

∫
B∗(x,lr)

|f(x) − f(y)|2ν∗(dy)ν∗(dx).

Summing this over j ∈ S, we obtain

1
rdH+dw

∫
K

∫
B∗(x,r)

|u(x) − u(y)|2ν∗(dy)ν∗(dx)

≤ 3nN
l2rdH+dw

∫
K

∫
B∗(x,lr)

|f(x) − f(y)|2ν∗(dy)ν∗(dx) (9.10)

Since f ∈ F , (9.9) shows that the supremum of the right-hand side over r ∈
[0, 1/l] is finite. Hence the supremum of the left-hand side over r ∈ [0, 1/l] is
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finite as well. By the fact that∫
K

∫
B∗(x,r)

|u(x) − u(y)|2ν∗(dy)ν∗(dx)

≤
∫
K

∫
K

2(|u(x)|2 + |u(y)|2)ν∗(dy)ν∗(dx) < +∞

we see that the supremum of the left-hand side of (9.10) over [0, 1] is finite.
Again by (9.9), we conclude that u ∈ F .

Definition 9.8. For s ∈ S, we define Φs : F → F by Φs(f) = f ◦ (Fs)−1 ◦ Ψs.

Note that if f ∈ F ∩ C(K), then Φs(f) ∈ F ∩ C(K).

Corollary 9.9. Let s ∈ S.
(1) F = {u ◦ Fs|u ∈ F}.
(2) {u : Ks → R|u ◦ Ψs ∈ F} = {f ◦ (Fs)−1|f ∈ F}.

Proof. (1) Theorem 5.1 shows {u ◦ Fs|u ∈ F} ⊆ F . Since Φs(f)◦Fs = f , the
converse is obvious.
(2) If u : Ks → R and u◦Ψs ∈ F}, then u = u◦Ψs ◦ (Fs)−1. Conversely, if
f ∈ F , then f◦(Fs)−1 ◦ Ψs = Φs(f) ∈ F .

Remark. The set {u : Ks → R|u ◦ Ψs ∈ F} is denoted by Fs in [10].

Lemma 9.10. For any f ∈ F ∩ C(K),

E(Φs(f),Φs(f)) =
N

r∗
E(f, f).

Proof. By (5.1),

E(Φs(f),Φs(f)) =
1
r∗

∑
i∈S

E(Φs(f) ◦ Fi,Φs(f) ◦ Fi).

Note that Φs(f)◦Fi = f ◦(Fs)−1 ◦πs,i ◦Fi. Since (Fs)−1 ◦πs,i ◦Fi is an isometry
from K to itself, the invariance of E under isometries of K implies

E(Φs(f) ◦ Fi,Φs(f) ◦ Fi) = E(f, f).

Finally, we are ready to prove the Poincaré inequality (9.1).

Proof of Theorem 9.1. For µ ∈ MTC
P (K), we define a Borel regular probability

measure µ(λ,s) for λ ∈ (0, 1) and s ∈ S as the Borel regular measure which
satisfies∫

K

u(x)µ(λ,s)(dx) =
(1 − λ)N
N − 1

∫
K\Ks

u(x)ν∗(dx) + λ

∫
K

u◦Fs(x)µ(dx)
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for any u ∈ C(K). It is easy to see that µ(λ,s) ∈ MTC
P (K). First we assume

that f ∈ F ∩ C(K). It follows that µ(λ,s)(Ks) = λ and∫
Ks

Φs(f)(x)µ(λ,s)(dx) = λ

∫
K

f◦(Fs)−1 ◦ Fs(x)µ(dx) = λ

∫
K

f(x)µ(dx).

Hence we have (Φs(f))µ(λ,s),s = (f)µ. In the same way,∫
Ks

(Φs(f)(x) − (Φs(f))µ(λ,s),s)2µ(λ,s)(dx) = λ

∫
K

(f(x) − (f)µ)2)µ(dx).

Now applying Proposition 9.6 to µ(λ,s) and Φs(f) and using Lemma 9.10, we
see

N

r∗
E(f, f) ≥ c9.5

λ2

hµ(λ,s),s(∅)2

∫
K

(f(x) − (f)µ)2µ(dx). (9.11)

On the other hand, since

h(Fs(x), Fs(y))

{
= lαh(x, y) if α > 0,
≤ (1 + log l)h(x, y) if α = 0,

it follows that

hµ(λ,s),s(∅)

≤ (1 − λ)N
N − 1

sup
x∈Ks

∫
K\Ks

h(x, y)ν∗(dy) + λ sup
x∈Ks

∫
K

h(x, Fs(y))µ(dy)

= (1 − λ)C1 + λ sup
x∈K

∫
K

h(Fs(x), Fs(y))µ(dy)

≤ (1 − λ)C1 + λC2hµ(∅),

where C1 = N
N−1 supx∈Ks

∫
K\Ks

h(x, y)ν∗(dy) and C2 = max{lα, 1 + log l}.
Therefore, (9.11) yields

N

r∗
E(f, f) ≥ c9.5

λ2(
(1 − λ)C1 + λC2hµ(∅)

)2 ∫
K

(f(x) − (f)µ)2µ(dx).

By letting λ → 1, we obtain (9.1) for f ∈ F ∩ C(K). Since the closure of
F ∩ C(K) is Fµ. We obtain (9.1) for any f ∈ Fµ.

10 Heat kernel, existence and continuity

In this section, we will present a class of measures, called measures controlled by
rate functions, for which time change is possible and the associated heat kernel
exists and is jointly continuous. As we will see in the following sections, this
class contains many examples like self-similar measures, some class of random
measures including the Liouville measure on [0, 1]2 and measures having the
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volume doubling property. The main tool is Poincaré inequality obtained in the
last section.

We start with introducing a gauge function σµ naturally associated with
time change.

Definition 10.1. Let µ be a Borel regular probability measure on K.
(1) Define σµ(w) and σµ(w) by

σµ(w) = (r∗)|w|µ(Kw)

and
σµ(w) = sup

v∈W∗

σµ(wv)/ sup
v∈W∗

σµ(v).

(2) µ is called admissible if µ ∈ MTC
P (K) and (8.1) is satisfied.

Note that σµ is a kind of normalized version of σµ. Intuitively, σµ(w) is
proportional to the average exit time from Kw. In fact, this intuition will be
justified (partially at least) in (12.4) and (12.5).

Proposition 10.2. If µ is admissible, then σµ is a gauge function.

Proof. Since |x− y| ≤
√
nl−|w| for any x, y ∈ Kw, it follows that

hµ(w) ≥

{
n−α/2σµ(w) if α > 0,
(|w| log l + 1)σµ(w) if α = 0.

Therefore, if (8.1) is satisfied, then σµ is a gauge function.

Throughout the rest of this section, we assume that µ is admissible. As a
consequence, µ ∈ MTC

P (K) and hence (E ,Fµ) is a local regular Dirichlet form
on L2(K,µ). Recall that Hµ is the self-adjoint operator associated with (E ,Fµ).

Definition 10.3. A function f : [0,∞) → [0,∞) is called doubling if and only
if there exists γ > 1 and c > 1 such that f(γt) ≤ cf(t) for any t ≥ 0.

Now we define measures controlled by rate functions.

Definition 10.4. Let µ ∈ MP (K). µ is said to be controlled by rate functions
(ξµ, ξσ, ξh) if and only if the following conditions (CRF1) and (CRF2) are sat-
isfied:
(CRF1) ξµ and ξσ are monotonically non-decreasing doubling functions from
[0,∞) to itself satisfying

µ(Kwi) ≥ µ(Kw)ξµ(µ(Kw))

and
µ(Kw) ≥ ξσ(σµ(w))
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for any w ∈W∗ and any i ∈ S.
(CRF2) ξh is a monotonically non-increasing continuous function from (0,∞)
to itself and

hµw(∅)2 ≤ ξh(σµ(w))

for any w ∈W∗. There exist c110.1 > 1 and c210.1 > 0 such that c110.1c
2
10.1 > 1,

ξh(c110.1t) ≥ c210.1ξh(t) (10.1)

for any t > 0. Moreover ξh(t)t is monotonically increasing, and limt↓0 ξh(t)t = 0.

Remark. If α = 0, then σµ(w) = σµ(w) = µ(Kw) and hence ξσ(t) = t.

If µ is elliptic, then ξµ can be chosen as a constant. In addition if

sup
w∈W∗,i∈S

µ(Kwi)/µ(Kw) < min{1, 1/r∗},

then (6.10) implies supw∈W∗
hµw(∅) < +∞. Hence in such a case, ξh can be

chosen as a constant as well. In particular, if α = 0 and µ is elliptic, then µ is
controlled by rate functions (c1, t, c2), where c1, c2 > 0 are constants.

Notation. For a bounded linear operator A : Lp(K,µ) → Lq(K,µ), we define
||A||p→q as the operator norm supf∈Lp(K,µ),f 6=0 ||Af ||p/||f ||q.

The next theorem shows that the strong continuous semigroup associated
with the Dirichlet form (E ,Fµ) on L2(K,µ) is ultracontractive as a operator
from L1(K,µ) to L∞(K,µ) if µ is controlled by rate functions. The Poincaré
inequality is crucial in the proof.

Theorem 10.5. Assume that µ is admissible and controlled by rate functions
(ξµ, ξσ, ξh). Set Tt = e−Hµt. Define θ as the inverse of tξh(t). Then Tt maps
L1(K,µ) to L∞(K,µ) and there exists c10.2 > 0 such that

||Tt||1→∞ ≤ c10.2 max{1, ξ(t)−1} (10.2)

for any t > 0, where ξ(t) = ξσ(θ(t))ξµ(ξσ(θ(t))). In particular, {Tt}t>0 is
ultracontractive.

Remark. If α = 0, then ξ(t) = θ(t)ξµ(θ(t)).

Lemma 10.6. Assume that µ is controlled by rate functions (ξµ, ξσ, ξh). Let
f(t) = tξh(t). If θ is the inverse of f , then θ is doubling.

Proof. Let c1 = c110.1 and let c2 = c210.1c
1
10.1. Then c1 > 0 and c2 > 0 and

f(c1t) ≥ c2f(t)

for any t > 0. This implies c1θ(f(t)) ≥ θ(c2f(t)).
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Proof of Theorem 10.5. If Λ is a partition of Σ, then by using (5.1) and induc-
tion on the number of elements of Λ, we see that

E(f, f) =
∑
w∈Λ

1
(r∗)|w| E(f◦Fw, f◦Fw), (10.3)

for any f ∈ Fµ. By Theorem 9.1, we have

1
(r∗)|w| E(u◦Fw, u◦Fw) ≥ c9.1

hµw(∅)2
1

(r∗)|w|

∫
K

(u◦Fw(y)− (u◦Fw)µw)2µw(dy)

≥ c9.1
hµw(∅)2

1
(r∗)|w|

(∫
K

(u ◦ Fw(y))2µw(dy) −
(∫

K

u ◦ Fw(y)µw(dy)
)2
)

≥ c9.1
σµ(w)ξh(σµ(w))

(∫
Kw

u(y)2µ(dy) − 1
µ(Kw)

(∫
Kw

u(y)µ(dy)
)2
)

(10.4)

Write Λρ = Λσµ
ρ . Let w = w1 . . . wm ∈ Λρ. Set w′ = w1 . . . wm−1. If C =

supw∈W∗
σµ(w), then

σµ(w′) > ρ ≥ σµ(w) ≥ 1
C
σµ(w),

Hence µ(Kw′) ≥ ξσ(σµ(w′)) ≥ ξσ(ρ). This yields

µ(Kw) ≥ µ(Kw′)ξµ(µ(Kw′)) ≥ ξσ(ρ)ξµ(ξσ(ρ)) ≥ ξσ(ρ)ξµ ◦ ξσ(ρ). (10.5)

Since tξh(t) is monotonically increasing, (10.4) implies

1
(r∗)|w| E(u ◦ Fw, u ◦ Fw) ≥

c9.1
Cρξh(ρ)

(∫
Kw

u(y)2µ(dy) − 1
µ(Kw)

(∫
Kw

u(y)µ(dy)
)2
)
, (10.6)

for any w ∈ Λρ and any u ∈ Fµ. Define Λρ(u) = {w|w ∈ Λρ,Kw∩supp(u) 6= ∅}.
Then, by Lemma 2.11,∑

w∈Λρ

1
µ(Kw)

(∫
Kw

u(y)µ(dy)
)2

=
∑

w∈Λρ(u)

1
µ(Kw)

(∫
Kw

u(y)µ(dy)
)2

≤ 1
minw∈Λρ(u) µ(Kw)

( ∑
w∈Λρ(u)

∫
Kw

|u(y)|µ(dy)

)2

≤ 22n

minw∈Λρ(u) µ(Kw)
||u||2µ,1. (10.7)

Making use of (10.3), (10.6) and (10.7), we have

E(u, u) +
c9.122nC−1

ρξh(ρ)minw∈Λρ(u) µ(Kw)
||u||2µ,1 ≥ c9.1

ρξh(ρ)
||u||2µ,2. (10.8)
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for any u ∈ Fµ and any ρ ∈ (0, 1]. Furthermore, by (10.5), this inequality
implies

E(u, u) +
c9.122nC−1

ρξh(ρ)ξ(ρ)
||u||2µ,1 ≥ c9.1

ρξh(ρ)
||u||2µ,2

for any u ∈ Fµ and any ρ ∈ (0, 1]. Hence,

E(u, u) +
c9.122nC−1

tξ(t)
||u||2µ,1 ≥ c9.1

t
||u||2µ,2. (10.9)

In [31], (10.9) is called a homogeneous Nash inequality. Since θ, ξµ and ξσ are
doubling by Lemma 10.6, ξ is doubling as well. Therefore by [31, Theorem 3.2],
we obtain (10.2).

Using the above theorem, we are about to show the existence and the conti-
nuity of heat kernel. Next lemma shows that the ultracontractivity of {Tt}t>0

yields the fact that Hµ has compact resolvent.

Lemma 10.7. If a Borel regular probability measure µ on K is admissible
and controlled by some rate functions, then Hµ has compact resolvent and any
eigenfunction of Hµ is continuous. Furthermore, if {ϕi}i≥1 is the complete
orthonormal base of L2(K,µ) consisting of the eigenfunctions of Hµ and {λi}i≥1

be the corresponding eigenvalues, i.e. Hµϕi = λiϕi for any i ≥ 1, 0 ≤ λ1 ≤
λ2 . . . and limm→∞ λm = ∞, then ϕ1 = 1, λ1 = 0 and λ2 > 0.

Proof. By Lemma 8.5, Gγ is a compact operator from L∞(K,µ) to itself and
Gγ(L∞(K,µ)) ⊆ C(K). Let Tt = e−Hµt. Note that {Tt}t>0 is ultracontractive
by Theorem 10.5. Hence if {un}n≥1 is a bounded sequence in L2(K,µ), then
{Ttun}n≥0 is a bounded sequence in L∞(K,µ). This implies that {GγTtun}n≥1

contains a subsequence which converges in L∞(K,µ) and in L2(K,µ) as well.
Thus, if follows that GγTt is a compact operator from L2(K,µ) to itself. Now
there exist a complete orthonormal system {ϕi}i≥1 of L2(K,µ) and {ai}i≥1 such
that GγTtϕi = aiϕi and ai ≥ ai+1 for any i ≥ 1 and limi→∞ ai = 0. Let λi be
the unique real number which satisfies

e−λit

γ + λi
= ai.

Then by the spectral resolution of Hµ, we see that Hµϕi = λiϕi. Furthermore,
since every eigenfunction of Hµ is a finite linear combination of {ϕi}i≥1, an
eigenfunction of Hµ is continuous. Since E(1, 1) = 0, we see that λ1 = 1 and
ϕ1 = 1. Note that ϕ2 is orthogonal to ϕ1 = 1. The Poincaré inequality (9.1)
shows that E(ϕ2, ϕ2) > 0. Hence λ2 > 0.

Remark. Note that ϕi and λi depend on µ. In this sense, they should be written
as ϕµi and λµi respectively. By using these exact notations, ψi and λ∗i appearing
in Proposition 5.2 are identified with ϕν∗i and λν∗i respectively. If no confusion
may occur, however, we mainly use ϕi and λi.
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In the rest of this section, we assume that µ is admissible and controlled
by some rate functions. Then by the above lemmas, any eigenfunction is con-
tinuous, Hµ has compact resolvent and ||Tt||1→∞ < +∞ for any t > 0. In
particular, there exists a sequence {(λi, ϕi)}i≥1 of pairs of an eigenvalue and
an eigenfunction such that λ1 = 0 < λ2 ≤ λ3 ≤ . . . and {ϕi}i≥1 is a complete
orthonormal system of L2(K,µ).

Lemma 10.8. Define

pn(t, x, y) =
n∑
i=1

e−λitϕi(x)ϕi(y).

Then for any x ∈ K and any t > 0, pn(2t, x, x) ≤ ||Tt||21→∞. In particular,∑n
i=1 e

−2λit ≤ ||Tt||21→∞ for any n ≥ 1.

Proof. Let pt,xn (y) = pn(t, x, y). Since ϕi ∈ L∞(K,µ),

||Ttpt,xn ||∞ ≤ ||pt,xn ||1||Tt||1→∞ ≤ ||pt,xn ||2||Tt||1→∞

On the other hand,
(Ttpt,xn )(y) = pn(2t, x, y).

Therefore,

pn(2t, x, x) ≤ sup
y∈K

|pn(2t, x, y)| ≤ ||pt,xn ||2||Tt||1→∞

Since ||pt,xn ||22 =
∑n
i=1 e

−2λitϕi(x)2 = pn(2t, x, x), it follows that

pn(2t, x, x) ≤ ||Tt||21→∞.

Lemma 10.9. For any L > 0, the sum∑
i≥1

e−λitϕi(x)ϕn(y)

converges absolutely and uniformly on [L,∞) ×K ×K.

Proof. Since ξ is doubling, there exist c > 0 and a > 0 such that ξ(t) ≥ cta for
any t ∈ (0, 1]. Hence by (10.2),

||Tt||2→∞ ≤ ||Tt||1→∞ ≤ cmax{1, t−a}

for any t > 0. By the fact that Ttϕi = e−λitϕi, it follows ||ϕi||∞ ≤ eλit||Tt||2→∞.
Letting t = 1/λi, we obtain

||ϕi||∞ ≤ c(λi)a.
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This yields
|e−λitϕi(x)ϕi(y)| ≤ c(λi)2ae−λiL

for any x, y ∈ K and any t ≥ L. Note that if M = supi≥1(λi)2ae−λiL/2, then
M < +∞. Hence by Lemma 10.8,∑

i≥1

(λi)2ae−λiL ≤M
∑
i≥1

e−λiL/2 ≤M ||TL/4||21→∞.

Therefore by the Weierstrass majorant convergence theorem, (M-test), we have
the desired statement.

Combining all the results together, we have the following theorem.

Theorem 10.10. Assume that µ is admissible and controlled by rate functions
(ξµ, ξσ, ξh). Then there exists a jointly continuous heat kernel pµ(t, x, y) > 0
associated with the Dirichlet form (E ,Fµ) on L2(K,µ), i.e. pµ(t, x, y) is con-
tinuous and positive on (0,∞) ×K ×K and

(Ttu)(x) =
∫
K

pµ(t, x, y)u(y)µ(dy) (10.10)

for any u ∈ L2(K,µ), any t > 0 and any x ∈ X. Moreover,

Ẽx(u(X̃t)) =
∫
K

pµ(t, x, y)u(y)µ(dy) (10.11)

for any bounded measurable function u : K → R, any x ∈ K, and any t > 0.
Furthermore, Hµ has compact resolvent and there exists a complete orthonormal
system {ϕi}i≥1 of L2(K,µ) consisting of the eigenfunctions of Hµ such that
Hµϕi = λiϕi and λ1 = 0 < λi ≤ λi+1 for any i ≥ 2, ϕ1 = 1, ϕi is continuous
on K for any i ≥ 1 and

pµ(t, x, y) =
∑
i≥1

e−λitϕi(x)ϕi(y), (10.12)

where the infinite sum converges uniformly and absolutely on [L,∞) ×K ×K
for any L > 0.

Proof. We have proved all the statements except the positivity of pµ(t, x, y)
and (10.11) in the course of the discussion in this section. Using the same
argument as in the proof of [30, Proposition 5.1.10-(1)], we obtain the positivity
of pµ(t, x, y). About (10.11), in [1, Proof of Theorem 5.1-(i)], the authors have
essentially shown that the strong Feller property of resolvents and the uniform
convergence of (10.12) suffice for (10.11). Recall that Gγ has strong Feller
property by Lemma 8.5 and that the uniform convergence of (10.12) has been
shown in Lemma 10.9. Thus, we obtain (10.11).
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Remark. If µ is controlled by rate functions (ξµ, ξσ, ξh), then (10.2) implies

pµ(t, x, y) ≤ cmax{1, ξ(t)−1} (10.13)

for any t > 0.
By (10.12), we also have expansions of the time derivatives of pµ(t, x, y) as

follows.

Theorem 10.11. Assume that µ is admissible and controlled by some rate
functions as well. Under the same notations as in Theorem 10.10, for any x, y ∈
K, pµ(t, x, y) is a C∞-function of t on (0,∞) and the derivatives ∂m

∂tm pµ(t, x, y)’s
for m = 1, 2, . . . are jointly continuous on (0,∞) ×K ×K. In particular,

∂m

∂tm
pµ(t, x, y) =

∑
i≥1

(λi)me−λitϕi(x)ϕi(y),

where the right-hand side converges uniformly on [L,∞)×K×K for any L > 0.
Moreover,∣∣∣∣ ∂m∂tm pµ(t, x, y)

∣∣∣∣ ≤ 1
e

(2m
t

)m√
pµ(t/2, x, x)pµ(t/2, y, y) (10.14)

for any (t, x, y) ∈ (0,∞) ×K ×K.

Proof. Similar arguments as in the proof of Lemma 10.9 imply that∑
n≥1

λie
−λnzϕn(x)ϕn(y)

converges compact uniformly on the right-half plane HR = {z|Re z > 0} ⊂ C.
Hence it is analytic on HR and

∂m

∂zm
pµ(z, x, y) =

∑
n≥1

(−λn)me−λnzϕn(x)ϕn(y)

for any z ∈ HR, where the right-hand side converges compact uniformly on HR.
Since maxx∈R x

me−x = mm/e,∣∣∣∣ ∂m∂tm pµ(t, x, x)
∣∣∣∣∣ ≤∑

n≥1

(λn)me−λntϕi(x)2 ≤

(2
t

)m∑
n≥1

(λnt
2

)m
e−λnt/2e−λnt/2ϕn(x)2 ≤

(2
t

)mmm

e
pµ(t, x, x).

Hence by the Schwartz inequality,∣∣∣∣ ∂m∂tm pµ(t, x, y)
∣∣∣∣ ≤∑

n≥1

(λn)me−λnt|ϕn(x)ϕn(y)| ≤

(
∂m

∂tm
pµ(t, x, x)

∂m

∂tm
pµ(t, y, y)

)1/2

≤ 1
e

(2m
t

)m√
pµ(t/2, x, x)pµ(t/2, y, y)
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11 Measures having weak exponential decay

In this section, we introduce a class of measures, called measures having weak
exponential decay, which will turn out to be a subclass of measures controlled by
rate functions. The reason why we need this subclass is that the conditions for
having weak exponential decay are more feasible to verify than those for being
controlled by rate functions. Naturally, if µ has weak exponential decay, then
one has all the consequences in the last section. In particular, µ ∈ MTC

P (K)
and the time change of the Brownian motion with respect to µ has a jointly con-
tinuous hear kernel pµ(t, x, y). In Section 14, certain class of random measures
is shown to have weak exponential decay for example. Moreover, if a measure
has weak exponential decay, then the associated heat kernel is shown to satisfy
a diagonal lower estimate in Section 12.

Definition 11.1. A Borel regular probability measure µ is said to have weak
exponential decay if and only if there exist positive constants C1, C2, C3, λ1, λ2

such that 0 < λ1 ≤ λ2 < 1/r∗,

C1(λ1)|w| ≤ µ(Kw) ≤ C2(λ2)|w| (11.1)

for any w ∈W∗, and
µ(Kwv) ≤ C3(r∗)−|v|µ(Kw) (11.2)

for any w, v ∈W∗.

Note that if α = 0, i.e. r∗ = 1, then the condition (11.2) always holds.
The following proposition gives an equivalent condition for the condition

(11.1) in terms of Euclidean balls.

Proposition 11.2. Let µ be a Borel regular probability measure on K. The
condition (11.1) holds if and only if there exist positive constants c1, c2, α1, α2

such that α1 ≥ α2 > α and

c1r
α1 ≤ µ(B∗(x, r)) ≤ c2r

α2 (11.3)

for any x ∈ K and any r ∈ (0, 1]. Furthermore, if (11.1) holds, then λ1 = l−α1

and λ2 = l−α2 . In particular, if α = 0, i.e. r∗ = 1, then µ has weak exponential
decay if and only if it satisfies (11.3).

Remark. It follows by Proposition 11.6-(1) and (2) that

λ1 ≤ 1
N

≤ λ2 and α1 ≥ dH ≥ α2.

Proof. For any w ∈W∗, there exists x ∈ Kw such that

B∗(x, l−(m+1)) ⊆ Kw ⊆ B∗(x,
√
nl−m).

This implies (11.1) from (11.3). Conversely the fact that

B∗(x, l−m) ⊆ Vm(x) ⊆ B∗(x, 3
√
nl−m)

implies (11.3) from (11.1).
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Example 11.3 (Liouville measure on the square). By [20, Theorem 2.2] and
[1, Lemma 3.1], the condition (11.3) holds for Liouville measure on [0, 1]2 and
hence it has weak exponential decay.

Next we introduce a refined version of a measure having weak exponential
decay.

Definition 11.4. Let η ≥ 1,p = (p, p) ∈ (0, (r∗)−1)2 and let κ = (κ, κ) be a
pair of a monotonically non-decreasing function from [0.∞) to [0,∞). A Borel
regular probability measure µ on K is said to have (η,p, κ)-weak exponential
decay if κ is doubling,

sup
m∈N

κ(m)
m

< +∞, (11.4)

µ(Kwv) ≤ ηµ(Kw) ×

{
p|v| if |v| ≥ κ(|w|),
(r∗)−|v| otherwise,

(11.5)

there exist positive constants c111.6 and c211.6 such that

κ(x+ c111.6) ≤ κ(x) + c211.6 (11.6)

for any x ≥ 0, and

µ(Kwi) ≥
1
η
pκ(|w|)µ(Kw) (11.7)

for any w ∈W∗ and any i ∈ S and

µ(Kw) ≥ 1
η
p|w| (11.8)

for any w ∈ W∗. If both κ and κ are bounded, then µ is said to have uniform
exponential decay.

Proposition 11.5. Let µ be a Borel regular probability measure on K. µ has
weak exponential decay if and only if µ has (η,p, κ)-weak exponential decay for
some (η,p, κ).

Proof. Assume (11.1). Let λ1 = (λ2)1+γ and let C = C2/C1. Then

µ(Kwv) ≤ C2(λ2)|w|+|v| ≤ C(λ2)−γ|w|(λ2)|v|µ(Kw).

Choose sufficiently small ε > 0 so that (λ2)1−ε < 1/r∗. Set p = (λ2)1−ε and
κ(x) = γx/ε. Then we have µ(Kwv) ≤ Cp|v|µ(Kw) for any v ∈ W∗ with
|v| ≥ κ(|w|). Combining this with (11.2), we obtain (11.4) and (11.5).

Next, let p = min{λ1, λ1/λ2} and define κ(x) = x. Then

µ(Kwi) ≥ c1(λ1)|w|+1 ≥ λ1

C
pκ(|w|)µ(Kw)

for any w ∈W∗ and i ∈ S, and

µ(Kw) ≥ C1p
|w|
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for any w ∈W∗. Thus we have obtained (11.6), (11.7) and (11.8). (The constant
η can be chosen properly.)

Conversely, if µ has (η,p, κ)-weak exponential delay, we can deduce (11.1)
from (11.5) and (11.7) by letting w = ∅. The condition (11.2) follows from
(11.5). Thus µ has weak exponential decay.

Suppose µ has (η, p, κ)-weak exponential decay. Note that the conditions on
κ : [0,∞)2 → [0,∞) only concern the values of κ on nonnegative integers. In
other words, given values on N∪{0}, we may interpolate values between integers
so that κ and κ are continuous monotone functions without losing the required
properties. Moreover, adjusting the value of η, we may assume that

κ(0) = κ(0) = 0 (11.9)

without loss of generality. Furthermore, due to (11.4), modifying κ without
changing the order of increase, one may assume that

λ−xκ(x) is monotonically decreasing and lim
x→∞

λ−xκ(x) = 0, (11.10)

where λ = r∗p. Thus whenever µ has (η,p, κ)-weak exponential decay, then the
conditions (11.9) and (11.10) are always assumed to be true hereafter.

The followings are basic facts on the conditions in Definition 11.4.

Proposition 11.6. Let µ ∈ MP (K).
(1) If (11.5) holds, then p ≥ 1/N .
(2) If (11.7) holds, then p ≤ 1/N .
(3) (11.7) holds and κ is bounded if and only if µ is elliptic.
(4) µ has uniform exponential decay if and only if there exist η > 1, p, p ∈
(0, (r∗)−1) such that

1
η
p|v|µ(Kw) ≤ µ(Kwv) ≤ ηp|v|µ(Kw)

for any w, v ∈W∗.
(5) If µ is a self-similar measure on K with weight (µi)i∈S. Then µ has weak
exponential decay if and only if µir∗ < 1 for any i ∈ S. Moreover, if µir∗ < 1
for any i ∈ S, then µ has uniform exponential decay.

Proof. (1) Choosing sufficiently large η, we have µ(Kw) ≤ ηp|w| for any w ∈W∗.
Hence

1 ≤
∑

w∈Wm

µ(Kw) ≤ η(Np)m.

This immediately implies p ≥ 1/N .
(2) By (11.8),

2n ≥
∑

w∈Wm

µ(Kw) ≥ η−1(Np)m.
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Therefore, we obtain p ≤ 1/N .
(3) Assume that (11.7) holds and κ is bounded. Choose M ∈ N so that
supx≥0 κ(x) ≤M . Then

µ(Kwi) ≥ η−1pMµ(Kw)

for any w ∈ W∗ and any i ∈ S. Set γ = η−1pM . Then we can verify the
condition (ELm) in [32, Theorem 1.2.4]. Hence by [32, Theorem 1.2.4 and its
remark], we see that µ is elliptic. The converse direction is obvious.
(4) This is immediate from definitions.
(5) Let µ be a self-similar measure with weight (µi)i∈S . By [32, Theorem 1.2.7],
it follows that µ(Kw) = µw1 · · ·µwm for any w = w1 . . . wm ∈ W∗. Hence if
(11.5) holds, then p ≥ maxi∈S µi. This yields µir∗ < 1 for any i ∈ S. Conversely
if µir∗ < 1 for any i ∈ S, we let p = maxi∈S µi and obtain (11.5) with η = 1
and κ(x) = 0 for any x. At the same time, we obtain (11.7) by letting κ(x) = 0
for any x ∈ X and p = mini∈S µi.

The following proposition shows an upper estimate of hµ(w) if µ has weak
exponential decay. As a result, µ is shown to be admissible as well.

Proposition 11.7. Let µ have (η,p, κ)-weak exponential decay. Define λ = r∗p.
If α > 0, then

hµ(w) ≤ c6.5η
(
κ(|w|) +

1
1 − λ

)
σµ(w) (11.11)

for any w ∈W∗. If α = 0, then

hµ(w) ≤ c6.6η
(
|w|
(
κ(|w|) +

1
1 − λ

)
+ κ(|w|)2 +

1
(1 − λ)2

)
σµ(w) (11.12)

for any w ∈W∗. In particular, µ is admissible. Moreover,

1
η
σµ(w) ≤ σµ(w) ≤ ησµ(w) (11.13)

and

σµ(wv) ≤ η3σµ(w) ×

{
λ|v| if |v| ≥ κ(|w|),
1 otherwise.

(11.14)

for any w, v ∈W∗.

Proof. The estimates (11.11) and (11.12) are immediate by Lemma 6.11. Com-
bining these with (11.4), we obtain (6.2). Hence µ ∈ MTC

P (K). By (11.5), there
exists η′ > 0 such that σµ(w) ≤ η′λ|w| for any w ∈ W∗. This and (11.4) imply
(8.1). (11.5) yields

σµ(wv) ≤ ησµ(w) (11.15)

for any w, v ∈ W∗. Note that 1 ≤ σµ(∅) ≤ η. It follows by (11.15) that
σµ(w) ≤ ησµ(w). Thus µ is admissible. At the same time we have (11.13).
Combining (11.15) and (11.13), we obtain (11.14).
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The next proposition shows a simple equivalence condition for having uni-
form exponential decay.

Proposition 11.8. Let µ ∈ MP (K). σµ is an elliptic gauge function if and
only if µ has uniform exponential decay.

Remark. By [32, Theorem 1.2.4], if µ is elliptic, then µ(Fw(V0)) = 0 for any
w ∈W∗, where V0 = ∂H0∩K. This implies that µ(∂K(Γ)) = 0 for any Γ ⊆W∗.
Furthermore, if Γ ⊆W∗ is independent, then∫

K(Γ)

f(x)µ(dx) =
∑
w∈Γ

∫
Kw

f(x)µ(dx) (11.16)

for any f ∈ L1(K,µ).

Proof. Assume that σµ is an elliptic gauge function. Then, there exist a > 0
and b ∈ (0, 1) such that

σµ(wv) ≤ ab|v|σµ(w) (11.17)

for any w, v ∈ W∗. If M = min{m|abm ≤ 1}, then σµ(w) = max{σµ(wv)||v| ≤
M}. Hence there exists v∗ ∈ W∗ such that |v∗| ≤ M and σµ(w) = σµ(wv∗) =
(r∗)|v∗|µ(Kwv∗). This implies that

σµ(w) ≤ σµ(w) = (r∗)|v∗|µ(Kwv∗) ≤ (r∗)Mσµ(w) (11.18)

By (11.17) and (11.18), we have

σµ(wv) ≤ σµ(wv) ≤ ab|v|σµ(w) ≤ a(r∗)Mb|v|σµ(w).

This yields
µ(Kwv) ≤ a(r∗)M (b/r∗)|v|µ(Kw).

Let κ(x) = 0 for any x ≥ 0, η = a(r∗)M and p = b/r∗. Then (11.5) holds. Since
σµ is elliptic, there exists c > 0 such that σµ(wi) ≥ cσ(w) for any w ∈ W∗
and any i ∈ S. This along with (11.18) shows that there exists c′ > 0 such
that σµ(wi) ≥ c′σµ(w) for any w ∈ W∗ and any i ∈ S. Therefore, µ(Kwi) ≥
c′(r∗)−1µ(Kw). Thus we have shown that µ has uniform exponential decay.

Conversely assume that µ is has uniformly weak exponential decay. We have
(11.14) by Proposition 11.7. By Proposition 11.6-(3), there exists γ > 0 such
that µ(Kwi) ≥ γµ(Kw) for any w ∈ W∗ and any i ∈ S. Hence σµ(wi) ≥
γ(r∗)−1σµ(w) for any w ∈ W∗ and any i ∈ S. Using (11.13), we see that there
exists c′′ > 0 such that σµ(wi) ≥ c′′σµ(w) for any w ∈W∗ and any i ∈ S. This
and (11.14) shows that σµ is an elliptic gauge function.

As is shown in Proposition 11.7, a measure having weak exponential decay
is admissible. In the next theorem, we show that such a measure is controlled
by some rate functions. As a consequence, if a measure has weak exponential
decay, then time change is possible and there exists a jointly continuous heat
kernel with upper estimate (10.13).
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Theorem 11.9. If a Borel regular probability measure µ on K has weak ex-
ponential decay, then µ ∈ MTC

P (K) and it is controlled by some rate functions
(ξ∗µ, ξ

∗
σ, ξ

∗
h). More specifically, assume that µ has (η,p, κ)-weak exponential de-

cay. If γ1 = −1/ log (r∗p) and γ2 = 3γ1 log η, then

ξ∗µ(t) =
1
η
pκ(−γ1 log t+γ2),

ξ∗σ(t) =

{
pγ2η−1t−γ1 log p if α > 0,
t if α = 0,

and

ξ∗h(t) =

{
γ3(κ(−γ1 log t+ γ2)2 + 1) if α > 0,
γ3(κ(−γ1 log t+ γ2)4 + 1) if α = 0,

where γ3 is a constant determined by (η,p, κ). In particular, if µ has uniform
exponential decay, then ξ∗h and ξ∗µ are constants.

We will prove the above theorem later in this section. For the moment, we
present a corollary on diagonal upper heat kernel estimate.

Corollary 11.10. Let µ be a Borel regular probability measure on K. As-
sume that µ has (η,p, κ)-exponential decay. If µ is controlled by rate functions
(ξµ, ξσ, ξh) and limx→∞ κ(x)/x = 0, then

lim sup
t↓0

− log pµ(t, x, x)
log t

≤ lim sup
s↓0

log
(
max{ξσ(s), ξ∗σ(s)}

)
log s

(11.19)

for any x ∈ K. In particular, if α = 0, then

lim sup
t↓0

− log pµ(t, x, x)
log t

≤ 1

for any x ∈ K.

Remark. If ξ1σ(t) = max{ξσ(t), ξ∗σ(t)}, then ξ1σ(t) is better than both ξσ(t) and
ξ∗σ(t) as a rate function. In fact, µ(Kw) ≥ ξ1σ(σµ(w)) ≥ ξ∗σ(σµ(w)) for example.

Remark. If µ has uniform exponential decay, then κ is bounded and hence
limx→∞ κ(x)/x = 0. Thus we have (11.19).

Proof of Corollary 11.10. Define ξ1σ(t) = max{ξσ(t), ξ∗σ(t)}. Note that µ is con-
trolled by rate functions (ξ∗µ, ξ

1
σ, ξ

∗
h). Hence by Theorems 10.5 and 10.10, we

have
pµ(t, x, x) ≤

1
ξ1σ(θ(t))ξ∗µ(ξ1σ(θ(t)))

for any x ∈ X and any t ∈ (0, 1]. Since θ is the inverse of tξ∗h(t),

lim sup
t↓

− log pµ(t, x, x)
log t

≤ lim sup
s↓0

log ξ1σ(s)ξ∗µ(ξ1σ(s))
log sξ∗h(s)

(11.20)
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By (11.4), for sufficiently small t > 0, we see that 1 ≤ ξ∗h(s) ≤ c(log s)4. Hence

lim
s↓0

log ξ∗h(s)
log s

= 0.

Furthermore, log ξ∗µ(ξ
∗
σ(s)) = (log p)κ(−c1 log t + c2) − log η, where c1 > 0 and

c2 are constants. Since limx→∞ κ(x)/x = 0 and | log ξ∗µ(ξ
∗
σ(s))| ≥ | log ξ∗µ(ξ

1
σ(s))|

for sufficiently small s > 0, it follows that

lim
s↓0

log ξ∗h(ξ
1
σ(s))

log s
= 0.

Hence, we obtain (11.19) from (11.20).

We now begin to prove Theorem 11.9. First we prepare a lemma.

Lemma 11.11. Assume that κ : [0,∞) → [0,∞) is a doubling non-decreasing
function and satisfies (11.4). Fix k ∈ N and c > 0. Define f(t) : (0,∞) → [0,∞)
by

f(t) =

{
κ(−c log t)k + 1 if t ∈ (0, 1],
1 if t > 1.

Then there exist c1 > 1 and c2 > 0 such that c1c2 > 1 and

f(c1t) ≥ c2f(t)

for any t > 0.

Proof. Since κ is doubling, there exist γ1, γ2 ∈ (0, 1) such that κ(γ1t) ≥ γ2κ(t)
for any t > 0. Let x = − log t for t ∈ (0, 1]. Choose s > 1 so that 1 − 1/s = γ1.
Let A > 1. Then if x ≥ s logA,

κ(c(x− logA))k + 1
κ(cx)k + 1

≥ min
{

1,
κ(c(x− logA))k

κ(cx)k
}
≥ (γ2)k.

On the other hand, for 0 < x ≤ s logA, we see that

1
κ(cx)k + 1

≥ 1
κ(cs logA)k + 1

.

These inequalities imply that

f(At)
f(t)

≥ min
{

(γ2)k,
1

κ(cs logA)k + 1

}
Define F (A) as the right-hand side of this inequality. Then by (11.4), we see that
AF (A) → ∞ as A→ ∞. In particular, we may choose A > 1 so that AF (A) >
1. Letting c1 = A and c2 = F (A), we obtain the desired conclusion.
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Proof of Theorem 11.9. First we discuss ξ∗h. By (11.14) and (11.9), σµ(w) ≤
η3λ|w| for any w ∈W∗. Hence

−γ1 log σµ(w) + γ2 ≥ |w| (11.21)

Hence by (11.11) and (11.12),

hµw(∅)2 ≤ γ3 ×

{
(κ(−γ1 log σµ(w) + γ2)2 + 1) if α > 0,
(κ(−γ1 log σµ(w) + γ2)4 + 1) if α = 0.

for some γ3 > 0. Thus hµ(∅)2 ≤ ξ∗h(σµ(w)). Furthermore, by (11.10), tξ∗h(t) is
continuous, monotonically increasing and limt↓0 tξ

∗
h(t) = 0.

Next, if α = 0, we may choose ξ∗σ(t) = t. Assume α > 0. By (11.8) and
(11.21),

µ(Kw) ≥ 1
η
(p)|w| ≥

pγ2

η
(σµ(w))−γ1 log p

Therefore, µ(Kw) ≥ ξ∗σ(σµ(w)). Obviously ξ∗σ is doubling.
Finally about ξ∗µ, by (11.7) and (11.21),

µ(Kwi) ≥ ξ∗µ(σµ(w))µ(Kw)

By (11.6), ξµ is doubling.

12 Protodistance and diagonal lower estimate of
heat kernel

In this section, we will present a diagonal lower estimate of heat kernel (12.11)
in which the volume of the “ball’ with respect to “protodistance” δµ plays
the principal part. Note that we do not attempt to create a general notion of
“protodistance” but we are going to call the nonnegative function δµ : K×K →
[0,∞) defined later in this section by the name “protodistance”, which is not
even symmetric nor a quasimetric in general. Once µ has the volume doubling
property with respect to d∗, however, our protodistance δµ is equivalent to some
power of a distance under which sub-Gaussian heat kernel estimates (1.7) and
(1.8) hold as we will see in Section 15.

After the introduction of δµ, assuming that µ has weak exponential decay,
we study lower estimate of pµ(t, x, x) as t ↓ 0. Note that uniform upper estimate
of pµ(t, x, x) has obtained in the previous section.

Throughout this section, we assume the following property:

lim
m→∞

(r∗)mµ(Vm(x)) = 0. (12.1)

for any x ∈ K. If µ has weak exponential decay, then this assumption is satisfied.
Next we define our “protodistance” δµ.
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Definition 12.1. For m ≥ 0, x ∈ K,

εµ(m,x) = max{(r∗)kµ(Vk(x))|k ≥ m}

m̃µ(t, x) =

{
max{m|εµ(m,x) ≥ t} + 1 if εµ(0, x) ≥ t,

0 if εµ(0, x) < t.

and
δµ(x, y) = inf{t|y ∈ V

emµ(t,x)(x)}

We call δµ a protodistance associated with the measure µ. By the assump-
tion (12.1), εµ(m,x) is well-defined and limm→∞ εµ(m,x) = 0 for any x ∈ K.
Consequently, m̃µ(t, x) and δµ(x, y) are well-defined as well and δµ(x, y) ≥ 0
and δµ(x, y) = 0 if and only if x = y. Mostly, however, the protodistance is
not a (quasi)metric. For example, δµ(x, y) 6= δµ(y, x) in general. Later in Sec-
tion 19, we will show inequalities (19.1), (19.3) and (19.4) whose combination
can be regarded as a kind of primitive counterpart of weakened triangle inequal-
ity d(x, y) ≤ C(d(x, z) + d(z, y)), where C ≥ 1 is a fixed constant. Indeed, the
combination of(19.1), (19.3) and (19.4) will be shown to yield the weakened
triangle inequality if µ has the volume doubling property.

If no confusion can occur, we write ε(m,x), m̃(t, x) and δ(x, y) instead of
εµ(m,x), m̃µ(t, x) and δµ(x, y) respectively.

The protodistance δµ has another expression by means of the separation
number k(x, y) defined below.

Definition 12.2. Let x, y ∈ K. A sequence (w(1), . . . , w(j)) ∈ (W∗)j is called a
chain between x and y if and only if x ∈ Kw(1), y ∈ Kw(j) and Kw(i)∩Kw(i+1) 6=
∅ for any i = 1, . . . , j − 1. Define

`m(x, y)

= min{k|there exists a chain (w(1), . . . , w(k)) ∈ (Wm)k between x and y}

and
k(x, y) = max{m|`m(x, y) ≤ 2}.

The number `m(x, y) is the length of shortest walk in Wm between x and y.
k(x, y) represents the level at which two points x and y are separated. Obviously,
k(x, y) < +∞ if x 6= y. In case x = y, we think of k(x, y) = +∞. The following
lemma is straight forward from the above definition.

Lemma 12.3. If x 6= y ∈ K, then y ∈ Vk(x,y)(x)\Vk(x,y)+1(x).

Immediately by the above definitions, we obtain the next lemma.

Lemma 12.4. Let j ≥ 1. Then m̃µ(t, x) = j if and only if εµ(j, x) < t ≤
εµ(j − 1, x).

The above lemmas gives the following alternative expression of δµ using
k(x, y).
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Proposition 12.5. For any x, y ∈ K,

δµ(x, y) = εµ(k(x, y), x).

Proof. Let k(x, y) = k. Then by Lemmas 12.3 and 12.4,

{t|y ∈ V
em(t,x)(x)} = {t|l ≥ m̃(x, t)} = {t|ε(k, x) < t}.

Hence δ(x, y) = ε(k(x, y), x).

A “ball” with respect to the protodistance δµ is identified with Vm(x) as
follows.

Proposition 12.6. Define Bδµ(x, r) = {y|δµ(x, y) < r} for x ∈ K and r > 0.
Then

Bδµ(x, t) = V
emµ(t.x)(x) (12.2)

and
µ(V

emµ(t,x)(x)) ≤
t

(r∗) emµ(t,x)
(12.3)

for any x ∈ K and t > 0.

Proof. First assume that δ(x, y) < t. Then by the definition of δ(·, ·), if follows
that y ∈ V

em(t,x)(x). Conversely, if y ∈ V
em(t,x)(x), then k(x, y) ≤ m̃(t, x) and

ε(m,x) < t ≤ ε(m − 1, x), where m = m̃(t, x), by Lemma 12.4. This implies
δ(x, y) = ε(k(x, y), x) ≤ ε(m,x) < t. Thus we have obtained (12.2).

By the definition of ε(m,x), it follows that ε(m̃(t, x), x) < t. Hence

µ(V
em(t,x)(x)) =

(r∗) em(t,x)µ(V
em(t,x)(x))

(r∗) em(t,x)
≤ ε(m̃(t, x), x)

(r∗) em(t,x)
≤ t

(r∗) em(t,x)

The above proposition implies that δµ gives the same topology on K as d∗.
More precisely, we have the following fact.

Corollary 12.7. Define

Oδµ = {O|O ⊆ K, for any x ∈ O, there exists r > 0 such that Bδµ(x, r) ⊆ O}.

Then Oδµ coincides with the collection of open sets with respect to d∗.

Now we start to study diagonal lower heat kernel estimate. In the rest of
this section, µ ∈ MP (K) is assumed to have (η,p, κ)-weak exponential decay.
By the results of the last section, there exists a jointly continuous heat kernel
pµ(t, x, y).

To begin with, we have an upper estimate of exit time from a neighborhood
Vm(x).
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Lemma 12.8. If µ has (η,p, κ)-weak exponential decay, then there exists c12.4 >
0 such that

sup
y∈Vm(x)

Ẽy(τVm(x)) ≤ c12.4(r∗)mµ(Vm(x)) ×

{
κ(m) + 1 if α > 0,
κ(m)2 + 1 if α = 0

(12.4)

for any x ∈ K and any m ≥ 1.

Proof. Note that µw has (η,p, κ|w|)-weak exponential decay, where κm(k) =
κ(k +m) and κm(k) = κ(k +m). Hence by (11.11) and (11.12),

hµw(∅) ≤

{
c6.5η(κ(|w|) + 1) if α > 0,
c6.6η(κ(|w|)2 + 1) if α = 0.

Combining this with (7.7), we obtain (12.4).

We also have a lower estimate of the exit time from Vm(x) as follows.

Lemma 12.9.
Ẽx(τVm(x)) ≥ c7.8(r∗)mµ(Vm+1(x)) (12.5)

for any x ∈ K and any m ≥ 1.

Proof. This follows immediately by (7.8).

Next we present three estimates concerning exit time and a heat kernel,
which are know to hold in general setting of diffusion processes on metric
measure spaces. The following fact has been obtained in the proof of [27,
Lemma 3.12].

Lemma 12.10. Let U be an open subset of K. If x ∈ U , then

Ẽx(τU ) ≤ t+ P̃x(τU > t) sup
y∈U

Ẽy(τU ) (12.6)

Lemma 12.11. Let U be an open subset of K. Then for any x ∈ U ,

P̃x(τU > t)2 ≤ µ(U)pµ(2t, x, x). (12.7)

Proof.

P̃x(τU > t)2 ≤ P̃x(Xt ∈ U)2 =

(∫
U

pµ(t, x, y)µ(dy)

)2

≤ µ(U)
∫
U

pµ(t, x, y)2µ(dy) = µ(U)pµ(2t, x, x)

Using Lemma 12.10 and 12.11, we obtain the following lower estimate of
pµ(2t, x, x).
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Lemma 12.12. Let U be an open subset containing x. If Ẽx(τU ) > t, then(
Ẽx(τU ) − t

supy∈U Ẽx(τU )

)2 1
µ(U)

≤ pµ(2t, x, x). (12.8)

Remark. The inequality (12.8) hold without assuming that µ has weak expo-
nential decay as long as µ ∈ MTC

P (K).

Combining the previous lemmas, we obtain the following lower estimate of
pµ(t, x, x) for a special t = tm.

Lemma 12.13. Assume that µ has (η,p, κ)-weak exponential decay. Define
tm = 1

2c7.8(r∗)
mµ(Vm+1(x)) and set

κ∗(m) =

{
(κ(m) + 1)−2 if α > 0,
(κ(m)2 + 1)−2 if α = 0.

Then

c12.9κ
∗(m)

(
µ(Vm+1(x))
µ(Vm(x))

)2 1
µ(Vm(x))

≤ p(2tm, x, x) (12.9)

for any m ≥ 0 and any x ∈ K, where c12.9 = 1
4 (c7.8/c12.4)2.

Proof. If U = Vm(x), then (12.8) yields(
Ẽx(τVm(x)) − t

supy∈Vm(x) Ẽx(τVm(x))

)2
1

µ(Vm(x))
≤ pµ(2t, x, x).

Setting t = tm and making use of (12.4) and (12.5), we obtain (12.9).

Now we have diagonal lower estimate of the heat kernel pµ(t, x, x).

Theorem 12.14. Assume that µ has (η,p, κ)-weak exponential decay. Define
γ∗ = r∗/c7.8,

mµ(t, x) = m̃µ(γ∗t, x) − 2, (12.10)

and

C∗
µ(t, x) = c12.9κ

∗(mµ(t, x))
(
µ(Vmµ(t,x)+1(x))
µ(Vmµ(t,x)(x))

)3(µ(Vmµ(t,x)+2(x))
µ(Vmµ(t,x)+1(x))

)
.

Then

C∗
µ(t, x)

(r∗) emµ(γ∗t,x)

t
≤

C∗
µ(t, x)

µ(Bδµ(x, γ∗t))
≤ pµ(t, x, y) (12.11)

for any t ∈ (0, 1] and any x ∈ K.

Remark. If µ has weak exponential decay, then (12.1) is satisfied. Therefore,
we may use the results on the protodistance in the following proof.
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Proof. It follows that

mµ(t, x) = max{m|c7.8(r∗)mµ(Vm+1(x)) ≥ t}.

By (12.9), the above equality yields

c12.9κ
∗(mµ(t, x))

(
µ(Vmµ(t,x)+1(x))
µ(Vmµ(t,x)(x))

)2 1
Vmµ(t,x)(x)

≤ pµ(t, x, x)

Since the left-hand side of this inequality equals to C∗
µ(t, x)Vmµ(t,x)+2(x)−1, we

obtain (12.11) by Proposition 12.6.

The part C∗
µ(t, x) is expected to be a higher order term comparing with

µ(Bδµ(x, γ∗t))−1 as t ↓ 0. In fact, we show that lim inft↓0 C∗
µ(t, x)| log t|9 > 0

for µ-a.e. x ∈ K in Theorem 12.16. Furthermore, if µ has the volume doubling
property and uniform exponential decay, then C∗

µ(t, x) is bounded from below
by a constant which is independent of t and x.

The next lemma has essentially obtained by Andres and Kajino in [1]. They
have used it to show a lower diagonal estimate of the heat kernels of the Liouville
Brownian motion. We modified their result in accordance with our setting.

Lemma 12.15. Let µ be a Borel regular probability measure on K and let
{an}n≥1 be a positive sequence. If

∑
n≥1 1/an < +∞, then for µ-a.e. x ∈ K,

there exists n(x) ∈ N such that amµ(Vm(x)) ≥ µ(Vm−1(x)) for any m ≥ n(x).

Proof. For w ∈ Wm, set V 0
m(w) = V 0

m(Kw) and V 1
m(w) = V 1

m(Kw). Then
V 0
m(w) ⊆ Vm(x) ⊆ V 1

m(w) if x ∈ Kw. Note that #(Γ1
m(Kw)) ≤ 5n. Define

w = w1 . . . wm−1 for any w = w1 . . . wm. Using Lemma 2.11, we obtain∫
K

µ(Vm−1(x))
µ(Vm(x))

µ(dx) ≤
∑

w∈Wm

∫
Kw

µ(Vm−1(x)))
µ(Vm(x))

µ(dx) ≤

∑
w∈Wm

µ(V 1
m−1(w))

µ(V 0
m(w))

µ(Kw) ≤
∑

w∈Wm

µ(V 1
m−1(w))

≤ 5nN
∑

w∈Wm−1

µ(Kw) ≤ 10nN (12.12)

Let
Am = {x|x ∈ K, amµ(Vm(x)) ≤ µ(Vm−1(x))}.

By (12.12),
amµ(Am) ≤ 10nN

and hence
∑
m≥1 µ(Am) < +∞. Now the Borel-Cantelli lemma implies the

desired conclusion.

Theorem 12.16. Assume that µ has (η,p, κ)-weak exponential decay. Then
there exist c12.13 > 0, q ∈ [0, 9] and {Tx}x∈K such that Tx > 0 for µ-a.e. x ∈ K
and if t ∈ (0, Tx], then

c12.13
| log t|q

≤ C∗
µ(t, x). (12.13)
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Remark. By the following proof, one can see that if α > 0, then q = 6 + ε for
any ε > 0 and if α = 0, then q = 8 + ε for any ε > 0.

Proof. Since (r∗)|w|µ(Kw) ≤ c1λ
|w| for any w ∈ W∗, we have (r∗)mVm+1(x) ≤

c2λ
m. By the definition of mµ(t, x), it follows that mµ(t, x) ≤ c3| log t| for any

t ∈ (0, 1].
Let am = (m− 1)1+ε for some ε > 0. Then

∑
m≥2

1
am

< +∞. Lemma 12.15
implies that for µ-a.e. x ∈ K, m−(1+ε) ≤ µ(Vm+1(x))/µ(Vm(x)) for sufficiently
large m. Hence,

c4
| log t|1+ε

≤
Vmµ(t,x)+1(x)
Vmµ(t,x)(x)

(12.14)

for sufficiently small t > 0.
On the other hand, κ(m) ≤ c5m for any m ≥ 1. Hence if α > 0, κ∗(m) ≥

c6m
−2 for sufficiently large m. Moreover, it follows that m−(1+ε)(m+1)−(1+ε) ≤

µ(Vm+2(x))/µ(Vm(x)). Hence combining these with (12.14), we obtain (12.13).
If α = 0, then the arguments are entirely the same except that κ∗(m) ≥ c7m

−4.

Since r∗ = 1 if α = 0, we immediately obtain the next corollary.

Corollary 12.17. Assume that µ has (η,p, κ)-weak exponential decay and that
α = 0. Then there exists q ∈ [0, 9] such that for µ-a.e. x ∈ K,

c12.13
| log t|qt

≤ pµ(t, x, y)

for sufficiently small t > 0. In particular,

1 ≤ lim inf
t↓0

− log pµ(t, x, x)
log t

for µ-a.e.x ∈ K. Furthermore, if limx→∞ κ(x)/x = 0. then

lim
t↓0

− log pµ(t, x, x)
log t

= 1

for µ-a.e.x ∈ K.

13 Proof of Theorem 1.1

In this section, we are going to give a proof of Theorem 13.1 which is an exact
restatement of Theorem 1.1.

Theorem 13.1. Assume that α = 0. Let µ be a Borel regular probability
measure on K. Suppose that there exist positive constants c1, c2, α1, α2 such
that α1 ≥ α2 and

c1r
α1 ≤ µ(B∗(x, r)) ≤ c2r

α2 . (13.1)
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for any x ∈ K and any r ∈ (0, 1]. Then µ has weak exponential decay, there
exists a jointly continuous heat kernel pµ(t, x, y) on (0,∞) ×K ×K associated
with the time change of the Brownian motion with respect to µ and there exist
γ∗ > 0, Tx ≥ 0 and c1 > 0 such that Tx > 0 for µ-a.e. x ∈ [0, 1]2 and

c1
t| log t|9

≤ c1
µ(Bδµ(x, γ∗t))| log t|9

≤ pµ(t, x, x) (13.2)

for any t ∈ (0, Tx]. Furthermore, if there exists a monotonically non-increasing
function f : (0,∞) → [1,∞) such that

µ(B∗(x, 2r)) ≤ f(r)µ(B∗(x, r)) (13.3)

for any x ∈ K and any r > 0, and

lim
r↓0

log f(r)
log r

= 0, (13.4)

then

lim
t↓0

− log pµ(t, x, x)
log t

= 1 (13.5)

for any x ∈ K.

The condition (13.3) is a relaxed version of the volume doubling property.
Note that the volume doubling property corresponds to the case when f(r) is
bounded. There is a slight difference between Corollary 12.17 and this theorem.
Namely, in this theorem, (13.5) holds for any x ∈ K while it holds only for
µ-a.e.x ∈ K in Corollary 12.17.

Proof. By Proposition 11.2, µ has weak exponential decay. The existence of the
heat kernel and (13.2) can be immediately verified by Theorems 12.14 and 12.16
and Corollary 12.17.

For any r1 > 0, we define

k(r1) = min{m|m ∈ N ∪ {0}, 2m ≥ r1} and f(r, r1) =
k(r1)∏
i=1

f(2i−1r)

Then
µ(B∗(x, r1r)) ≤ f(r, r1)µ(B∗(x, r)) (13.6)

and by (13.4)

lim
r↓0

log f(r, r1)
log r

= 0. (13.7)

Choose z ∈ K and R > 0 so that B∗(z,R) ⊆ [0, 1]n. Then for any w ∈ W∗,
B∗(Fw(z), Rl−|w|) ⊆ Kw. Set zw = Fw(z). Note that

Kw ⊆ B∗(x, 2
√
nl−|w|) ⊆ B∗(zw, 3

√
nl−|w|)
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for any x ∈ Kw. Let f1(r) = f(r, 2
√
nl/R). Then by (13.3)

µ(Kwi) ≥ µ(B∗(zwi, Rl−|w|−1))

≥ µ(B∗(zwi, 2
√
nl−|w|))

f1(Rl−|w|−1)
≥ µ(Kw)
f1(Rl−|w|−1)

. (13.8)

Set η0 = f1(Rl−1) and define

κ(m) =
1

log l

(
log f1(Rl−m−1) − log η0

)
.

Then we see that
µ(Kwi) ≥

1
η0
l−κ(|w|)µ(Kw)

and, by (13.7),

lim
m→∞

κ(m)
m

= 0. (13.9)

By Corollary 11.10 and (13.9),

lim sup
t↓0

− log pµ(t, x, x)
log t

≤ 1. (13.10)

for any x ∈ K. Next note that

B∗(x, l−m) ⊆ Vm(x) ⊆ B∗(x, 3
√
nl−m).

Define f2(r) = f(r, 3
√
nl). Then

µ(Vm(x)) ≤ µ(B∗(x, 3
√
nl−m))

≤ f2(l−m−1)µ(B∗(x, l−m−1)) ≤ f2(l−m−1)µ(Vm+1(x))

By the definition of C∗
µ(t, x) given in Theorem 12.14,

C∗
µ(t, x) ≥ c

κ∗(m)
f2(l−m−1)3f2(l−m−2)

, (13.11)

where m = mµ(t, x) and c is independent of t and x. Recalling the proof of
Theorem 12.16, we see that mµ(t, x) ≤ c3| log t|. This fact along with (13.7)
shows that

log f2(l−mµ(t,x)−1)
| log t|

≤ log f2(l−mµ(t,x)−1)
mµ(t, x)

mµ(t, x)
| log t|

→ 0

as t ↓ 0. Again by the proof of Theorem 12.16, it follows that κ∗(m) ≥ c6m
−4

for sufficiently large m. Making use of (13.11), we obtain

lim
t↓0

−
logC∗

µ(t, x)
log t

= 0

and hence by (12.11),

lim inf
t↓0

− log pµ(t, x, x)
log t

≥ 1

for any x ∈ K. This, together with (13.10), completes the proof.
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14 Random measures having weak exponential
decay

In this section, we study a class of random measures {P νω}ω∈Ω and prove that
they almost surely have weak exponential decay. Our random measure P νω
can be though of as a random self-similar measure where the weight (µi)i∈S
is randomly chosen in every step according to a probability measure ν on the
space of weights ∆N .

Definition 14.1. Define ∆N ⊆ RN by

{
(x1, . . . , xN )

∣∣∣ N∑
i=1

xi = 1, xi ∈ [0, 1] for any i ∈ {1, . . . , N}
}

Let B be the collection of Borel sets of ∆N . For a Borel regular probability
measure ν on ∆N , let {(∆N,w,Bw, νw)}w∈W∗ be a collection of independent
copies of (∆N ,B, ν) and define (Ω,F ,Pν) be the product probability space∏
w∈W∗

(∆w,Bw, νw). For any ω = {ωw}w∈W∗ ∈ Ω, we define a probability
measure P̃ νω on Σ by

P̃ νω (Σw1...wm) = ω∅(w1)ωw1(w2)ωw1w2(w3) · · ·ωw1...wm−1(wm),

where ωw = (ωw(1), . . . , ωw(N)) ∈ ∆N .

The measures {P̃ νω}ω∈Ω are measures on the Cantor set Σ. Using the canon-
ical map π : Σ → K, we are going to induce them on the generalized Sierpinski
carpet K.

Such random measure have been considered by Falconer [17]. In his case,
however, spaces are also randomized, i.e. there is randomness in contraction
ratios of the collection of similitudes which characterizes the space. We remark
that wider classes of random self-similar measures have been studied by many
authors, for example, [22, 36, 2].

Throughout this section, we fix a Borel regular probability measure on ∆N

which satisfy the following assumption.

Assumption 14.2. ν(∆N ∩ (0, 1/r∗)N ) = 1 and there exists q > 0 such that∫
∆N

(xi)−qdν < +∞

for any i = 1, . . . , N .

Recall that π : Σ → K is the natural surjective map given by {π(i1i2 . . .)} =
∩j≥1Ki1...ij .

Definition 14.3. For any ω ∈ Ω, define a probability measure P νω by P νω (A) =
P̃ νω (π−1(A)) for any Borel set A ⊆ K.
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We use Eν and Eν to denote the expectation with respect to ν and Pν
respectively. If no confusion can occur, we use P, P̃ω, Pω and E in place of
Pν , P̃ νω , P νω and Eν respectively.

By Lemma 2.7, π is one to one on π−1(K\V∗). The next proposition shows
that for Pν-a.e. ω, P̃ νω (A) = P νω (π(A)) for any Borel set A ⊆ Σ. In other words,
we may identify two probability spaced (Σ, P̃ νω ) and (K,P νω ) in the measurable
sense.

Proposition 14.4. Under Assumption 14.2, for Pν-a.e. ω, P νω (V∗) = 0. In
particular, for Pν-a.e. ω,

P νω (Kw) = P̃ νω (Σw) (14.1)

for any w ∈W∗.

To prove the above proposition, we use the following lemma.

Lemma 14.5. Let J ⊆ {1, . . . , N}. If Eν(
∑
j∈J xj) < 1, then, for Pν-a.e. ω,

P̃ νω (wJN) = 0

for any w ∈W∗, where wJN = {wj1j2 . . . |ji ∈ J for any i ∈ N}.

Proof. Set Z = Eν(
∑
j∈J xj). Define

Fm(ω) =
1
Zm

∑
v∈Jm

Pω(Σwv).

Then

Fm(ω) =
1
Zm

Pν(Σw)
∑

v1...vm∈Jm

ωw(v1)ωwv1(v2) · · ·ωwv1...vm−1(vm).

Define Bm be the Borel set of
∏
w∈Wm,|w|≤m ∆N,w and Fm = {A|A ⊆ Ω, A =

B ×
∏
w∈W∗,|w|>m ∆N,w, B ∈ Bm}. Then {Fm}m≥0 is a Pν-martingale with

respect to the filtration {Fm}m≥0. By the martingale convergence theorem, for
Pν-a.e. ω, F (ω) = limm→∞ Fm(ω) exists and is finite. Then

Pω(wJN) ≤ ZmFm(ω) → 0

as m→ ∞.

Proof of Proposition 14.4. By Proposition 2.6 and Lemma 2.7, we see that

V∗ =
∪

w∈W∗

∪
i=1,...,n,j=1,2

Fw(Bi,j) and π−1(V∗) =
∪

w∈W∗

∪
i=1,...,n,j=1,2

w(Si,j)N.

By Assumption 14.2, Eν(
∑
k∈Si,j

xk) < 1. Using the above lemma, we see

that for Pν-a.e. ω, P̃ν(w(Si,j)N) = 0 for any w ∈ W∗ and any i, j. Therefore,
P̃ νω (π−1(V∗)) = 0 and hence P νω (V∗) = 0.
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Next we show that P νω almost surely has weak exponential decay with linear
κ and κ.

Theorem 14.6. Under Assumption 14.2, for Pν-a.e.ω, there exist ηω ≥ 1, p =
(p, p) ∈ (0, 1/r∗)2 and aω, bω > 0 such that if κω(s) = aωs and κω(s) = bωs for
any s ≥ 0, then P νω has (ηω,p, κω)-weak exponential decay, where κω = (κω, κω).

To prove this theorem, we need the next two lemmas.

Lemma 14.7. Let (r1, . . . , rN ) ∈ (0, 1)N . Define rw = rw1 · · ·rwm for any
w = w1 . . . wm ∈W∗. If

N∑
j=1

Eν((xi)q)
(ri)q

< 1 (14.2)

for some q ≥ 1, then for Pν-a.e. ω ∈ Ω, there exist ηω ≥ 1 and aω > 0 such
that if |v| ≥ aω|w|, then

P νω (Kwv) ≤ ηωrvP
ν
ω (Kw).

Proof. We may assume that (14.1) holds for any w ∈ W∗. Set fω,w(v) =
P νω (Σwv)/P νω (Σw). For any v = v1 . . . vk,

fω,w(v) =
∏

i=1,...,k

ωwv1...vi−1(vi)

Hence we have

Eν((fω,w(v))q) =
k∏
i=1

Eν((xvi)
q) =

k∏
i=1

∫
∆N

(xvi)
qν(dx). (14.3)

Define Ak(w) = {ω|ω ∈ Ω, fω,w(v) > rv for some v ∈Wk}. Using Chebyshev’s
inequality and (14.3), we obtain

P(Ak(w)) ≤
∑
v∈Wk

P(fω,w(v) ≥ rv)

≤
∑
v∈Wk

E(fω,w(v)q)
(rv)q

=
∑
v∈Wk

k∏
i=1

(Eν((xvi)
q)

(rvi)q
)

=

(
N∑
j=1

Eν((xi)q)
(ri)q

)k
.

Hence if (14.2) holds, then the Borel-Cantelli lemma implies that there exists
m ∈ N such that fω,w(v) < rv if |v| ≥ m. Define M(ω,w) as the minimum of
such m. Then {ω|M(ω,w) > k} = ∪i≥kAi(w). Hence

P(M(ω,w) ≥ k for some w ∈Wm) ≤
∑

w∈Wm

P(M(ω,w) ≥ k)

=
∑

w∈Wm

P(∪i≥kAi(w)) ≤ λk
Nm

1 − λ
,
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where λ =
∑N
j=1

Eν((xi)
q)

(ri)q . Choose L ∈ N so that λLN < 1. Then the above
inequality implies

∑
m≥0

P(M(ω,w) ≥ Lm for some w ∈Wm) ≤
∞∑
i=0

(λLN)m

1 − λ
< +∞.

Again by the Borel-Cantelli lemma, for P-a.e. ω, there exists k ∈ N such that
if |w| ≥ k, then M(ω,w) ≤ L|w|. Hence if aω = maxw∈W∗\W0 M(ω,w)/|w| and
ηω = supv∈W∗

(rv)−1P νω (Kv), then aω and ηω are finite and we have the desired
statement.

Lemma 14.8. Let (r1, . . . , rN ) ∈ (0, 1)N . If

N∑
i=1

Eν((xi)−q)(ri)q < 1 (14.4)

for some q > 0, then for Pν-a.e. ω ∈ Ω, there exist ηω ≥ 1 and βω ∈ N such
that if |v| ≥ bω|w|, then

P νω (Σwv) ≥
1
ηω
rvP

ν
ω (Σw)

for any w ∈W∗.

Proof. We use the same notation as in the proof of Lemma 14.7. Define Bk(w) =
{ω|ω ∈ ∆N , fω,w(v) < rv for some v ∈Wk}. Using Chebyshev’s inequality and
(14.3), we obtain

P(Bk(w)) ≤
∑
v∈Wk

P(fω,w(v)−q ≥ (rv)−q) ≤
∑
v∈Wk

E(fω,w(v)−q)(rv)q

=
∑
v∈Wk

N∏
i=1

Eν((xwi)
−q)(rwi)

q =

(
N∑
j=1

Eν((xi)−q)(ri)q
)k
.

The rest is entirely analogous to the counterpart of the proof of Lemma 14.7.

Proof of Theorem 14.6. By Assumption 14.2,

P νω (Kwv) ≤ (r∗)−|v|P νω (Kw)

for any w, v ∈W∗. Again by Assumption 14.2, for any i ∈ {1, . . . , N},

Eν((r∗xi)q) → 0

as q → ∞. Hence for sufficiently large q, we may choose p ∈ (0, 1/r∗) so that

N∑
i=1

Eν((xi)q)
pq

< 1.
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By Lemma 14.7, for Pν-a.e. ω, if κω(x) = aωx, then we have (11.4) and (11.5).
By Assumption 14.2, there exists p ∈ (0, 1/r∗) such that

N∑
i=1

Eν((xi)q)pq < 1.

Hence by Lemma 14.8, we have (11.6), (11.7) and (11.8).

By Theorem 14.6, P νω has weak exponential decay with κ(x) = bωx. If ν
decays rapidly near the boundary of ∆N , we have better κ.

Theorem 14.9. Define Fν(t) = ν(∆M ∩ [0, t]N ). Let r ∈ (0, 1) and let κ :
[0,∞) → [0,∞) be monotonically nondecreasing. If

∞∑
m=0

NmFν(rκ(m)) < +∞, (14.5)

then for Pν-a.e. ω, there exists cω > 0 such that

ν(Kwi) ≥ cωr
κ(|w|)ν(Kw) (14.6)

for any w ∈W∗ and any i ∈ S.

Proof. Set

Ym = {ω|there exist w ∈Wm, i ∈ S such that ωw(i) < rκ(m)}.

Then
Pν(Ym) ≤

∑
w∈Wm,i∈S

Pν(ωw(i) < rκ(m)) ≤ Nm+1Fν(rκ(m)).

Since we have (14.5), the Borel-Cantelli lemma shows that for Pν-a.e. ω, there
exists k ∈ N such that P νω (Kwi) ≥ rκ(|w|)P νω (Kw) if |w| ≥ k. Choosing suffi-
ciently small cω > 0, we verify (14.6).

For example, if ν([0, t∗]n) = 0 for some t∗ > 0, then we we may choose κ(x)
as a constant. In case α = 0, Corollary 12.17 implies the following assertion.

Corollary 14.10. Assume that α = 0. Let r ∈ (0, 1) and let κ : [0,∞) → [0,∞)
is nondecreasing. If κ(x)/x→ 0 as x→ ∞ and (14.5) is satisfied, then for Pν-
a.e. ω, Pων has weak exponential decay and

lim
t↓0

−
log pPω

ν
(t, x, x)

log t
= 1

for Pων -a.e. x ∈ K.
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15 Volume doubling measure and sub-Gaussian
heat kernel estimate

After this section, we consider the case when µ has the volume doubling prop-
erty with respect to d∗, which is the restriction of the Euclidean metric to K.
The volume doubling property is known to be one of the indispensable parts
for sub-Gaussian heat kernel estimates. See [26, 31, 27] for example. At the
same time, however, by Theorem 15.3, it turns out to be hopeless to have sub-
Gaussian heat kernel estimates with respect to d∗ unless µ is comparable with
the normalized dH -dimensional Hausdorff measure ν∗. Consequently we must
find another metric to be used in our heat kernel estimates, if it exists at all.
One candidate of such a metric is the “protodistance” δµ introduced in Sec-
tion 12. Indeed, although δµ itself is not a metric, it is going to produce a
family of intrinsic metrics under which sub-Gaussian heat kernel estimates are
obtained in Theorem 15.7.

Throughout this section, we always assume that µ ∈ MP (K).

Definition 15.1. Let µ ∈ MP (K).
(1) Let d be a metric on K. µ is said to have the volume doubling property
with respect to d if and only if there exists c > 0 such that

µ(Bd(x, 2r)) ≤ cµ(Bd(x, r))

for any x ∈ K and any r > 0.
(2) We say that µ has upper uniform exponential decay if and only if there
exist η ≥ 1 and r ∈ (0, 1/(r∗)) such that

µ(Kwv) ≤ ηr|v|µ(Kw)

for any w, v ∈W∗.

Immediately by the above definition, µ has upper exponential decay if and
only if there exist η ≥ 1 and λ ∈ (0, 1) such that σµ(wv) ≤ ηλ|v|σµ(w). This
fact yields the following proposition.

Proposition 15.2. Let µ ∈ MP (K). If µ has upper uniform exponential de-
cay and the volume doubling property with respect to d∗, then µ has uniform
exponential decay. In particular, in case α = 0, if µ has the volume doubling
property with respect to d∗, then it has uniform exponential decay.

By this proposition, if µ has upper uniform exponential decay and the volume
doubling property with respect to d∗, then µ ∈ MTC

P (K) and we have jointly
continuous heat kernel pµ(t, x, y).

Proof. Since µ has upper uniform exponential decay, we have (11.5) with a
bounded κ. By [32, Theorem 1.3.5], the volume doubling property implies that
µ is elliptic. Using Proposition 11.6-(3), we see that (11.7) holds with a bounded
κ. Thus µ has uniform exponential decay.
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Now, we show that the volume doubling property and upper sub-Gaussian
heat kernel estimate with respect to d∗ imply comparability of µ to the normal-
ized Hausdorff measure ν∗.

Theorem 15.3. Let µ ∈ MP (K). Assume that µ has upper uniform exponen-
tial decay and the volume doubling property with respect to d∗. If there exist
β > 1, c115.1 > 0 and c215.1 > 0 such that

pµ(t, x, y) ≤
c115.1

µ(B∗(x, t1/β))
exp

(
− c215.1

(d∗(x, y)β
t

) 1
β−1

)
(15.1)

for any x, y ∈ K and any t ∈ (0, 1], then β = dw and there exist c115.2, c
2
15.2 > 0

such that
c115.2ν∗(A) ≤ µ(A) ≤ c215.2ν∗(A) (15.2)

for any Borel set A ⊆ K.

Proof. By Proposition 15.2, µ has uniform exponential decay. Hence κ(x) is
bounded. By (12.4) and (12.5), there exist c3 > 0 and c4 > 0 such that

c3(r∗)mµ(Vm+1(x)) ≤ Ẽx(τVm(x)) ≤ c4(r∗)mµ(Vm(x))

for any x ∈ K and anym ≥ 0. Note thatB∗(x, l−m) ⊆ Vm(x) ⊆ B∗(x, 3
√
nl−m).

The volume doubling property along with this fact and the above inequality im-
plies that there exist c5 > 0 and c6 > 0 such that

c5r
−αµ(B∗(x, r)) ≤ Ẽx(τB∗(x,r)) ≤ c6r

−aµ(B∗(x, r)) (15.3)

for any x ∈ K and any r ∈ (0, 1].
On the other hand, applying [31, Theorem 2.10], we see by the volume

doubling property and (15.1) that there exists c7 > 0 and c8 > 0 such that

c7r
β ≤ Ẽx(τB∗(x,r)) ≤ c8r

β (15.4)

for any x ∈ K and any r ∈ (0, 1]. By (15.3) and (15.4), there exist c9 > 0 and
c10 > 0 such that

c9r
β+α ≤ µ(B∗(x, r)) ≤ c10r

α+β (15.5)

for any x ∈ K and any r ∈ (0, 1]. Since there exist c11 > 0, c12 > 0 and
{xw}w∈W∗ ⊆ K such that B∗(xw, c11l−|w|) ⊆ Kw ⊆ B∗(xw, c12l−|w|) and
B∗(xw, c11l−|w|) ∩ ∂Kw = ∅ for any w ∈W∗, by (15.5),

cβ+α
11 Nml−m(α+β) ≤ µ(∪w∈WmB∗(xw, c11l−m)) ≤ 1

≤
∑

w∈Wm

µ(B∗(xw, c12l−m)) ≤ cα+β
12 Nml−m(α+β).

for any m ≥ 0. This yields α+ β = dH and hence β = dw. Moreover,

(c11)dHν∗(Kw) ≤ µ(Kw) ≤ (c12)dHν∗(Kw)

for any w ∈W∗. Using [30, Theorem 1.4.10], we obtain (15.2).
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To state our main theorem of this section, we need several notions. The first
one is quasisymmetry which has been introduced by Tukia and Väisälä in [39]
as a generalization of quasiconformal mappings in the complex plane.

Definition 15.4. Let d1 and d2 be metrics onK giving the same topology as d∗.
d1 is said to be quasisymmetric to d2 if and only if there exists a homeomorphism
h from [0,+∞) to itself such that h(0) = 0 and, for any t > 0, d1(x, z) <
h(t)d1(x, y) whenever d2(x, z) < td2(x, y). If d1 is quasisymmetric to d2, we
write d1 ∼

QS
d2.

The relation ∼
QS

among metrics on K has been shown to be an equivalence

relation in [39]. See also [33, Section 12]. Since quasisymmetric deformation of
metrics distorts the balls in uniformly bounded fashion, it preserves the volume
doubling property and the elliptic Harnack inequality.

Next, we introduce the notions of quasimetric and bi-Lipschitz equivalence.

Definition 15.5. (1) Let ϕ : K×K → [0,∞). ϕ is called a quasimetric if and
only if ϕ(x, y) = ϕ(y, x) > 0 for any x 6= y ∈ K, ϕ(x, x) = 0 for any x ∈ K and
Cϕ < +∞, where Cϕ is defined as

Cϕ = sup
x,y,z∈K,x6=z

ϕ(x, z)
ϕ(x, y) + ϕ(y, z)

.

(2) Let ϕ1 and ϕ2 be non-negative valued function on K ×K. We say that ϕ1

is (bi-Lipschitz) equivalent to ϕ2 if and only if there exist c1, c2 > 0 such that

c1ϕ1(x, y) ≤ ϕ2(x, y) ≤ c2ϕ1(x, y)

for any x, y ∈ K. We write ϕ1 ∼
BL

ϕ2 if and only if ϕ1 is (bi-Lipschitz) equivalent
to ϕ2.

Remark. There seems an ambiguity in the usage of the word “quasimetric” in
mathematical community. Our definition is based on the book by Heinonen[28].
The same notion is called “near-metric” and the word “quasimetric” has differ-
ent definition in Deza & Deza[16].

The quantity Cϕ is the optimal value of C of the extended (or weakened)
triangle inequality

ϕ(x, z) ≤ C(ϕ(x, y) + ϕ(y, z)). (15.6)

Note that C ≥ 1 in (15.6) because ϕ(x, z) ≤ C(ϕ(x, z) + ϕ(z, z)) = Cϕ(x, z).
The quasisymmetric equivalence ∼

QS
is weaker than the bi-Lipschitz equiva-

lence ∼
BL

, i.e. if d and ρ are metrics on K and d ∼
BL

ρ, then d ∼
QS

ρ.

We need one more definition to state our main theorem.

Definition 15.6. For a Borel regular probability measure µ on K, define

Bµ = {β|there exists a metric d on K giving the same topology as d∗
such that dβ ∼

BL
δµ.}
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Theorem 15.7. Assume that µ has upper uniform exponential decay and the
volume doubling property with respect to d∗. Then Bµ 6= ∅ and

Bµ =
∪

ϕ:quasimetric,ϕ∼
BL
δµ

[
1 +

logCϕ
log 2

,∞
)
⊆ [2,∞). (15.7)

Furthermore, for any β ∈ Bµ, if d is a metric on K and dβ ∼
BL

δµ, then d

is quasisymmetric to d∗ and there exist positive constants c115.8, c
2
15.8, c

1
15.9, c

2
15.9

and c15.10 such that

pµ(t, x, y) ≤
c115.8

µ(Bd(x, t1/β))
exp

(
− c215.8

(d(x, y)β
t

) 1
β−1

)
. (15.8)

for any x, y ∈ K and any t ∈ (0,∞),

c115.9
µ(Bd(x, t1/β))

≤ pµ(t, x, y) (15.9)

if d(x, y)β ≤ c215.9t, and

pµ(t, x, x) ≤ c15.10pµ(2t, x, x) (15.10)

for any x ∈ K and any t > 0. In particular, if r∗ = 1, then µ(Bd(x, t1/β)) in
(15.8) and (15.9) can be replaced by t.

We are going to prove this theorem step by step in the subsequent sections
starting from Section 17.

Remark. By Proposition 15.2, the assumption of Theorem 15.7 is equivalent to
that µ has uniform exponential decay and the volume doubling property.

Remark. The protodistance δµ is not even symmetric in general. Under the
assumption of Theorem 15.7, however, it is bi-Lipschitz equivalent to the sym-
metrized version vµ defined by vµ(x, y) = δµ(x, y)+ δµ(y, x) which will turn out
to be a quasimetric. See Propositions 19.3 and 19.7.

Remark. If d is a metric on K and dβ ∼
BL

δµ, then by Corollary 12.7 the metric

d induces the same topology on K as d∗.

Observing (15.8) and (15.9), one notices that the protodistance δµ plays
the essential roll. Namely, we can replace d(x, y)β by δµ(x, y) and obtain the
following corollary.

Corollary 15.8. Assume that µ has upper uniform exponential decay and the
volume doubling property with respect to d∗. If β ∈ Bµ, then there exist positive
constants c115.11, c

2
15.11, c

1
15.12 and c215.12 such that c115.11 and c215.11 depend on β

while c115.12 and c215.12 do not,

pµ(t, x, y) ≤
c115.11

µ(Bδµ(x, t))
exp

(
− c215.11

(δµ(x, y)
t

) 1
β−1

)
. (15.11)

70



for any (x, y, t) ∈ K2 × (0,∞), and if δµ(x, y) ≤ c215.12t, then

c115.12
µ(Bδµ(x, t))

≤ pµ(t, x, y). (15.12)

In view of (15.11), it is interesting to know what happens if we lower the
value of β towards inf Bµ. In the special case where µ = ν∗, we see that
Bν∗ = [dw,∞) and the metric d which is equivalent to (δµ)1/dw is the restriction
of the Euclidean metric d∗. In particular, dw = inf Bν∗ . This means that inf Bν∗

is a characterization of the walk dimension dw in this case. In general, we need
to solve the following problem first.

Open Problem Let β∗ = inf Bµ. Then β∗ ∈ Bµ or not? If β∗ ∈ Bµ and d is
a metric giving the same topology on K as d∗ and dβ∗ ∼

BL
δµ, then does d satisfy

the chain condition?

A metric space (X, d) is said to satisfy the chain condition if and only if
there exist C > 0 such that, for any x, y ∈ X and any m ∈ N, there exists a
sequence {xi}i=1,...,m+1 ⊆ X such that x1 = x, xm+1 = y and

d(xi, xi+1) ≤ C
d(x, y)
m

for any i = 1, . . . ,m. It is known that if the chain condition is satisfied, then
we can deduce the off-diagonal lower sub-Gaussian estimate

c115.13
µ(Bd(x, t1/β∗))

exp

(
− c215.13

(d(x, y)β∗

t

) 1
β∗−1

)
≤ pµ(t, x, y) (15.13)

from (15.8) and (15.9) with β = β∗. See [27] for example. If this is the case,
then the metric d can be regarded as the best intrinsic metric for the heat kernel
pµ(t, x, y) and the infimum β∗ may be called the “walk dimension”.

Next we introduce substitutes of δµ under the volume doubling property.
Even with the alternative expression in Proposition 12.5, the definition of δµ is
rather complicated and difficult to see what it is intuitively. So it is nice to have
simpler version.

Definition 15.9. Define Dµ(x, y) for each x, y ∈ K by

Dµ(x, y) = d∗(x, y)dw−dHµ(B∗(x, d∗(x, y))).

and

ψµ(x, y) =
Dµ(x, y) +Dµ(y, x)

2
.

The function ψµ is the symmetrized version of Dµ.

Proposition 15.10. Assume that µ has upper uniform exponential decay and
the volume doubling property with respect to d∗. Then δµ ∼

BL
Dµ ∼

BL
ψµ.

71



This proposition will be proven in Section 19.
By this proposition, we may replace δµ in Theorem 15.7 and Corollary 15.8

by Dµ or ψµ. As a consequence, we obtain the following statement: under
the same assumption as in Corollary 15.8, if β ∈ Bµ, then there exist positive
constants c115.14, c

2
15.14, c

1
15.15 and c215.15 such that

pµ(t, x, y) ≤
c115.14

µ(Bψµ(x, t))
exp

(
− c215.14

(ψµ(x, y)
t

) 1
β−1

)
. (15.14)

for any (x, y, t) ∈ K2 × (0,∞), and if ψµ(x, y) ≤ c215.15t, then

c115.15
µ(Bψµ(x, t))

≤ pµ(t, x, y). (15.15)

The next theorem is a version of Theorem 15.7 without using any expression
related to self-similarity of K. In other words, it is written in the “conventional”
language.

Theorem 15.11. Let µ ∈ MP (K). Assume that there exist c, ε > 0 such that

µ(B∗(x, ar)) ≤ caα+εµ(B∗(x, r)) (15.16)

for any r ∈ (0, 1] and any a ∈ (0, 1]. Then µ has the volume doubling prop-
erty with respect to d∗ if and only if the following conditions (TC1), (TC2) and
(TC3) are satisfied:
(TC1) Let D = F ∩ C(K). Then (E|D×D,D) is closable on L2(K,µ) and its
closure (Eµ,Fµ) is a strong local regular Dirichlet form on L2(K,µ).
(TC2) There exists a diffusion process ({X̃t}t>0, {P̃x}x∈K) associated with the
Dirichlet form (Eµ,Fµ) on L2(K,µ) and a continuous function pµ(t, x, y) :
(0,∞) ×K ×K → (0,∞) such that

Ẽx(f(X̃t)) =
∫
K

pµ(t, x, y)f(y)µ(dy)

for any bounded measurable function f : K → R, any x ∈ K and any t > 0.
(TC3) There exists a metric d on K which is quasisymmetric to d∗ and positive
constants β, c115.8, c

1
15.8, c

2
15.9, c

2
15.9 and c15.10 such that β ≥ 2, (15.8) holds for

any t > 0 and any x, y ∈ K, (15.9) holds if d(x, y)β ≤ c215.9t and (15.10) holds
for any t > 0 and any x ∈ K.

By the definition of Dµ(x, y), the condition (1.6) is equivalent to the condi-
tion (15.16).

In the rest of this section, we show that Theorem 15.7 implies Theorem 15.11.

Lemma 15.12. Let µ ∈ MP (K). Assume that there exist c, ε > 0 such that
(15.16) is satisfied for any r ∈ (0, 1] and any a ∈ (0, 1] and that µ has the volume
doubling property with respect to d∗. Then µ has upper uniform exponential
decay .
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Proof. For each w ∈W∗, define {Wm(w)}m≥0 and {Km(w)}m≥0 inductively by
W 0(w) = {w}, Km(w) = K(Wm(w)) and Wm+1(w) = Γ0

|w|(W
m(w)). Choose

x ∈ Kwv so that Kwv ⊆ B∗(x,
√
nl−|wv|). Let M = [

√
n] + 1. Then Kw ⊆

B∗(x,
√
nl−|w|) ⊆ KM (w). Since µ has the volume doubling property with

respect to d∗, µ is elliptic and g∗ ∼
GE

µ by [32, Theorem 1.3.5]. (The definition

of the relation ∼
GE

is give in Definition 17.1.) Hence there exists c0 > 0 such that

µ(Kw′) ≤ c0µ(Kw) for any w ∈W∗ and any w′ ∈WM (w). Since #(WM (w)) ≤
(2M)n, we see that

µ(B∗(x,
√
nl−|w|)) ≤ c0(2M)nµ(Kw).

Therefore,

µ(Kwv) ≤ µ(B∗(x,
√
nl−|wv|) ≤ c(l−|v|)α+εµ(B∗(x,

√
nl−|w|)

≤ c · c0(2M)n(l−|v|)α+εµ(Kw) = c · c0(2M)n(r∗)−|v|(lε)−|v|µ(Kw).

This implies

σµ(wv) = (r∗)|wv|µ(Kwv) ≤ c · c0(2M)n(lε)−|v|(r∗)|w|µ(Kw) = c1λ
|v|σµ(w),

where λ = l−ε ∈ (0, 1) and c1 = c · c0(2M)n. Thus we see that µ has upper
uniform exponential decay.

Proof of Theorem 15.11. Assume (15.16). By Lemma 15.12, if µ has the volume
doubling property with respect to d∗, then it has upper uniform exponential
decay. Making use of Proposition 15.2, we see that µ has uniform exponential
decay. Now, Proposition 11.7 implies that µ ∈ MTC

P (K) and Theorem 11.9
shows that µ is controlled by some rate functions. Theorems 6.8, 10.10 and 15.7
yield (TC1), (TC2) and (TC3). Conversely, assume that (TC1), (TC2) and
(TC3). By (15.8) and (15.9),

c3
µ(Bd(x, t1/β))

≤ pµ(t, x, x) ≤
c1

µ(Bd(x, t1/β))

for any t > 0 and any x ∈ K. This along with (15.10) implies the volume
doubling property of µ with respect to d. Since d is quasisymmetric to d∗, µ
has the volume doubling property with respect to d∗.

16 Examples

In this section, we will present two classes of examples of measures which satisfy
the condition of Theorem 15.7, namely, measures having the volume doubling
property with respect to d∗ and upper uniform exponential decay. The first
class consists of self-similar measures and the second class consists of measures
which are absolutely continuous to the normalize Hausdorff measure ν∗.

It is known that not all the self-similar measures have the volume doubling
property with respect to d∗. We are going to apply results in [32] to our case to
obtain simple criterion.

73



Definition 16.1. Let i ∈ {1, . . . , n}. For Q1 ∈ Si,0 and Q2 ∈ Si,1, we write
Q1 ∼ Q2 if and only if Q1 and Q2 are symmetric with respect to the reflection
in the hyper-plane xi = 1/2.

Theorem 16.2. Let µ be a self-similar measure on K with weight (µi)i∈S.
(1) µ has the volume doubling property with respect to d∗ if and only if µQ1 =
µQ2 whenever Q1 ∈ Si,0 and Q2 ∈ Si,1 for some i ∈ {1, . . . , n} and Q1 ∼ Q2.
(2) µ has the upper uniform exponential decay if and only if µir∗ < 1 for any
i ∈ S.

Proof. (1) Define ϕi : Si0 → Si1 by ϕi(Q1) = Q2 if and only if Q1 ∈ Si0, Q2 ∈
Si1 and Q1 ∼ Q2. If

R = {(Si0, Si1, ϕi, s1, s2)|i ∈ {1, . . . , n}, s1, s2 ∈ S, Fs1(Bi0) = Fs2(Bi1)},

then, by [32, Proposition 3.4.3], L = (K,S, {FQ}Q∈S) is a rationally ramified
self-similar structure with a relation set R. Since the gauge functions µ and g∗
are elliptic and g∗ is locally finite, by [32, Theorem 1.3.5], µ has the volume
doubling property with respect to d∗ if and only if µ ∼

GE
g∗, where ∼

GE
is defined

in Definition 17.1-(1). Applying [32, Theorem 1.6.6], we see that µ ∼
GE

g∗ if and

only if µQ1 = µQ2 for any pair (Q1, Q2) ∈ Si0 × Si1 satisfying ϕi(Q1) = Q2.
Thus we have obtained the desired equivalence.
(2) Set λ = maxi∈S µir∗. If λ < 1, then

σµ(wv) ≤ λ|w|σµ(w)

for any w, v ∈W∗. Hence µ has upper uniform exponential decay. The converse
is immediate.

The second example is a measure given as µ(dx) = c|x−x∗|−δν∗(dx), where
x ∈ K, 0 < δ and c is a normalizing constant. If 0 < δ < dH , then

∫
K
|x −

x∗|−δν∗(dx) < +∞ and the normalizing constant c is given by the reciprocal of
this integral.

Theorem 16.3. Let x∗ ∈ K and let 0 < δ < dH . Define

µx∗,δ(A) =
∫
A

|x− x∗|−δν∗(dx)
/∫

K

|x− x∗|−δν∗(dx).

for any Borel set A ⊆ K. Then µx∗,δ has upper uniform exponential decay if
and only if 0 < δ < dw. Moreover, if 0 < δ < dw, then µ has the volume
doubling property with respect to d∗.

The rest of this section is devoted to proving this theorem.
For simplicity, we only consider the case where x∗ = 0. We define

µ∗(A) =
∫
A

|x|−δν∗(dx)

for any Borel set A ⊆ K. Note that µ∗ = µ0,δ

∫
K
|x|−δν∗(dx). Therefore, to

show the upper uniform exponential decay or the volume doubling property for
µ0,δ, it is enough to show the corresponding properties for µ∗.
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Lemma 16.4. µ∗ has upper uniform exponential decay if and only if 0 < δ <
dw.

Proof. Let w ∈ Wm and let I ∈ S. Set I∗ = [0, 1/l] × · · · [0, 1/l] and write
Km = K(I∗)m . Then

µ∗(Kw) =
∫
Km

|x+ aw|−δν∗(dx),

where aw = Fw(0), and

µ∗(KwI) =
∫
Km+1

|x+ aw + FI(0)/lm+1|−δν∗(dx)

=
1
N

∫
Km

|x/l + aw + FI(0)/lm+1|−δν∗(dx)

=
lδ

N

∫
Km

|x+ awl + FI(0)/lm|−δν∗(dx)

Since aw and FI(0) are nonnegative vector,

|x+ aw| ≤ |x+ awl + FI(0)/lm|

for any x ∈ Km. Hence

µ∗(KwI) ≤
lδ

N
µ∗(Kw).

Note that if w = (I∗)m and I = I∗, equality holds in the above inequality. By
the definition of dw, we see that

r∗
N
lδ < 1

if and only if δ < dw. Thus µ∗ has upper uniform exponential decay if and only
if δ < dw.

Lemma 16.5. There exists c > 0 such that µ(Kwi) ≤ cµ(Kwj) for any w ∈W∗
and i, j ∈ S.

Proof. Note that

µ∗(Kwi) =
∫
Km+1

|x+ awi|−δν∗(dx)

for any w ∈W∗ and i ∈ S. Set I0 = [1− 1/l, 1]n. Since |x+ awI∗| ≤ |x+ awi| ≤
|x+ awI0| for any x ∈ Km+1 and any i ∈ S, we see that µ∗(KwI0) ≤ µ∗(Kwi) ≤
µ∗(KwI∗) for any i ∈ S. Assume that w 6= (I∗)m. Then

µ∗(KwI0) ≥ (|aw| +
√
nl−1)−δN−(m+1) and µ(KwI∗) ≤ |aw|−δN−(m+1).

Set c1 = (
√
n+ 1)δ. Since w 6= (I∗)m, |aw| ≥ 1/l and this implies

c1µ∗(KwL0) ≥ c1(|aw| +
√
nl−1)−δN−(m+1) ≥ |aw|−δN−(m+1) ≥ µ(KwI∗).
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Next, let w = (I∗)m. Then

µ(KwI∗) =
∫
Km+1

|x|−δν∗(dx) =
lmδ

Nm

∫
(I∗)n

|y|−δν∗(dy)

µ(KwI0) =
∫

[l−m(1−1/l),l−m]n
|x|−δν∗(dx) =

lmδ

Nm

∫
[1−1/l,1]n

|y|−δν∗(dy).

Hence there exists c2 > 0 such that c2µ(KwI0) ≥ µ(KwI∗) for any m ≥ 0.
Finally define c = max{c1, c2}. Then µ(Kwi) ≤ cµ(Kwj) for any w ∈ W∗ and
any i, j ∈ S.

Lemma 16.6. µ∗ is elliptic.

Proof. For any w ∈W∗, there exists i ∈ S such that µ∗(Kwi) ≥ µ∗(Kw)/N . By
Lemma 16.5, for any j ∈ S,

cµ∗(Kwj) ≥ µ∗(Kwi) ≥ µ∗(Kw)/N.

Combining this with Lemma 16.4, we see that µ∗ is elliptic.

Lemma 16.7. Define ek = (δ1k, . . . , δnk) ∈ Rn, where δij is Kronecker’s δ.
Then there exists c3 > 0 such that

µ(Kw) ≤ c3µ(Kv)

if w, v ∈W∗, |w| = |v|, av = aw + ek/l
|w| for some k ∈ {1, . . . , n}.

Proof. Let |w| = m. Note that

µ∗(Kw) =
∫
Km

|x+ aw|−δν∗(dx) and µ∗(Kv) =
∫
Km

|x+ aw + ek/l
m|−δν∗(dx).

In case w 6= (I∗)m, then since x+ aw − ek/l
m is a nonnegative vector,

|x+ aw| ≤ |x+ aw + εk/l
m| ≤ |x+ aw + ek/l

m + (x+ aw − ek/l
m| = 2|x+ aw|.

Hence 2−δµ(Kw) ≤ µ(Kv) ≤ µ(Kw).
If w = (I∗)m, then

µ∗(Kw) = lδm/Nm

∫
K

|x|−δν∗(dx) and µ∗(Kv) =
lδm

Nm

∫
K

|x+ ek|−δν∗(dx)

Hence there exists c′ > 0, which is independent of m, k, such that µ(Kw) ≤
c′µ(Kv). Thus we have shown the lemma.

Proof of Theorem 16.3. By Lemma 16.4, µ∗ has upper uniform exponential de-
cay if and only if 0 < δ < dw. Now we show that µ has the volume doubling
property if 0 < δ < dw. By Lemma 16.6, µ∗ is elliptic. Moreover, Lemma 16.7
shows that µ ∼

GE
ν∗. (The definition of ∼

GE
is given in Definition 17.1.) Then by

[32, Theorem 1.3.5], µ has the volume doubling property with respect to d∗.
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17 Construction of metrics from gauge function

From this section, we start preparations to prove Theorem 15.7. In this section,
we briefly review the theory of gauge functions and metrics developed in [32, 34]
and modify it for our purpose.

Definition 17.1. (1) A gauge function g1 on W∗ is said to be gentle with
respect to a gauge function g2 on W∗ if and only if there exists c > 0 such that
g1(w) ≤ cg1(v) whenever w, v ∈ Λg2

ρ and Kw ∩Kv 6= ∅ for some ρ ∈ (0, 1]. We
write g1 ∼

GE
g2 if g1 is gentle with respect to g2.

(2) For γ > 0, we define gγ : W∗ → (0, 1] as gγ(w) = g(w)γ for any w ∈W∗.

Note that gγ is again a gauge function and if g is elliptic (resp. locally
finite), then so is gγ .

Proposition 17.2 ([32, Theorem 1.4.3]). (1) Among elliptic gauge functions,
∼
GE

is an equivalent relation.

(2) Let g1 and g2 be elliptic gauge functions on W∗. If g1 is locally finite and
g1 ∼

GE
g2, then g2 is locally finite.

Note that Ug(x, r) was introduced as the “ball” with center x and radius r
associated with a gauge function g.

Definition 17.3. Let g be a gauge function on K. A metric d on K is said to
be 1-adapted to g if and only if there exist c1, c2 > 0 such that

Bd(x, c1r) ⊆ Ug(x, r) ⊆ Bd(x, c2r)

for any x ∈ K and any r ∈ (0, 1].

This definition enable us to regard Ug(x, r) as a real ball with respect to the
metric d if d is 1-adapted to g.

Next we propose a natural way to construct a metric from a gauge function.

Definition 17.4. Let g be a gauge function on W∗. For any x, y ∈ K, define

Dg(x, y) = inf
{ m∑
i=1

g(w(i))
∣∣∣m ≥ 1, w(1), . . . , w(m) ∈W∗, x ∈ Kw(1),

Kw(i) ∩Kw(i+1) 6= ∅ for any i = 1, . . . ,m− 1 and y ∈ Kw(m)

}
It is easy to see that Dg is a pseudo distance, i.e. Dg(x, y) = Dg(y, x) ≥ 0,

Dg(x, x) = 0, Dg(x, y) ≤ Dg(x, z) +Dg(z, y). Unfortunately, we do not know
whether Dg(x, y) > 0 if x 6= y or not in general.

Example 17.5. The restriction of the Euclidean metric d∗ is 1-adapted to the
gauge function g∗ defined in Example 4.6. Moreover, Dg∗ is a metric which is
equivalent to d∗.
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The following theorem suggests that two relations gentle ∼
GE

and quasisym-

metric ∼
QS

are closely related.

Theorem 17.6. Let g be an elliptic gauge function on W∗. Assume that g ∼
GEg∗.

(1) If d is a metric on K which is 1-adapted to gε for some ε > 0, then d is
quasisymmetirc to d∗.
(2) There exists ε ∈ (0, 1] such that Dgε is a metric which is 1-adapted to gε

and quasisymmetric to d∗.

Proof. (1) This is a direst consequence of [34, Theorem 3.4].
(2) Since g∗ is locally finite, g is locally finite by Proposition 17.2-(2). Note
that the self-similar structure associated with generalized Sierpinski carpet is
rationally ramified. Combining [32, Theorem 2.3.11] and [32, Corollary 2.3.15],
we see that Dgε is a metric on K which is 1-adapted to gε for some ε ∈ (0, 1].
Hence by (1), Dgε is quasisymmetric to d∗.

The next theorem is one of the keys in the proof of Theorem 15.7.

Theorem 17.7. Let µ has uniform exponential decay. Then the following three
conditions are equivalent:
(1) µ is elliptic and gentle to g∗.
(2) µ has the volume doubling property with respect to d∗.
(3) σµ is elliptic and gentle to g∗.

Furthermore, if any of the above conditions holds, then there exists ε ∈ (0, 1]
such that D(σµ)ε is a metric on K which is 1-adapted to (σµ)ε and quasisym-
metric to d∗.

Proof. (1) ⇔ (2): Since d∗ is adapted to g∗ and g∗ is locally finite, this follows
from [32, Theorem 1.3.5].
(1) ⇒ (3): Proposition 11.8 yields that σµ is elliptic. Since µ ∼

GE
g∗, there

exists c > 0 such that if w, v ∈ Λg∗
ρ and Kw ∩Kv 6= ∅, then µ(Kw) ≤ cµ(Kv).

Note that |w| = |v| if w, v ∈ Λg∗
ρ . Hence σµ(w) ≤ cσµ(v) if w, v ∈ Λg∗

ρ and
Kw ∩Kv 6= ∅. By (11.13), we see that σµ is gentle with respect to g∗.
(3) ⇒ (1): Proposition 11.8 yields that µ is elliptic. Since σµ ∼

GE
g∗, there exists

c > 0 such that if w, v ∈ Λg∗
ρ and Kw ∩ Kv 6= ∅, then σµ(w) ≤ cσµ(v). By

(11.13), there exists c′ > 0 such that σµ(w) ≤ c′σµ(v). Note that |w| = |v| if
w, v ∈ Λg∗

ρ . This implies µ(Kw) ≤ c′µ(Kv) if w, v ∈ Λg∗
ρ and Kw ∩ Kv 6= ∅.

Hence µ ∼
GE

g∗.

The rest of the statement is immediate by Theorem 17.6.

18 Metrics and quasimetrics

In this section, we prepare another piece for the proof of Theorem 15.7. The
main subject is the construction of metrics from powers of quasimetrics. First
we give basic definitions.
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Definition 18.1. Let X be a set. Let q : X ×X → [0,∞).
(1) q is called symmetric if q(x, y) = q(y, x) for any x, y ∈ X
(2) q is called predistance if q(x, x) = 0 and q(x, y) > 0 for any x 6= y.
(3) Define ρq(x, y) by

ρq(x, y) = inf
{ k∑
i=1

q(xi, xi+1)
∣∣∣k ≥ 1, x1 = x, xk+1 = y

}
for any x, y ∈ X.
(4) Let ϕ : X ×X → [0,∞). ϕ said to be (bi-Lipschitz) equivalent to q if and
only if there exist c1, c2 > 0 such that

c1ϕ(x, y) ≤ q(x, y) ≤ c2ϕ(x, y).

We write ϕ ∼
BL

q if and only if ϕ is equivalent to q. If no confusion may occur,

we omit the word “bi-Lipschitz” and simply say that ϕ is equivalent to q.
(5) Let C > 0. q is called C-quasimetric on X if and only if q is a symmetric
predistance and

q(x, z) ≤ C(q(x, y) + q(y, z)) (18.1)

for any x, y, z ∈ X. q is said to be a quasimetric if q is C-quasimetric for some
C > 0.
(6) Let κ > 0. q is called κ-quasiultrametric on X if and only if q is a symmetric
predistance and

q(x, z) ≤ κmax{q(x, y), q(y, z)} (18.2)

for any x, y, z ∈ X.

Remark. ρq(x, y) ≤ q(x, y) for any x, y ∈ X.

In the above definition, if X contains more than two points, we have C ≥ 1
in (5) and κ ≥ 1 in (6).

If q is a quasimetric, then its power is also a quasimetric as is seen in the
next proposition.

Proposition 18.2. Let C ≥ 1. If q(x, y) is a C-quasimetric, then for any
ε > 0,

q(x, y)ε ≤ Cε2max{ε−1,0}(q(x, z)ε + q(y, z)ε).

One can prove the above proposition by routine calculus. Next we discuss
when a predistance is equivalent to a metric.

Proposition 18.3. Let q : X ×X → [0,∞) be a symmetric predistance. The
following three statements are equivalent:
(A) There exists a metric on X which is equivalent to q.
(B) There exists c > 0 such that q(x, y) ≤ cρq(x, y) for any x, y ∈ X.
(C) ρq is a metric on K and ρq ∼

BL
q.
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Proof. (A) ⇒ (B): Let d be a metric on X which is equivalent to q. Then there
exist c1, c2 > 0 such that

c1d(x, y) ≤ q(x, y) ≤ c2d(x, y).

Hence if x1 = x and xn+1 = y, then

c1d(x, y) ≤ c1

n∑
i=1

d(xi, xi+1) ≤
n∑
i=1

q(xi, xi+1).

This shows that c1q(x, y)/c2 ≤ c1d(x, y) ≤ ρq(x, y). Thus we have shown that
(A) implies (B).
It is straight forward to show the statements (B) ⇒ (C) and (C) ⇒ (A).

A metric is always 2-quasiultrametric. How about the converse of this state-
ment? The following old theorem gives a kind of answer to this question. It
shows that 2-quasiultrametric may not be a metric but it is always equivalent
to a metric.

Theorem 18.4 (Frink[18]). Assume that q(x, y) is a κ-quasiultrametric. If
κ ≤ 2, then q(x, y) is equivalent to a metric. More precisely, if κ ≤ 2, then

ρq(x, y) ≤ q(x, y) ≤ 2κρq(x, y) (18.3)

for any x, y ∈ X.

See also [37] for a proof of Theorem 18.4.

Corollary 18.5. Let q be C-quasimetric. If (2C)ε ≤ 2, then ρqε is a metric.

More precisely, if ε ≤ log 2
log 2 + logC

, then

ρqε(x, y) ≤ q(x, y)ε ≤ 4ρqε(x, y)

for any x, y ∈ X.

This corollary is a quantitative version of [28, Proposition 14.5], where the
condition has been (2C)ε ≤

√
2 instead of our condition (2C)ε ≤ 2. (The condi-

tion (2C)ε ≤
√

2 has not explicitly written in the statement of [28, Proposition
14.5]. One can extract, however, this condition from its proof.) This improve-
ment is crucial to obtain Theorem 18.7.

Proof. For any x, y, z ∈ K, we have

q(x, y) ≤ C(q(x, z) + q(z, y)) ≤ 2Cmax{q(x, z), q(z, y)}.

Thus we see that

q(x, y)ε ≤ (2C)ε max{q(x, z)ε, q(z, y)ε}.

Using Theorem 18.4, we conclude our proof of this corollary.
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Definition 18.6. For a quasimetric q, define

Cq = sup
x,y,z∈X,x 6=z

q(x, z)
q(x, y) + q(y, z)

and
Aq = {ε|q(x, y)ε is equivalent to a metric}.

The following theorem gives a characterization of Aq.

Theorem 18.7. If q is a quasimetric of X, then

Aq ∩ (0, 1] =
∪

ϕ: quasimetric, ϕ ∼
BL

q

(
0,

log 2
log 2 + logCϕ

]
. (18.4)

Proof. Choose any ε ∈ Aε∩(0, 1]. Then ρqε is a metric on K which is equivalent
to qε. Set ϕ = (ρqε)1/ε. By Proposition 18.2,

ϕ(x, y) ≤ 21/ε−1(ϕ(x, z) + ϕ(z, y))

for any x, y, z ∈ X. This implies Cϕ ≤ 2ε−1 and hence ε ≤ log 2
log 2+logCϕ

.
Next, if ϕ is a quasimetric equivalent to q, then ϕ is Cϕ-quasimetric. Using

Corollary 18.5, we see that (0, log 2
log 2+logCϕ

] ⊆ Aq.

19 Protodistance and the volume doubling
property

In this section, we study properties of the protodistance δµ with or without
the volume doubling property of µ. Although δµ is not symmetric and does
not fulfill extended triangle inequality (15.6) in general, it satisfies primitive
counterparts given in Lemma 19.2 and Proposition 19.5. In fact, if µ has the
volume doubling property, the combination of Lemma 19.2 and Proposition 19.5
is shown to imply that δµ is equivalent to a quasimetric in Proposition 19.7.

In this section, we always assume that µ ∈ MP (K) and (12.1) holds. Note
that this assumption is satisfied for all measures having weak exponential decay.

First we consider how far δµ is apart from being symmetric.

Definition 19.1. Define

jµ(m,x) = min{k −m|k ≥ m, (r∗)kµ(Vk(x)) = εµ(m,x)}.

Lemma 19.2. For any x, y ∈ K,

δµ(x, y) ≤ (r∗)jµ(k(x,y),x)µ(Vk(x,y)−1(y))
µ(Vk(x,y)(y))

δµ(y, x). (19.1)
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Proof. Since Vk(x,y)(x) ⊆ Vk(x,y)−1(y), we see that

(r∗)k(x,y)µ(Vk(x,y)(x)) ≤
µ(Vk(x,y)−1(y))
µ(Vk(x,y)(y))

(r∗)k(x,y)µ(Vk(x,y)(y))

≤
µ(Vk(x,y)−1(y))
µ(Vk(x,y)(y))

εµ(k(x, y), y) =
µ(Vk(x,y)−1(y))
µ(Vk(x,y)(y))

δµ(y, x).

Hence

δµ(x, y) = εµ(k(x, y), x) = (r∗)jµ(k(x,y),x)+k(x,y)µ(Vjµ(k(x,y),x)+k(x,y)(x))

≤ (r∗)jµ(k(x,y),x)(r∗)k(x,y)µ(Vk(x,y)(x))

≤ (r∗)jµ(k(x,y),x)µ(Vk(x,y)−1(y))
µ(Vk(x,y)(y))

δµ(y, x).

Under the volume doubling property, (12.3) leads to the fact that δµ(x, y)
and δµ(y, x) are comparable as follows.

Proposition 19.3. Assume that supm≥0,x∈K jµ(m,x) < +∞. Then there ex-
ists c19.2 > 0 such that

δµ(x, y) ≤ c19.2δµ(y, x) (19.2)

for any x, y ∈ K if and only if µ has the volume doubling property with respect
to d∗.

Proof. Let M = supm≥0,x∈K jµ(m,x). If µ has the volume doubling property,
then there exists c1 > 0 such that

µ(Vm(x)) ≤ c1µ(Vm+1(x))

for any m ≥ 0 and any x ∈ K. By Lemma 19.2, it follows that

δµ(x, y) ≤ (r∗)Mc1δµ(y, x).

Conversely, for any m ≥ 0 and x ∈ K, choose y ∈ Vm(x)\Vm+1(x). Then there
exists some k ≤M such that

(r∗)mµ(Vm(y)) ≤ δµ(y, x) ≤ c19.2δµ(x, y)

= c19.2(r∗)m+kµ(Vm+k(x)) ≤ c19.2(r∗)m+Mµ(Vm(x)).

Hence if c2 = c19.2(r∗)M , then

µ(Vm(y)) ≤ c2µ(Vm(x))

for any x, y ∈ K with `m(x, y) ≤ 2. Using this inductively, we see that if
`m(x, y) ≤ k, then

µ(Vm(y)) ≤ (c2)k−1µ(Vm(x)).
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On the other hand,
Vm−1(x) ⊆

∪
w∈Γ2l−1

m (x)

Kw.

Choosing yw ∈ Kw for each w ∈ Γ2l−1
m (x), we have

µ(Vm−1(x)) ≤
∑

w∈Γ2l−1
m (x)

µ(Vm(yw))

≤ #(Γ2l−1
m (x))(c2)2l−1µ(Vm(x)) ≤ (4l − 1)n(c2)2l−1µ(Vm(x)).

Set c3 = (4l − 1)n(c2)2l−1. Inductively, we obtain

µ(Vm(x)) ≤ (c3)kµ(Vm+k(x))

Note that B∗(x, l−m) ⊆ Vm(x) ⊆ B∗(x, 3
√
nl−m). Let k = min{i ∈ N|li >

3
√
n}, then

µ(B∗(x, l−m) ≤ (c3)kµ(B∗(x, (3
√
nl−k)l−m)

for any m ≥ 0 and any x ∈ K. Since 3
√
nl−k < 1, µ has the volume doubling

property with respect to d∗.

Lemma 19.4. For any x, y, z ∈ K.

min{k(x, y), k(y, z)} − 1 ≤ k(x, z)

Proof. Set m = min{k(x, y), k(y, z)}. Then `m(x, z) ≤ 3. Hence `m−1(x, z) ≤ 2.
This immediately implies m− 1 ≤ k(x, z).

Next we have a primitive version of extended (or weakened) triangle inequal-
ity (15.6), although it is difficult to see why this is the case at a glance.

Proposition 19.5. For any x, y, z ∈ K, either

δµ(x, z) ≤ max
{µ(Vk(x,y)−1(x))
r∗µ(Vk(x,y)(x))

, 1
}
δµ(x, y) (19.3)

or

δµ(z, x) ≤ max
{µ(Vk(z,y)−1(x))
r∗µ(Vk(z,y)(x))

, 1
}
δµ(z, y) (19.4)

holds.

Proof. We have two cases as follows.
Case I min{k(x, y), k(y, z)} ≤ k(x, z): In this case,

δµ(x, z) ≤ δµ(x, y) if k(x, y) ≤ k(x, z),
δµ(z, x) ≤ δµ(z, y) if k(y, z) ≤ k(x, z).

Case II min{k(x, y), k(y, z)} > k(x, z): Lemma 19.4 shows that

k(x, z) = min{k(x, y), k(y, z)} − 1.
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Suppose k(x, z) = k(x, y) − 1. If jµ(k(x, y) − 1, x) ≥ 1, then ε(k(x, y) − 1, x) =
ε(k(x, y), x). This implies δµ(x, z) = ε(k(x, z), x) = ε(k(x, y), x) = δµ(x, y). If
jµ(k(x, y) − 1, x) = 1, then

δµ(x, z) = ε(k(x, y) − 1, x) = (r∗)k(x,y)−1µ(Vk(x,y)−1(x))

≤ (r∗)−1µ(Vk(x,y)−1(x))
µ(Vk(x,y)(x))

ε(k(x, y), x) = (r∗)−1µ(Vk(x,y)−1(x))
µ(Vk(x,y)(x))

δµ(x, y)

Hence if k(x, z) = k(x, y) − 1, we have (19.3). In case k(z, x) = k(z, y) − 1,
exchanging x and z, we obtain (19.4).

Lemma 19.6. If µ has upper uniform exponential decay, then

sup
x∈K,m≥0

jµ(m,x) < +∞.

Moreover, there exists c19.5 ≥ 1 such that

(r∗)k(x,y)µ(Vk(x,y)(x)) ≤ δµ(x, y) ≤ c19.5(r∗)k(x,y)µ(Vk(x,y)(x)) (19.5)

for any x, y ∈ K.

Proof. By the definition, µ has upper uniform exponential decay if and only
if there exists η ≥ 1 and λ ∈ (0, 1) such that σµ(wv) ≤ ηλ|v|σµ(w) for any
w, v ∈W∗. Since v1 . . . vm ∈ Γm(x) for any v = v1 . . . vm+k ∈ Γm+k(x), we have

(r∗)m+kµ(Vm+k(x)) =
∑

v∈Γm+k(x)

σµ(v)

≤ #(Γm+k(x))ηλk max
w∈Γm(x)

σµ(w) ≤ 4nηλk(r∗)mµ(Vm(x)).

Hence choosing k so that 4nηλk ≤ 1, we have jµ(m,x) ≤ k. At the same time,
if c19.5 = (r∗)k, then (19.5) holds.

Proof of Proposition 15.10. For any x, y ∈ K,

B∗(x, l−k(x,y)) ⊆ Vk(x,y)(x) ⊆ B∗(x, 3
√
nl−k(x,y))

and
l−k(x,y)−1 ≤ d∗(x, y) ≤ 2l−k(x,y).

Combining these with the volume doubling property, there exist c1, c2 > 0 such
that

c1µ(B∗(x, d∗(x, y))) ≤ µ(Vk(x,y)(x)) ≤ c2µ(B∗(x, d∗(x, y))) (19.6)

for any x, y ∈ K. Since (r∗)k(x,y) = (l−k(x,y))dw−dH , the inequalities (19.5) and
(19.6) imply that δµ ∼

BL
Dµ. By Proposition 19.3, it follows that δµ ∼

BL
ψµ as

well.
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Now assuming the volume doubling property, we are going to deduce the
extended triangle inequality from (19.3) and (19.4) as promised.

Proposition 19.7. Assume that µ has upper uniform exponential decay and the
volume doubling property with respect to d∗. If vµ(x, y) = δµ(x, y) + δµ(y, x),
then vµ is a quasimetric.

Proof. By Proposition 19.5 and the volume doubling property, there exists c1 >
0 such that δµ(x, z) ≤ c1δµ(x, y) or δµ(z, x) ≤ c1δµ(z, y) for any x, y, z ∈ K. On
the other hand, by Proposition 19.3 and Lemma 19.6, δµ(x, y) ≤ c19.2δµ(y, x)
for any x, y ∈ K. Hence

δµ(x, z) ≤ c1 min{δµ(x, y), c19.2δµ(z, y)}
≤ c1 min{δµ(x, y), c219.2δµ(y, z)} ≤ c1c

2
19.2(δµ(x, y) + δµ(y, z)).

Exchanging (x, y, z) to (z, y, x), we obtain

vµ(x, z) ≤ c1c
2
19.2(vµ(x, y) + vµ(y, z)).

If vµ(x, y) is a quasimetric, then by [28, Proposition 14.5], there exists ε0 > 0
such that, for any ε ∈ (0, ε0], (vµ)ε ∼

BL
dε. By (19.2), we have (δµ)ε ∼

BL
dε. In

fact, the metric dε ∼
BL

Dσε
µ

as follows.

Theorem 19.8. Assume that µ has upper uniform exponential decay and the
volume doubling property with respect to d∗. Then Bµ 6= ∅. Let β ∈ Bµ and
let d be a metric on K satisfying dβ ∼

BL
δµ. Then d and D

σ
1/β
µ

are 1-adapted to

(σµ)1/β, d ∼
BL

D
σ

1/β
µ

and d ∼
QS

d∗. In particular, δµ ∼
BL

(D
σ

1/β
µ

)β

To prove the above theorem, we need several lemmas.

Lemma 19.9. Under the same assumption as Theorem 19.8, there exist c119.7 >
0 and c219.7 > 0 such that

c119.7σµ(w) ≤ δµ(x, y) ≤ c219.7σµ(w) (19.7)

for any x, y ∈ K and any w ∈ Γk(x,y)(x).

Proof. By Theorem 17.7, σµ and µ are elliptic and gentle to g∗. Since Wm =
Λ∗
l−m and Γm(x) = Λ∗

l−m,1(x), there exist c1 > 0 such that µ(Kv) ≤ c1µ(Kw)
for any x ∈ K, any m ≥ 0 and any w, v ∈ Γm(x). This implies

(r∗)mµ(Kw) ≤ (r∗)mµ(Vm(x)) ≤ c14n(r∗)mµ(Kw) (19.8)

for any x ∈ K, any m ≥ 0 and any w ∈ Γm(x). By Proposition 15.2, µ has
uniform exponential decay and hence by (11.14), there exist c2, c3 > 0 such that

c2σµ(w) ≤ (r∗)mµ(Vm(x)) ≤ c3σµ(w)

for any x ∈ K , any m ≥ 0 and any w ∈ Γm(x). This immediately implies
(19.7).
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Definition 19.10. Define

δ̃µ(x, y) = inf{s|y ∈ Uσµ(x, s)}.

and B
eδµ

(x, r) = {y|δ̃µ(x, y) < r}.

By the above definition, it is easy to see that δ̃(x, y) is a predistance and

B
eδ(x, r) ⊆ Uσµ(x, r) ⊆ B

eδ(x, γr) (19.9)

for any x ∈ K, r > 0 and γ > 1. However, δ̃µ does not satisfy the (extended)
triangle inequality in general.

Lemma 19.11. Under the same assumption as Theorem 19.8, δµ ∼
BL

δ̃µ.

Proof. If maxw∈Γk(x,y)(x) σµ(w) ≤ s, then for any w ∈ Γk(x,y)(x), w = vu for

some v ∈ Λσµ

s,1(x) and u ∈ W∗. Therefore, y ∈ Uσµ(x, s) and hence δ̃(x, y) ≤
maxw∈Γk(x,y)(x) σµ(w) ≤ (c119.7)

−1δµ(x, y).

Since σµ is elliptic, there exists γ ∈ (0, 1) such that Λσµ
ρ ∩Λσµ

γρ = ∅. Hence if
γminw∈Γk(x,y)(x) σµ(w) > s, then for any w ∈ Λσµ

s,1(x), there exists v ∈ Γk(x,y)(x)
such that w = vu for some u ∈ W∗ and v ∈ W∗\W0. If y ∈ Uσµ(x, s), then
there exist w,w′ ∈ Λσµ

s,1(x) such that x ∈ Kw, y ∈ Kw′ and Kw∩Kw′ 6= ∅. Since
|w| ≥ k(x, y) + 1 and w′ ≥ k(x, y) + 1, it follows that `k(x,y)+1(x, y) ≤ 2. This
contradiction yields y /∈ Uσµ(x, s) and hence δ̃(x, y) ≥ γminw∈Γk(x,y)(x) σµ(w) ≥
γ(c219.7)

−1δµ(x, y).

Proof of Theorem 19.8. By Proposition 19.7 and Lemma 19.11, it follows that
δ̃µ is a quasimetric. Using [28, Proposition 14.5] (or equivalently [32, Propo-
sition 2.3.3]), we obtain ε0 > 0 and a metric dε for each ε ∈ (0, ε0] satisfying
dε ∼

BL
(δ̃µ)ε ∼

BL
(δµ)ε. Hence Bµ 6= ∅. Let β ∈ Bµ and let d be a metric giving the

same topology on K as d∗ and satisfying dβ ∼
BL

δµ. The fact that dβ ∼
BL

δ̃µ along

with (19.9) implies that d is 1-adapted to (σµ)1/β . By [32, Lemma 2.3.10], we
see that d ∼

BL
D(σµ)1/β . Since (σµ)1/β is elliptic and gentle with respect to g∗ by

Theorem 17.7, Theorem 17.6-(1) shows that d and D(σµ)1/β are quasisymmetric
to d∗.

20 Upper estimate of pµ(t, x, y)

In this section, we are going to give the first half of our proof of Theorem 15.7.
Throughout this section, we assume that µ has upper uniform exponential decay
and that µ has the volume doubling property with respect to d∗. Hence by
Proposition 15.2, µ has uniform exponential decay. For simplicity, we write Λρ =
Λσµ
ρ , Λρ(x) = Λσµ

ρ (x), K(x, ρ) = Kσµ(x, ρ), Λρ.1(x) = Λσµ

ρ,1(x) and U(x, ρ) =
Uσµ(x, ρ) as far as no confusion may occur.
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By Theorem 17.7, µ and σµ are elliptic and µ ∼
GE

σµ ∼
GE

g∗. Hence by

Proposition 17.2, µ and σµ are locally finite. In particular, there exists c20.1 > 0
such that

µ(Kwi) ≥ c20.1µ(Kw) (20.1)

for any w ∈W∗ and any i ∈ S.

Lemma 20.1. There exists m20.2 > 0 such that if w, v ∈ Λρ and Kw ∩Kv 6= ∅,
then

||w| − |v|| ≤ m20.2. (20.2)

Proof. Since σµ ∼
GE

g∗, there exists c > 0 such that if w, v ∈ Λρ andKw∩Kv 6= ∅,

then g∗(w) = 2−|w| ≤ cg∗(v) = c2−|v|. This immediately implies the desired
statement.

Lemma 20.2. There exist c120.3 > 0 and c220.3 > 0 such that

c120.3ρ ≤ σµ(w) ≤ c220.3ρ (20.3)

for any ρ ∈ (0, 1] and any w ∈ Λρ.

Proof. Since σµ is elliptic, there exist positive constants c1 and c2 such that

c1ρ ≤ σµ(w) ≤ c2ρ

for any ρ ∈ (0, 1] and any w ∈ Λρ. This along with (11.13) suffices.

Lemma 20.3. There exist ρ1 ∈ (0, 1] and c120.4, c
2
20.4 > 0 such that

c120.4ρ ≤ Ẽx(τU(x,ρ)) ≤ c220.4ρ (20.4)

for any ρ ∈ (0, ρ1] and x ∈ K.

Proof. Choose w ∈ Λρ(x) so that |w| = max{|v| : v ∈ Λρ(x)}. Lemma 20.1
implies that |v| ≥ |w|+m20.2 for any v ∈ Λρ,1(x). Hence we have V|w|+m20.2(x) ⊆
U(x, ρ). By Lemma 7.8, if M = m20.2 + 1, then

c7.8(r∗)|w|+m20.2µ(V|w|+M (x)) ≤
∫
U(x,ρ)

gU(x,ρ)(x, y)µ(dy) = Ẽx(τU(x,ρ)).

(20.5)
Since w ∈ Λρ(x), there exists v ∈ WM such that x ∈ Kwv ⊆ V|w|+M (x). By
(20.1), µ(Kwv) ≥ (c20.1)Mµ(Kw). By (20.5),

c7.8(r∗)m20.2(c20.1)Mσµ(w) ≤ Ẽx(τU(x,ρ)).

Using Lemma 20.2, we obtain c120.3c7.8(r∗)
m20.2(c20.1)Mρ ≤ Ẽx(τU(x,ρ)).

Next we show the upper estimate. Since σµ is locally finite and elliptic,
Theorem 4.9 implies that the number of equivalence classes of {Λρ,x}x∈K,ρ∈(0,1]

under ∼
B

is finite. Let {Γ1, . . . ,Γk} be the collection of equivalence classes of
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{Λρ,x}x∈K,ρ∈(0,1] under ∼
B

. Set C = maxi=1,...,k c7.3([Γi], η, λ). Note that there

exists ρ1 ∈ (0, 1) such that ∂U(x, ρ) 6= ∅ for any (x, ρ) ∈ K × (0, ρ1]. By
Lemma 7.4, if ρ ∈ (0, ρ1], then

Ẽx(τU(x,ρ)) =
∫
U(x,ρ)

gU(x,ρ)(x, y)µ(dy) ≤ C
∑

w∈Λρ,1(x)

σµ(w) (20.6)

Since σµ is locally finite, it follows that L = supx∈K,ρ∈(0,1] #(Λρ,1(x)) < +∞.
Combining this fact with Lemma 20.2 and (20.6), we obtain

Ẽx(τU(x,ρ)) ≤ c220.3Cρ.

Lemma 20.4. There exists c20.7 > 0 such that

c20.7µ(Kw) ≥ µ(U(x, ρ)) (20.7)

for any x ∈ K, any ρ ∈ (0, 1] and any w ∈ Λρ(x).

Proof. By the fact that µ ∼
GE

σµ, there exists c1 > 0 such that

µ(Kw) ≥ c1µ(Kv)

whenever x ∈ K and w, v ∈ Λρ,1(x). Hence if w ∈ Λρ(x), then

µ(U(x, ρ)) =
∑

v∈Λρ,1(x)

µ(Kv) ≤
1
c1

∑
v∈Λρ,1(x)

µ(Kw) ≤ L

c1
µ(Kw),

where L = supx∈K,ρ∈(0,1] #(Λρ,1(x)) appearing in the proof of Lemma 20.3.

First part of proof of Theorem 15.7. By Theorem 19.8, Bµ is not empty.
Let β ∈ Bµ and let d be a metric on K satisfying dβ ∼

BL
δµ. Again by Theo-

rem 19.8, d ∼
QS

d∗ and d is 1-adapted to (σµ)1/β . Consequently µ has the volume

doubling property with respect to d. Moreover, since U (σµ)1/β

(x, r) = U(x, rβ),
Lemma 20.3 implies that there exist c120.8, c

2
20.8 > 0 and R > 0 such that

c120.8r
β ≤ Ẽx(τBd(x,r)) ≤ c220.8r

β (20.8)

for any x ∈ K and any r ∈ (0, R]. By [31, Lemma 4.4], it follows that β > 1.
For a compact set A ⊆ K and a gauge function g, define Λg

ρ(A) = {w|w ∈
Λg
ρ , A ∩Kw 6= ∅}. Then by Lemma 20.4,

c20.7 inf
w∈Λ

σµ
ρ (A)

µ(Kw) ≥ inf
x∈A

µ(U(x, ρ))
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for any ρ ∈ (0, 1]. Let r = ρ1/β . Since d is 1-adapted to d and µ has the volume
doubling property with respect to d, we have

inf
w∈Λ

σµ
ρ (A)

µ(Kw) ≥ c1 inf
x∈A

µ(U(x, ρ))

≥ c2 inf
x∈A

µ(Bd(x, c3r)) ≥ c4 inf
x∈A

µ(Bd(x, r)),

where the constants c1, c2, c3 and c4 are independent of A and r. This and (10.8)
yield

E(f, f) +
c5

rβ inf
x∈supp(f)

µ(Bd(x, r))
||f ||2µ,1 ≥ c6

rβ
||f ||2µ,2 (20.9)

for any r ∈ (0, 1] and any f ∈ F . This inequality (20.9) is called the local
Nash inequality in [31]. Recall that µ has the volume doubling property with
respect to d. Combining this fact with (20.8) and (20.9), we have (15.8) by [31,
Theorem 2.10]. Now Theorem 22.2 shows that β ≥ 2. Thus Bµ ⊆ [2,∞). Since
vµ is a quasimetric by Proposition 19.7 and δµ ∼

BL
δ̃µ by Lemma 19.11, we see

that δ̃µ is a quasimetric. Again by the fact that δµ ∼
BL

δ̃µ, we obtain

Bµ = {1/ε|ε ∈ A
eδµ
}

from Definition 18.6. Since Bµ ⊆ [2,∞), (18.4) implies (15.7).

21 Lower estimate of pµ(t, x, y)

This section is devoted to giving the second half of the proof of Theorem 15.7.
The ideas of the proof in this section are essentially due to [27, Section 5]. We
adapt their arguments to our situation where the space is compact. As in the
last section, we assume that µ ∈ MP (K) has uniform exponential decay and
the volume doubling property with respect to d∗. Let β ∈ Bµ and let d be a
metric on K satisfying dβ ∼

BL
δµ. Then, by the results in the last section, d is

quasisymmetric to d∗ and

pµ(t, x, y) ≤
c1

µ(Bd(x, t1/β))
exp

(
− c2

(d(x, y)β
t

) 1
β−1

)
. (21.1)

Since d is quasisymmetric to d∗, (E ,F) satisfies the elliptic Harnack inequality
(5.3) with respect to d as well.

Let {(λi, ϕi)}i≥1 be the collection of pairs of an eigenvalue and an eigen-
function given in Lemma 10.7. Define

ut,x(y) =
∑
i≥1

(λi + γ)e−λitϕi(x)ϕi(y). (21.2)
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Using the same discussion as in the proofs of Lemma 10.9 and Theorem 10.11, we
see that the above infinite sum converges uniformly on (t, x, y) ∈ [T,∞)×K×K
for any T > 0, and that

Gγu
t,x(y) = pµ(t, x, y) (21.3)

and
ut,x(y) = γpµ(t, x, y) −

∂

∂t
pµ(t, x, y) (21.4)

for any (t, x, y) ∈ (0,∞) ×K ×K.
The next lemma is well-known consequence of the elliptic Harnack inequality.

The present statement is a slight modification of [27, Lemma 5.2].

Lemma 21.1. There exist c > 0 and θ > 0 such that for any x ∈ K, any r > 0,
any bounded harmonic function f on Bd(x, r) and any y ∈ Bd(x, r),

|f(x) − f(y)| ≤ c

(
d(x, y)
r

)θ
||f ||∞,Bd(x,r),

where ||f ||∞,A = supx∈A |f(x)|.

Lemma 21.2. For any f ∈ C(K), any γ > 0 and any x, y ∈ K, if r > d(x, y),
then

|Gγf(x) −Gγf(y)| ≤

2 sup
x∈B

Ẽ(τB)(||f ||∞,B + γ||Gγf ||∞,B) + c

(
d(x, y)
r

)θ
||Gγf ||∞,B , (21.5)

where c and θ are the same constants as in Lemma 21.1 and B = Bd(x, r).

Proof. By Proposition 8.3, we have

Gγf(z) = GBγ f(z) + Ẽz
(
(e−γτB − 1)Gγf(X̃τB

)
)

+ Ẽz
(
Gγf(X̃τB

)
)
. (21.6)

For the first term, it follows

|GBγ f(z)| =
∣∣∣∣Ẽz(∫ τB

0

e−γspµf(X̃s)ds
)∣∣∣∣

≤ Ẽ(τB)||f ||∞,B ≤ sup
z∈B

Ẽ(τB)||f ||∞,B .

For the second term,

|Ẽz
(
(e−γτB − 1)Gγf(X̃τB )

)
| ≤ γẼz(τB)||Gγf ||∞,B .

By [19, Theorem 4.6.5], the last term Ẽz
(
Gγf(X̃τB

)
)

is a harmonic function on
B whose boundary value at ∂B is Gγf . Hence by Lemma 21.1,

|Ẽx
(
Gγf(X̃τB

)
)
− Ẽy

(
Gγf(X̃τB

)
)
| ≤ c

(
d(x, y)
r

)θ
||Gγf ||∞,B .

Combining all three terms, we have (21.5).
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Lemma 21.3. There exists C1 > 0 such that∣∣∣ ∂
∂t
pµ(t, x, y)

∣∣∣ ≤ C1

tµ(Bd(x, t1/β))

if d(x, y)β ≤ t.

Proof. By (10.14) and (21.1),∣∣∣∣ ∂∂tpµ(t, x, y)
∣∣∣∣ ≤ 1

t

√
pµ(t/2, x, x)pµ(t/2, y, y) ≤

c1
t

1√
µ(Bd(x, (t/2)1/β))µ(Bd(y, (t/2)1/β))

≤ c1
t

1√
µ(Bd(x, t1/β))µ(Bd(y, t1/β))

.

By the volume doubling property, there exists c > 0 such that

µ(Bd(x, r)) ≤ µ(Bd(y, 2r)) ≤ cµ(Bd(y, r))

whenever d(x, y) ≤ r. Hence∣∣∣∣ ∂∂tpµ(t, x, y)
∣∣∣∣ ≤ c1

t

1√
µ(Bd(x, t1/β))µ(Bd(y, t1/β))

≤ c1c

t

1
µ(Bd(x, t1/β))

if d(x, y)β ≤ t.

Lemma 21.4. For any A > 0 and any T > 0, there exists C > 0 such that

|pµ(t, x, x) − pµ(t, x, y)| ≤
A

µ(Bd(x, t1/β))

whenever t ∈ (0, T ] and d(x, y)β ≤ Ct.

Proof. Let f = ut,x in (21.5). Assume that d(x, y)β ≤ t. Then by (21.1), (21.3),
(21.4) and Lemma 21.3, there exist c3, c4 and c5 such that

|pµ(t, x, x)−pµ(t, x, y)| ≤

(
rβ
(c3
t

+c4
)
+c5

(
d(x, y)
r

)θ) 1
µ
(
Bd(x, t1/β)

) (21.7)

if d(x, y) ≤ r. Set c6 = max{1, (2c5/A)1/θ}. Define R = c6d(x, y). We have

d(x, y) ≤ 2R and c5

(
d(x, y)

2R

)θ
≤ A/2. Next, note that if t ∈ (0, T ],

c3
t

+ c4 ≤ c3 + c4T

t
.
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Let C = min
{

1, A
21+β(c3+c4T )(c6)β

}
. Then

(2R)β
(c3
t

+ c4

)
≤ A

2

if d(x, y)β ≤ Ct. Thus, letting r = 2R in (21.7), we verify the desired inequality.

Lemma 21.5. For any T > 0,

0 < inf
x,y∈K,t≥T

pµ(t, x, y) (21.8)

Proof. By (10.12), if F (t, x, y) =
∑
i≥2 e

−(λi−λ2)tϕi(x)ϕi(y), then

pµ(t, x, y) = 1 + e−λ2tF (t, x, y).

Since F (t, x, y) is bounded on [1,∞) × K × K and λ2 > 0, there exists T∗ >
0 such that e−λ2tF (t, x, y) ≤ 1/2 for any (t, x, y) ∈ [T,∞) × K × K. It is
enough to consider the case where T < T∗. Since pµ(t, x, y) is positive, 0 <
infx,y∈K,t∈[T,T∗] pµ(t, x, y). This immediately implies (21.8).

Proof of (15.9). Since µ has uniform exponential decay, κ and κ can be chosen
as constants. Moreover, by the volume doubling property of µ with respect to
d∗, it follows that C∗

µ(t, x) defined in Theorem 12.14 is uniformly bounded from
below. Hence by (12.11), there exists c1 > 0 such that

c1
µ(Bδµ(x, γ∗t))

≤ pµ(t, x, y)

for any x ∈ K and any t ∈ (0, 1]. Note that δµ ∼
BL

dβ and that µ has the volume

doubling property with respect to d. So, there exists c21.9 > 0 such that
c21.9

µ(Bd(x, t1/β))
≤ pµ(t, x, x) (21.9)

for any x ∈ K and any t ∈ (0, 1]. Using Lemma 21.5 and changing the value
of c21.9 if necessary, we verify that (21.9) holds for any x ∈ K and any t > 0.
Set T = diam(K, d)β . Then for t ≥ T , if D = infx,y∈K,t≥T pµ(t, x, y), which is
positive by Lemma 21.5, then

D

µ(Bd(x, t1/β))
= D ≤ pµ(t, x, y) (21.10)

for any (t, x, y) ∈ [T,∞)×K ×K. Let A = c21.9/2. Applying Lemma 21.4 and
using (21.9), we have

1
2

c21.9
µ(Bd(x, t1/β))

≤ pµ(t, x, y) (21.11)

if d(x, y)β ≤ Ct and t ∈ (0, T ]. Combining (21.10) and (21.11), we obtain
(15.9).
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Proof of (15.10). Now it follows that

c1
µ(Bd(x, t1/β))

≤ pµ(t, x, x) ≤
c2

µ(Bd(x, t1/β))

for any t > 0 and any x ∈ K. The volume doubling property of µ with respect
to d immediately yields (15.10).

22 Non existence of super-Gaussian heat kernel
behavior

In this section, we will give a proof of the fact that if the heat kernel estimate
(15.8) holds, then β ≥ 2, which means there is no super-Gaussian heat kernel
behavior. If µ is Ahlfors regular, i.e. µ(Bd(x, r)) � ra, and the presence of the
lower off-diagonal heat kernel estimate as well as (15.8), this inequality β ≥ 2
has been shown in [3, 25, 24]. In the general framework of local and conservative
Dirichlet spaces, it has shown by Hino-Ramirez [29, Section 3] by using their
version of extended Varahdan’s formula. Here we present an alternative proof
using Theorem 22.3, which characterizes the domain of the Dirichlet form under
(15.8). Unlike Hino-Remirez’s approach, we do not need the local property of
Dirichlet forms a priori.

Throughout this section, we assume that (X, d) is a locally compact metric
space, that µ is a Radon measure on (X, d) and that (E ,F) is a regular Dirichlet
form on L2(X,µ). We set Bd(x, r) = {y|y ∈ X, d(x, y) < r} and Vd(x, r) =
µ(Bd(x, r)) for any x ∈ X and r ≥ 0.

The following is an abstract definition of a heat kernel.

Definition 22.1. p(t, x, y) is said to be a heat kernel associated with the Dirich-
let form (E ,F) on L2(X,µ) if and only if
(1) For any t > 0, p(t, x, y) is non-negative measurable function on X ×X.
(2) For any t > 0, p(t, x, y) = p(t, y, x) for any x, y ∈ X.
(3) Fixing t > 0 and x ∈ X, define pt,x(y) = p(t, x, y). Then pt,x ∈ L1(X,µ) ∩
L2(X,µ) for any t > 0 and any x ∈ X.
(4) For any f ∈ L2(X,µ), (Ttf)(x) =

∫
X
p(t, x, y)f(y)µ(dy) for µ-a.e. x ∈ X,

where {Tt}t>0 is the strongly continuous semigroup associated with the Dirichlet
form (E ,F) on L2(X,µ).

Now we state the main theorem of this section.

Theorem 22.2. Assume that µ has the volume doubling property with respect
to d and that there exists a heat kernel p(t, x, y) associated with the Dirichlet
form (E ,F) on L2(X,µ) which is stochastically complete, i.e.∫

X

p(t, x, y)µ(dy) = 1
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for any t > 0 and µ-a.e. x ∈ X. If there exist a monotonically non-increasing
function Φ : [0,∞) → R and β ≥ 1 such that∫ ∞

0

sβ+δ−1Φ(s)ds < +∞ (22.1)

and

p(t, x, y) ≤ C

Vd(x, t1/β)
Φ
(
d(x, y)
t1/β

)
(22.2)

for any t ∈ (0, 1] and any x, y ∈ X, then β ≥ 2.

The key step to prove the above theorem is the following fact. We define
E(u, u) = +∞ if u ∈ L2(X,µ) and u /∈ F .

Theorem 22.3. Under assumptions of Theorem 22.2, there exists C > 0 such
that

E(u, u) ≤ C lim
r↓0

1
rβ

∫
X

1
Vd(x, r)

(∫
B(x,r)

|u(x) − u(y)|2µ(dy)
)
µ(dx) (22.3)

for any u ∈ L2(X,µ). In particular, u ∈ F if the right hand side of (22.3) is
finite.

This theorem is essentially due to [25] if µ is Ahlfors regular. The general-
ization under the volume doubling condition has been given by Sturm-Kumagai
in [38].

Lemma 22.4. Let (X, d) be a locally compact metric space. Define

C0(X) = {f |f ∈ C(X), supp(f) is compact.}
CL0 (X) = {f |f ∈ C0(X), f is Lipschitz continuous}.

Then for any f ∈ C0(X), there exist a compact set K ⊆ X and {hn}n≥1 ⊂
CL0 (X) such that ||f − hn||∞ → 0 as n→ ∞ and supp(hn) ⊆ K for any n ≥ 1.

Proof. If X is compact, then this is immediate from the Stone-Weierstrass the-
orem. (See [40], for example, for the Stone-Weierstrass theorem.) Assume that
X is not compact. Let f : X → [0,∞) belong to C0(X). Let F = supp(f).
We may choose an open set U ⊆ X such that F ⊆ U and U is compact. Us-
ing the result for the compact case, we may choose {fn}n≥0 ⊆ CL0 (U) such
that ||fn − f ||∞,U → 0 as n → ∞. Without loss of generality, we may assume
that ||fn − f ||∞,U\K ≤ 2−n. Define hn(x) = max{fn(x) − 2−n, 0} on U and
hn(x) = 0 on the compliment of U . Since infx∈F,y/∈U d(x, y) > 0, it follows that
hn ∈ CL0 (X) and ||f − hn||∞,X → 0 as n→ ∞. Moreover, supp(hn) ⊆ U . Thus
we see that {hn}n≥1 is the desired sequence if f ≥ 0. This suffices for a general
case by considering the positive and the negative parts of f ∈ C0(X).
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Proof of Theorem 22.2. Assume that β < 2. Let u ∈ CL0 (X) and let L be the
Lipschitz constant of u, i.e.

L = sup
x,y∈X,x 6=y

|u(x) − u(y)|
d(x, y)

.

Denote the support of u by F . There exists an open set U ⊆ X such that
F ⊆ U and U is compact. Let R = infx∈F,y∈X\U d(x, y). Then R > 0 and, for
any r ∈ (0, R),

1
V (x, r)

∫
Bd(x,r)

|u(x) − u(y)|2µ(dy)

{
≤ L2r2 if x ∈ U ,
= 0 otherwise.

Hence by Lemma 22.4,

E(u, u) ≤ lim
r↓0

L2r2−βµ(U) = 0

Consequently u ∈ F and E(u, u) = 0. This immediately implies E(u, v) = 0 for
any v ∈ F . Hence letting H be the non-negative self-adjoint operator associated
wiht the Dirichlet from (E ,F) on L2(X,µ), we see∫

X

uHv = 0

for any v ∈ Dom(H). By Lemma 22.4, if v ∈ Dom(H), then∫
X

uHv = 0

for any u ∈ C0(X). By the regularity of (E ,F), C0(X) is dense in L2(X,µ).
Hence Hv = 0 for any v ∈ Dom(H). This implies that H = 0 and Ttf = f
for any f ∈ L2(X,µ) and any t > 0. This contradicts to the existence of the
integral density p(t, x, y) of Tt.
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