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Abstract

In this paper, time changes of the Brownian motions on generalized
Sierpinski carpets including n-dimensional cube [0, 1]" are studied. Time
change corresponds to alteration in density of the medium of the heat
flow associated with the Brownian motion. Our study includes densities
which is singular to the homogeneous one. We establish a rather rich class
of measures called measures having weak exponential decay containing
non-volume doubling measures such as the Liouville measure on [0, 1]
and show the existences of time changed process and associated jointly
continuous heat kernel for this class of measures. Furthermore, we obtain
diagonal lower and upper estimate of the heat kernel as time tends to
0. In particular, to express the principal part of the lower diagonal heat
kernel estimate, we introduce “protodistance” associated with the density
as a substitute of ordinary metric. If the density has the volume doubling
property with respect to the Euclidean metric, this protodistance is shown
to produce metrics under which the heat kernel enjoys upper off-diagonal
sub-Gaussian estimate and lower near diagonal estimate.
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1 Introduction

The reflected Brownian motion on the n-dimensional cube [0, 1]™ is associated
with the Dirichlet form

" du v
E(u,v :/ — v, (dx) = —/ uAvv, (dz),
( ) [0,1]™ ]z:; al'j 8xj ( ) [0,1]" ( )

where v, is the Lebesgue measure and A = 377 82—22 is the Laplacian. In this
bt}

case, we regard [0,1]" as a homogeneous medium and consider associated heat
flow on it. By introducing density of a medium, speed of heat flow changes
according to the given density at each point while the paths stay the same as
the original Brownian motion. To be precise, if f : [0,1]" — [0,00) gives the
density relative to the Lebesgue measure v, then our (inhomogeneous) medium
is represented by the measure f(x)v,(dz) and the corresponding Laplacian can
be identified with f~'A. In this manner, we may even consider a density u
which is singular to the Lebesgue measure v,. Such a change of density of a
medium, whether it is absolutely continuous to the Lebesgue measure or not, is
called a time change of the original process, namely, the Brownian motion. The



abstract theory of time change has been developed in the framework of Dirichlet
forms by many authors. See [19] for example.

In this paper, we study time changes of Brownian motions on generalized
Sierpinski carpets. The Brownian motion on a generalized Sierpinski carpet
has been constructed and studied by Barlow and Bass [4, 5, 6, 7, 8, 9]. As a
special case, it includes the reflected Brownian motions on [0,1]™. Let K be
a generalized Sierpinski gasket which is invariant under the collection of finite
number of contraction mappings {F;}ics, i.e.

Fi(z) = %(x —a)+a; and K = Fi(K),
€S
where S is a finite set and [ > 2 is an integer, and let v, be the normalized Haus-
dorff measure of K. Combining Barlow-Bass’s results with the uniqueness of
the Brownian motion shown in[10], we now know that the local regular Dirichlet
form (€, F) on L?(K,v,) associated with the Brownian motion is self-similar in
the following sense:

1
E(u,v) =Y —E&(uoFj,voF,) (1.1)
‘ T
€S
for any u,v € F. The constant r, is called the resistance scaling ratio whose
value is 2”72 in the case of K = [0,1]" with [ = 2. Given a density p of the
medium, which is a Borel regular probability measure in general, we are going
to study the following questions:

A When can one have time changed process?

B Dose time changed process possess a continuous heat kernel?

C What are asymptotic behaviors of the process/the heat kernel?

D Is there any “metric” suitable to describe the time changed process?

In this direction, Barlow-Kumagai [11] has studied time changes of the Brow-
nian motions on generalized Sierpinski carpets in the case where the density is
a self-similar measure. They have determined the condition when time change
is possible, shown the existence of jointly continuous heat kernel and studied
the pointwise asymptotic behavior of the hear kernel as the time tends to 0. In
their case, the self-similarity of the measure has played important roles in the
study and made their analysis possible.

If r, € (0,1), then the quadratic form (£, F) is known to be a resistance form
extensively studied in [33]. In this case, there exists a resistance metric which
is intrinsic to the resistance form (£, F). For any Borel regular radon measure,
time change is possible and the associated jointly continuous heat kernel exists.
In particular, if the measure has the volume doubling property with respect to
the resistance metric, one can construct a metric which is quasisymmetric to the
resistance metric and the heat kernel satisfies sub-Gaussian estimates as (1.7)
and (1.8). As a next step, we will address the case when 7, > 1 in this paper.



Naturally, we must start with the question (A). Roughly speaking, the key
roll to answer this question is played by the (0-order) Green function g(z,y).
Note that the domain of the quadratic form £ should be modified so that under
the new domain F,, (€, F,) is a Dirichlet form on L?(K, ¢1). On the other hand,
the Green function, which is the integral kernel of the Dirichlet Laplacian, stays
the same as that of the original process before time change. By introducing

—loglz —y|+C ifr, =1
h(ﬂfay)_{lm_yl—logr*/logl if’l“*>1,
which has the same singularity as the Green function, we are going to give some
criteria to make the time change possible in Section 6. In the later sections, these
criteria are shown to be reasonably wide to include many interesting examples.
To establish the existence and the continuity of a heat kernel of time changed

process, the principal tool of our approach is the Poincaré inequality with respect
to the density of the medium g, that is,

) 2 s [ () = 02ty (1.2
where (u), = 1y [ u(y)u(dy),

hy.(0) = sup/Kh(m,y)u(dy)

zeEK

and c; is independent of p and w. In the case of self-similar measures studied
in [11], the Poincare inequality could be obtained straightforward by combining
the self-similarities of both the Dirichlet form, (1.1), and the measure. Without
self-similarity of the measure p, we need to employ the method developed by
Bass in [13] to show a weaker form of (1.2). Then by a tricky argument using
self-similarity (1.1) of the form, we will manage to get the strong version of the
Poincaré inequality (1.2) in Section 9.

Making use of the Poincaré inequality (1.2), we will show Nash type in-
equality which leads us to the existence and the continuity of heat kernel in
Section 10. Based on those results, we are going to establish a class of measures
called measures having weak exponential decay in Section 11. In particular, a
Borel regular probability measure on [0, 1]? has weak exponential decay if and
only if there exist ¢, co, a1, an > 0 such that

1t < p(Bu(z,r)) < cor?, (1.3)

for any x € [0,1]? and any r € (0, 1], where B (z,7) = {y|y € [0,1]%, ]z — y| <
r}. The collection of measure having weak exponential decay is a rich class
containing all the measures having the volume doubling property with respect
to the Euclidean metric. It also contains many measures without the volume
doubling property, for example a class of statistically random measures studied
by Falconer [17]. See Section 14 for details. Moreover, due to [20, Theorem 2.2]



and [1, Lemma 3.1], one can confirm that the condition (1.3) is satisfied by the
Liouville measure on [0, 1], which has been extensively studied recently. See
[20, 21, 35, 1] for example. For measures having weak exponential decay, time
changed processes do exist, the associated heat semigroups are ultracontractive,
and time changed processes possess jointly continuous heat kernels.

About asymptotic behaviors of the hear kernel, we will have uniform upper
estimate thought the Nash type inequality. This upper estimate turns out to be
the best one when we assume further conditions on p. For the Liouville measure,
however, our general result is not as sharp as what are obtained in the recent
works in [35] and [1]. To consider the pointwise lower diagonal estimate and to
give our partial answer to the above question (D), we introduce the quantity
du(x,y) called the protodistance!. This protodistance is not even symmetric
nor satisfying triangle inequality but the “ball” Bs, (z,7) = {y|d.(x,y) < r}
plays the key roll in the lower diagonal heat kernel estimate. Namely, we will
show in Section 12 that 1/4u(Bs, (,t)) is the principal part of the lower estimate
of p,(t,x,x) for p-a.e.x € K. The protodistance J,,(z,y) roughly corresponds
(but not exactly equal) to |z — y|~'°8"/198! (B, (z, |z — y|)), which is denoted
by D,(z,y). In case p has the volume doubling property, our protodistance
is actually bi-Lipschitz equivalent to both D,(x,y) and powers of nice metrics
under which one obtain sub-Gaussian heat kernel estimate. See Theorem 1.2
for example. We present the following theorem for the case of time changes of
2-dimensional Brownian motion as a showcase of our results without the volume
doubling property.

Theorem 1.1. Let i be a Borel reqular probability measure on [0,1]2. If p has
weak exponential decay, then time change with respect to p is possible, the time
changed process possesses jointly continuous heat kernel p,(t,z,y) on (0,00) X
K x K, and there exist v, > 0, T, > 0 and ¢; > 0 such that T, > 0 for p-a.e.
z € [0,1]% and

C1 < C1 <
< <p
tllogt[® = p(Bs, (x,7.t))|logt[® — ™"

(t,z,x)

for any t € (0,T,]. Furthermore, if there exists a monotonically non-increasing
function f: (0,00) — [1,00) such that for any © € K and any r > 0

w(Bi(z,2r)) < f(r)u(Bs(z,r)), (1.4)
and )
m 22 _ (1.5)
rlo logr
then |
i 08Pultz @) _
t10 logt

for any x € K.

1Our protodistance is not related to the notion of protometric given by Deza and Cheb-
otarev in [15]



See Section 13 for the proof of this theorem. It is not known whether (1.4)
and (1.5) hold for the Liouville measure or not.

Finally from Section 15, we study the case where the density p has the
volume doubling property with respect to the Euclidean metric, i.e.

p(Bx(x,2r)) < Cu(Bu(w,1))

for any ¢ € K and any r > 0, where C is independent of x and r. By the
preceding works, for example, [26, 32, 27], the volume doubling property has
been known to be one of indispensable parts to deduce sub-Gaussian heat kernel
estimates. This is the case in our framework as well. What matters is to find a
suitable metric in order to show additional conditions leading to sub-Gaussian
heat kernel estimates. Our candidate of such a metric is the protodistance even
though it is not a metric. As is mentioned above, however, with the volume
doubling property, the protodistance ¢, has simpler expression D,, and is bi-
Lipschitz equivalent to a power of certain metric, which is, in fact, the desired
metric. More precisely, in the case of time changes of the Brownian motion on
[0,1]™ for example, our results can be stated as follows;

Theorem 1.2. Let p be a Borel regular measure on [0,1]". Assume that there
exist ¢ > 0 and € > 0 such that

|z — 2|
|z -y

D, (z,z) < c( ) D, (z,y) (1.6)
whenever z,y, z € [0,1]" and |t —y| > |z —2z| and that p has the volume doubling
property with respect to the Fuclidean distance. Define

B, = {B|(D,)"? is bi-Lipschitz equivalent to a metric on K}.

Then B, = [By,00) or B, = (Bs,00) for some B, > 2. Furthermore, for any
B € B, if d is a metric which is bi-Lipschitz equivalent to (D#)l/ﬁ, then d is
quasisymmetric to the Fuclidean metric and there exist c1,c2,c3,c4 > 0 such

that )
1 d(z,y)"\ =1
pu(ta r,y) < W €xXp ( - CZ(T) ) (1.7)

for any x,y € K and any t € (0,00), and if d(z,y)? < cst, then

Cq

1 (Bala, 7)) = Pul 220 (18)

This theorem is obtained as a special case of combination of Theorems 15.7
and 15.11. The condition (1.6) only requires mild decay of p which is always
fulfilled under the volume doubling condition if n = 2. The lower heat kernel
estimate (1.8) is called near diagonal lower estimate which is know to be the
best substitute of off-diagonal sub-Gaussian estimate

c . )8 T
Mp((‘“t‘”) )smw,w 19



when the metric does not satisfy the chain condition introduced in Section 15. In
fact, if the metric d has the chain condition, then the volume doubling property
of the density p and (1.8) imply (1.9). See [32] for example. In light of the
above theorem and the remark about the lower estimate (1.9), we will raise an
open problem concerning the legitimate definition of the “walk” dimension and
“the” intrinsic metric associated with the density p in Section 15.

The followings are conventions in notations in this paper.
(1) The lower case ¢ and the upper case C' (with or without a subscript) repre-
sent a constant which is independent of the variables in question and may have
different values from place to place (even in the same line).
(2) The constants ¢}, ck.; and mg; where k,l,n € N are constants appearing
first time in the equation (k.1). For example, c} o, c2 5, ¢ , and ci , are constants
appearing in (5.2). In particular, my; is used for non-negative integer.
(3) For a metric space (X,d), we define C(X) as the collection of continuous
functions on X.

2 (Generalized Sierpinski carpets

In this section, we introduce the definition of generalized Sierpinski carpet and
give fundamental geometric and topological properties of them. The following
definition is given by Barlow-Bass[9].

Definition 2.1. Let Hy = [0,1]”, where n € N, and let | € N with [ > 2. Set
Q = {IT (ki = 1)/ ki /1) | (K1, ... . k) € {1,...,1}"}. For any Q € Q, define
Fq : Hy — Hy by Fg(x) = z/l+ ag, where we choose ag so that Fg(Hp) = Q.
Let S C Q and let GSC(n, 1, S) be the self-similar set with respect to {Fg}ges,
i.e. GSC(n,l, S) is the unique nonempty compact set satisfying

GSC(n,1,8) = UgesFo(GSC(n, 1, S)).

Set H1(S) = UgesFqo(Hoy). GSC(n,l, S) is called a generalized Sierpinski carpet
if and only if the following four conditions (GSC1), ..., (GSC4) are satisfied:
(GSC1) (Symmetry) H;(S) is preserved by all the isometries of the unit cube
H,.
(GSC2) (Connected) Hy(S) is connected.
(GSC3) (Non-diagonality) For any « € H;(S), there exists o > 0 such that
int(H1(S) N B.(x,r)) is nonempty and connected for any r € (0,79), where
B (z,r) ={yly e R", [z —y| <r}.
(GSC4) (Border included) The line segment between 0 and (1,0, ...,0) is con-
tained in Hy(S5).

If no confusion may occur, we use K to denote a generalized Sierpinski carpet
GSC(n,!1,S). We define d, as the restriction of the Euclidean metric of R™ on
the generalized Sierpinski carpet GSC(n, [, S).

Example 2.2. The standard plane Sierpinski carpet is equal to GSC(2, 3, S),
where S = Q — {[1/3,2/3]?}. Also [0,1]" = GSC(n,, Q) for any [ > 2.



In the rest of this paper, we fix a generalized Sierpinski carpet GSC(n, [, 5).
The followings are a standard set of notations on self-similar sets.

Definition 2.3. Let m > 0. For w = (wy,...,wy,) € Q™, we write w =
Wy ... Wy, and define Fy, = Fy, 0---oF,, and H, = F,,(Hy). Moreover, we set

E:SN:{w|w:w1w2...7wi€S for any ¢ € N}
and
W =8"={w; ... wp|w; € Sfori=1,...,m}.

In particular, we write Wy = {0}. Set W. = Up>oW,,. For w € W,, we
define |w| = m if w € W,,,. Define Fj as the identity map. Moreover, for any
w=wi ... W, €W, define

Yo ={wlw=wiws... € L,w; =w; for any i € {1,...,m}}

and
K, = F,(K).

The following proposition is well-known. See [30, Theorem 1.2.3] for exam-
ple.

Proposition 2.4. Ny,>1 K, ., 5 a single point for any w = wiws... € X.
Denote the single point by m(w). Then m is a continuous surjection.

In fact, the triple £ = (K, S, {Fs}scs) consists a self-similar structure defined
in [30, Section 1.2]. Here we recall some of basic notions introduced in [30]
associated with a self-similar structure.

Definition 2.5. Define the critical set C and the post critical set P associated
the self-similar structure £ by

C= U (K, NKq,)
Q1,Q2€5,Q1#Q2

and

P=J~m0©).

m>1

Furthermore, we define V) = n(P).

The set Vp is though of as the “boundary” of the self-similar set K. In [30,
Section 1.2], it is shown that if w,v € W, and X, N X, = (), then

Ko N K, C Fu(Vo) N Fy(Vp). (2.10)

In the case of generalized Sierpinski carpets, the boundary V} is equal to K N
0Hy, where OHj is the topological boundary of Hy as a subset of R™.



Proposition 2.6. Let I; j; = {(x1,...,2,)|(z1,...,2n) € Ho,z; = j} fori =
1,....n and] =0,1. Deﬁne BiJ‘ = Kﬁ[i)j and Si,j = {Q|Q S S,Qﬁ[i}j 7é (Z)}
Then for any (i,7) = {1,...,n} x {0,1},

Biy= |J Fo(Biy) and Vp= U B
QES;,; i=1,...,n,j=0,1

Note that
OH, = U L.

1=1,2,...,n,7=0,1

We remark that B;, ;, and B;, j, are isometric under the natural isometry be-
tween I;, ;, and I;, ;, for any i1, i2, j1, jo and hence #(S;, ;) = #(Si, .4, )- Define
Np = #(S;,;). Then as S; ; C S, it follows that N > Np > 1.

One can easily see the following fact by (2.10).

Lemma 2.7. Define V,,, = Uyew,, Fuw(Vo) and Vi = Up>0Vin. Then for any
r € K\V., n~ () is a single point. Moreover,

sup #(r~1(x)) < 2".
zeK

By this lemma, the self-similar structure £ = (K, S, {F;}scs) is strongly
finite. See [32, Definition 1.2.1] for the definition of strongly finiteness. Further-
more, we have the following fact proven in [32, Proposition 3.4.3].

Proposition 2.8. The self-similar structure L = (K,S,{Fs}ses) associated
with the generalized Sierpinski carpet is rationally ramified.

See [32, Definition 1.5.10] for the definition of rationally ramified self-similar
structure. This fact enable us to apply results in [32] in the following sections.

Definition 2.9. Let I' C W,. Define

K(F> = UwEFKw
OK(T) = K(T)nK\K(),
K°(T') = K(I)\oK(I).
I' is said to be independent if and only if ¥, N X, = @ for any w,v € T with
w # v. If T is independent and U,er¥, = 3, then I' is called a partition of X.

Definition 2.10. Let U C K. We define 't (U) C W,,, and V,¥(U) C K for
k=0,1,... inductively by

1% (U) = {w|lw € W,,, Koy NU # 0},

Vin(U) = KT, (U)) and TpfH(U) =I5, (Vi (U)).

In particular, if U = {x} for some z € K, then we write I'y,(x) = '} (U) and
Vin(z) = V1 (U).



Remark. #(Tp(x)) < 4™

By the above definition and Lemma 2.7, we immediately obtain the next
lemma.

Lemma 2.11. Let p be a Radon measure on K. If I' C W, is independent,
then

f@uldz) < 3 /K f(@)p(dz) < 2" /K f(z)p(dz)

K(D) wel ? Kuw ™)
for any non-negative function f € LY (K, u).

Finally in this section, we define self-similar measures which form an impor-
tant class of Borel regular probability measures on K.

Proposition 2.12. Let (p;)ics € (0,1)% satisfy > ,cq pi = 1. Then there exists
a unique Borel reqular probability measure p on K such that

:U“(leu-w'm) = Hwy " Hw,,

for any wy ... wy, € W,. The measure p is called the self-similar measure with
weight (p1;)ies -

3 Standing prerequisite and notations

In the rest of this paper, we fix n,l € N and a generalized Sierpinski carpet
GSC(n,!l,S) and write K = GSC(n,[,S) and N = #(S5), where #(A) is the
number of elements in a set A. Also L is the self-similar structure associated
with K, i.e. £L=(GSC(n,l,5),5,{Fg}qes)-

Notation. (1) We use d, to denote the restriction of the Euclidean metric to
K.

(2) For a metric d on K, we define By(z,r) as the ball with center z and radius
r with respect to d, i.e. Bg(x,r) = {yly € K,d(z,y) < r}. In particular, we
write By (z,7) = By, (x,7).

(2) Define v, as the self-similar measure with weight (1/N,...,1/N). Define
dp =log N/logl. Then dp is the Hausdorff dimension of K with respect to d,
and v, is the normalized dg-dimensional Hausdorfl measure.

(3) Let u be a Borel regular measure on K. We use ||f||,,, to denote the LP-
norm of f € LP(K,pu). If no confusion may occur, we omit p in ||f||,, and
write simply ||f]]p-

4 Gauge function

In this section, we introduce the notion of a gauge function which has been
formulated and extensively studied in [32] in order to investigate geometry of
self-similar sets. In this paper, gauge functions will play an essential role as a
fundamental tool to characterize underlying geometry associated with a time
change of the Brownian motion. See Section 10 for example.

10



Definition 4.1. Let g : W, — (0,1]. We say that g is a gauge function on W,
if and only if the following two conditions (G1) and (G2) hold:

(G1) g(0) =1 and 0 < g(wi) < g(w) for any 7 € S and any w € W,.

(G2) sup,ew, gw) —0asm —0

In addition, if

(EL) There exist A, A2 € (0,1) and ¢; > 0 such that g(wv) < c1(A\1)/"Ig(w)
for any w,v € W, and g(wi) > Aog(wi) for any i € S,

then gauge function g is said to be elliptic.

If g is a gauge function, we think of g(w) for w € W, as the “diameter” of
K, under the gauge function g, although there is no associated distance under
which g(w) is the real diameter at the moment.

There exists a natural gauge function associated with a Borel regular prob-
ability measure on K. By elementary arguments, we may easily verify the
following fact.

Proposition 4.2. Let p be a Borel reqular probability measure on K. Assume
that w({z}) = 0 for any x € K and that p(K,) > 0 for any w € W,. Define
p(w) = p(Ky) for any w € W,. Then p: W, — (0,1] is a gauge function.

Definition 4.3. The gauge function constructed in Proposition 4.2 from a
probability measure p is called the gauge function associated with the measure
1. Furthermore, p is said to be elliptic if the associated gauge function is elliptic.

In Proposition 4.2, we abuse a notation by using p to denote the gauge
function associated with a measure p. We do this if no confusion can occur.
Next we define a kind of “balls” associated with a gauge function.

Definition 4.4. Let g be a gauge function on W,. Define
AS ={wlw=w; ... wn € Wi, g(wr ... wm-1) > p > g(w)}

for p € (0,1] and call {A8},co,1) the scale of W, associated with the gauge
function g. For € K and p € (0, 1], define
AS(z) = {w|w € AS,z € Ky},
Kg(w P) = Unens (z) Kuw,
(x) ={wlw € A%, K, N K§(x) # 0}
Ug(x p) = Uwers | (o) Ku-

Moreover, a gauge function g is said to be locally finite if

sup  #(A5(z)) < +o0. (LF)
z€X,pe(0,1]

The set A§ is a collection of K,,’s whose “diameter” under the gauge func-
tion g is almost p and the set UB(z,p) is a kind of “ball” with center x and
radius p. Under some conditions on gauge function, there exists a distance such
that U&(x, p) is (equivalent to) the real ball with respect to the distance. See
Section 17 for details.

The following proposition is immediate from the above definition.

11



Proposition 4.5. If g is a gauge function on Wy, then A% is a partition of ¥.

Example 4.6. (1) For w € W,, define g,(w) = =!I, g, is a locally finite
elliptic gauge function on W,.. Write A% = A%~ K*(z,p) = K& (z,p), A} 1(v) =
A% (x) and U*(z, p) = U (x,p) for any p € (0,1] and any = € K. Note that
there exist ci,co > 0 such that B.(x,c1p) C U8 (x,p) C Bi(x,cop) for any
x € K and any p € (0,1]. In this sense, the gauge function g, gives (restriction
of) the Euclidean metric d. on K. More precisely, in Definition 17.3, g, will be
said to be adapted to the Euclidean distance. Note that

Lp(z) = Aoy (z) and  Vip(z) =U"(z,I7™). (4.1)

for any x € K and any m > 0.

(2) The gauge function associated with the self-similar measure v, is given by
vi(w) = vy (K,) = N7l Recall that N = #(S). This gauge function v, is
elliptic. Moreover, for any w € W,,

g« (W)™ = vi(w).

In the next definition, we formulate two kinds of similarities with are closely
related among subsets of words.

Definition 4.7. Let I'y and I'; be independent finite subsets of W.,.
(1) We say that I'; and 'y are similar if and only if there exist a bijective map
¢ : 'y — I'y and a similitude ¢ : R® — R™ such that ¢(z) = 7™z + a for
some (M,a) € ZxR", o(K(T'1)) = K(I'z) and ¢(K,) = Ky for any w € T'y.
1 is called an isomorphism between I'y and I's and ¢ is called the similitude
associated with . Set

n(Fl, FQ) =M.

We write I'1 ~ I's if and only if I'; and I'y are similar.

(2) We say that I'; and T's are similar up to their boundaries, or B-similar for
short, if and only if T'; and I'y are similar and ¢(K°(T'1)) = K°(T'2), where
p : R® — R” is the similitude associated with the isomorphism ¢ : I’y — 'y
between I'; and I's. In this case, 1 is called an B-isomorphism between I'; and
I'; and ¢ is called the B-similitude associated with ¢. We write I'y ~ T’ if and

only if I'y and I'y are B-similar.
The following lemma is straight forward by the above definition.

Proposition 4.8. Both the relations ~ and o are equivalence relations among

independent finite subsets of Wi.

The following theorem will be the key to the proofs of Lemmas 7.6 and 20.3.
It concerns finiteness of the equivalent classes under ~ and yona restricted

class given by a gauge function.

Theorem 4.9. Let g be a gauge function. Assume that g is elliptic and locally
finite. Then {A% | (z)|lz € K,p € (0,1]}/~ and {A,(z)lz € K,p € (0, 1]}/;

are finite sets.
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Proof. Note that the self-similar structure £ associated with the generalized
Sierpinski carpet is strongly finite and rationally ramified. Therefore, by [32,
Theorem 2.2.7], g is intersection type finite. (See [32, Definition 2.2.3] for the
definition of being intersection type finite.) Since A% ,(x) ~ A%, |(y) if and only
if (p1,z) o (p2,y), where Y is defined in [32, Definition 2.2.11], the finiteness

of {A%(2)|z € K,p € (0,1]}/~ follows from [32, Theorem 2.2.13]. Note that

Aﬁhl(sc) ~ A%zjl(y) if and only if A%hl(a:) ~ A§2,1(y) and ©(OUE(z,p1)) =

OU8(y, p2). Since g is intersection type finite, once an equivalence class of
Aﬁ)l(w) is fixed, then there exist only finite number of possibility in choosing
the boundary of U&(p,z). Hence we deduce that the number of equivalence
classes of {A% |z € K,p € (0,1]} under ~ is finite as well. O

5 The Brownian motion and the Green function

In this section, we are going to review the basic results on the Brownian motions
on generalized Sierpinski carpets by Barlow-Bass[4, 5, 6, 7, 8, 9] and study
properties of the associated Green function and Dirichlet heat kernels. As we
have stated in the last section, K is always a generalized Sierpinski carpet, v,
is the normalized Hausdorfl measure and d, is the (restriction of) Euclidean
metric. The following theorem is a collection of Barlow-Bass’s results.

Theorem 5.1. There exist v, € (0, N) and a local regular Dirichlet form (€, F)
on L?(K,v,) such that uoFg € F for any u € F and any Q € S and

1
E(u,v) = — > E(uo Fy,vo Fy). (5.1)
* Qes

for any w € F. The diffusion process ({Xi}i>0, {Pr}eck) associated with this
Dirichlet form is called the Brownian motion of K. Moreover, there is a jointly
continuous transition density/heat kernel p(t, x,y) associated with the Brownian
motion, i.e. p(t,x,y) is positive and continuous on (0,00) x K x K and, for
any bounded Borel measurable function f: K — R,

E(F(X0) = [ plt.2,) f(0)v-(dy)
K
for any x € K and any t > 0. Let

log N
o8 and  dy,

B _log N —logr.
~ “log N —log s B logl '

ds

Then there exist ¢t 5, c2 5, ¢3 5, ¢t 5 > 0 such that

1 du \ To=T
cr |JJ _ y| w \ dow—1
tdi/22 €xXp ( _Cg.Q (t) Sp(tax7y)

3 dw ﬁ
C5.2 4 |z —y w
< 1d./2 exp <— Cs5.9 (t) ) (5.2)




for any t € (0,1] and any z,y € K. Moreover, (€, F) satisfies elliptic Harnack
inequality with respect to d., i.e. there exists ¢ > 0 such that if u is positive and
harmonic on By (x,2r), then

sup  u(y) <c inf  u(y). (5.3)

yEBq, (z,1) yEBa, (z,7)

The constants dg and d,, are called the spectral dimension and the walk
dimension of the generalized Sierpinski carpet respectively. In [9], Barlow and
Bass have shown the transition density estimate (5.2) for the Brownian motions
on Sierpinski carpets. Later in [10], the self-similarity of the Dirichlet form
(€, F), (5.1), has been established along with the uniqueness of a local regular
Dirichlet form with local symmetries. In this paper, (€, F) is always the unique
local regular Dirichlet form on L?(K,v.) associated with the Brownian motion
given in the above theorem. The constant r, in (5.1) is called the resistance
scaling ratio.

As we mentioned in the introduction, if r. € (0, 1), then (£, F) is a resistance
form. In such a case, time change has been studied extensively in [33]. In this
paper, we will study the remaining case. Namely, we always assume that r, > 1
hereafter.

By [9], we have additional properties of (£, F) and p(t, z,y) as follows.

Proposition 5.2. Let H be the non-negative self-adjoint operator associated
with the Dirichlet form (€,F) on L*(K,v.) and let Ty = e~ H*.

(1) {Ti}+>0 is ultracontractive.

(2) There exist {\; }i>1 and {¢;}i>1 C L*(K,vy) such that \j =0, 0 < \f <
Aipq for any i > 2, lim;_oo A} = oo, ¢; € Dom(H) N C(K), {¢i}i>1 is a
complete orthonormal system of L?(K,v.) and H; = \f; for any i.

(3)
p(t,x,y) = Ze_)\:twl(‘r)wl(y) (54)

where the right-hand side converges uniformly and absolutely on [L,00) x K x K
for any L > 0.

(4)
sup  p(t,x,y) < +oo.
t>1,(z,y)EK?

(5) Ifue C(K), then ||Tyu — ul|lc — 0 as t | 0, where || f||oc = sup,cg |f()]
for f: K — R.

Next we define the y-order resolvent kernel g, (x,y).

Definition 5.3. Let v > 0. Define

gw(x,y)=/ e p(t,x, y)dt
0

The resolvent kernel g, has singularities at = y. The order of the singu-
larities of g, is given by the following function h(z,y).
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Definition 5.4. Define

_ log 7,
~ logl
and
|z —y| ™ if >0,
h = J—
() —log v — vl if o =0.

Vne
Recall that we always assume r, > 1. As a consequence, it follows that
a > 0.

Remark. Let a = 0. Note that | — y| < y/n and hence h(x,y) > 1. Define
h«(x,y) = max{—log |z — y|,1}. Then there exist ¢, ca > 0 such that

clh*(xay) S h(may) S CQh*(x7y)
for any z,y € K.
Lemma 5.5. For any vy > 0, there exists c(y) > 0 such that

9+(@,y) < c(V)h(z,y)
for any x,y € K.
Proof. This is immediate form (5.2) and (4) of Proposition 5.2. O

Let U be an open subset of K. We introduce the Brownian motion which is
killed upon exiting U. Define Dy = {ulu € F N C(K),u|g\v = 0}. We define
Fu be the closure of Dy with respect to the inner-product &(u,v) + [, wvdv,.
Note that Fyy C F and that u(z) = 0 for v,-a.e.z € K\U. Hence Fy is regarded
as a subspace of L?(U, v|r). Define &y (u,v) = €(u,v) for any u,v € Fy. Using
the results in [19, Section 4.4], we see that (Ey, Fy) is a local regular Dirichlet
form on L?(K, v.). We denote the diffusion process associated with the Dirichlet
form (Ey, Fu), which is called the Brownian motion killed upon exiting U, by
({PY}vex, {XV}i>0) and the corresponding expectation by {EY}.

Lemma 5.6. Let I' C W, be finite. Assume that K°(T') is connected. Let
U = K°(T'). Then the Brownian motion killed upon exiting U has a jointly
continuous transition density py (t,x,y) on (0,00) X K x K which satisfies:
(a)
0< pU(tv z, y) < p(tv z, y)
for any (t,z,y) € (0,00) x U x U.
(b) pu(t,z,y) =0 if eitherx ¢ U ory ¢ U.
Moreover if U # K, then

o0
gU(xay) :/ pU(tax7y)dt
0
s continuous on K X K and positive on U x U. There exists c5.5 > 0 such that

9Y (z,y) < cs.5h(z,y) (5.5)

for any x,y € K.
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Remark. The constant c55 only depends on I'. To clarify the dependence, we
use ¢5.5(T") in place of c5 5, if necessary.

Definition 5.7. For a measurable set U C K, 7y is the exit time from U
defined by 7y = inf{¢|t > 0, X, ¢ U}.

Proof of Lemma 5.6. The existence of jointly continuous transition density is
due to [9, Proposition 6.15]. In fact, the case considered in [9, Proposition 6.15]
corresponds to the case where T is a single word. One can easily adapt, however,
the arguments in the proof of [9, Proposition 6.14] to our situation. By the
similar modification of the arguments in [9], it follows that

pultzy) =3 e Nl (@)p! (y)

i>1

where {\VY};>1 is a monotonically increasing sequence of non-negative numbers
with lim; o, AV = 400 and %Y is an eigenfunction with the eigenvalue AV of the
self-adjoint operator associated with the Dirichlet form (£y, Fyy) on L*(K,v,)
whose support is in K(T'). Moreover, Y is continuous on K and {¢Y};>1
is a complete orthonormal system of L?(K,v.|y). Now, if py(t,z,2) = 0 for
some r € U and some s > 0, then ¥Y (x) = 0 for any 4 > 1. This implies
pu(t,z,z) =0 for any ¢t > 0. Since [, pu(t, z,y)?v.(dy) = p(2t, z, x), it follows
that p(t,z,y) = 0 for any y € K and any ¢ > 0. On the other hand, the same
argument as in the proof of [9, Proposition 6.20] shows that py (¢, z,y) > 0 if
| — | is small enough. Therefore, py(t,z,2) > 0 for any t > 0 and any = € U.
Now, the same discussion as in the proof of [30, Proposition 5.1.10] yields the
positivity of py (¢, z,y) if both z and y belong to U.
Next assume that K # U. Then v, (K\U) > 0. This implies

inf p(t, z,y)v.(dy) > 0.
zeU K\U

Denote the above infimum by 0(t). Hence

P.(ry >t) = /KpU(t,x,y)u*(dy) <1- /K\Up(t,a:,y)u*(dy) <1-46(t)<1.

By the Markov property,

/K pu(kt . y)uldy) < (1 5(t))".

for any x € K. Hence as k — oo,
pU(2kt7.'I},.’17) = / pU(ktamay)Qu(dy) < C/ pU(kt7xay)p’(dy) — 0,
K K

where ¢ = sup,, ¢ pu(t,=,y). On the other hand, if AV = 0 for some i, then
pu (kt,z,z) > Y (x)? for any k > 0. Therefore, we conclude that A > 0. This
shows that there exists A > 0 such that

pu(t,z,y) < Ce ™
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for any z,y € K and any t > 1. Combining this fact with the transition density
estimate (5.2), we obtain the continuity and the estimate of gV (x,%). O

Strictly speaking, py(t,x,y) and gY(x,y) is defined if U is an open set.
We abuse notations, however, and define px (¢, z,y) = pgor)(t,x,y) and
9" M(a,y) = g™ Dz, y).

In the rest of this section, we investigate properties of the heat kernel
PB.(z,r)(t,7,y) and the Green function gB@8) (2, y) near the diagonal part
{(z,2)|r € K?}.

Lemma 5.8. There exist c2 g € (0, ] and c} ¢ > 0 such that if R < diam(K, d,.),
r € K and |z —y| < 2 4R, then

1
C
tdi% < pB*(z,R)(tvxay) (56)

for any t € [|x — y|dw,2(c§_6R)d“’} .

Proof. Let R = diam(K,d,). By the heat kernel estimate (5.2), standard argu-
ments as in [23] or [32] imply that there exist ¢} -, c2 . > 0 such that

) (5.7)

for any r € (0,R] and any ¢t > 0. If R < R and y € B.(z, R/2), then by [23,
Theorem 10.4], we see that

d 1
N T =T
Pﬂc(TB*(z,r) < t) < céjexp < - cg.?( n )

p(t,2,y) < pB.(a,r) (2, y) + Po(TB, (2,p) < 1/2) sup sup  p(t,v,y)
s€[t/2,t] vE By (z,R+e€)

+ Py(TB, (y,r/2) < t/2) sup sup p(t,x,u).
s€[t/2,t] uEB. (y,R/2+¢€)

Using (5.2) and (5.7) and letting € — 0, we see that there exist positive constants

ct s and ¢ ¢, which are determined by ¢ 5, cl ; and ¢2 -, such that

o 2 |9C—y|d“’ ™=
ko (-

<pB.(,R) (T, Y) + tds. 5 EXP | —C58 (t) (5.8)

for any ¢ € (0,1]. Choose positive § so that

dw

1
cé,8 exp ( — cg'gédwﬂ) < 0572 exp ( — c§‘2) (5.9)

max {(E)dw : 2dw1} <. (5.10)
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Define ci ¢ = Cé7-2exp (—¢Z,). By (5.8) and (5.9), if £ > § and 7‘:’37%'% <

dy R 2 Ly\Vde

w251, then (5.6) holds. Set 2 = (55) - Since
0 < R <R, (5.10) implies that £5 = 2(c2 R)™ < 1. Also by (5.10) we have
g6 <1/2. =

1, ieif t € [\x —y

Lemma 5.9. Let R = diam(K, d,).
(1) Suppose o > 0. There exists cs.11 > 0 such that if R < R, x € K and
|z —y| < 2 4R, then

csh(z,y) < g% @B (a,y). (5.11)

(2) Suppose o = 0. There exists cs12 > 0 such that if R < R, x € K and
|z —y| < 2 4R, then

€z Y B.(z,R)

h(i 7) < , 5.12
C5.12 Z R E.R) ™ g (z,9) ( )
Proof. If |z — y| < 2 4R, then 2|z — y|% < 2(c2 ¢R)%. Hence by Lemma 5.9,
(5.6) holds for t € [|x — y|%, 2|z — y|9»]. This implies
2l

C% 6
tds./2 dt (5.13)

gB*(I’R)(w,y):/ pB*(w,R)(t,x,y)dtZ/
0

|z —y|dw
Assume o > 0. Recall that oo = dy,(ds/2 —1). Hence by (5.13), we immediately

obtain (5.11). If a = 0, then dg = 2 and (5.13) implies ¢gZ+(® ) (z,y) > log?2.
Since (5.6) holds for ¢ € [|z — y|%»,2(cZ 4 R)?], we see that

2(cg s R)M 1 _
PR (5 ) > / 8 gt — _d,, log Iﬂﬂ2 Yl 4 log2.
|z—y|dw c5.6R
Now (5.12) follows by a routine calculation. O

6 Time change of the Brownian motion

In this section, we are going to study under what kind of measures one can
constructed time changed process of the Brownian motion. The main tool is
the potential theory based on Dirichlet forms presented, for example, in [19]. As
in the last section, K = GSC(n, [, S) is a generalized Sierpinski gasket and (€, F)
is the Dirichlet form associated with the Brownian motion on K. Moreover, we
only consider the case where r, > 1 and hence a = logr,/logl > 0.

In this section, we assume the following property.

Assumption 6.1. [ >4

This is a technical assumption to make several statements, conditions and
proofs simple. Even if [ = 2 or 3, by modifying technical arguments properly,
all the theorems in the rest of this paper hold without any change.

For example, under the above assumption, we have the following fact which
makes our discussion slightly simpler.
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Lemma 6.2. For any s € S, there exists s’ € S such that K, N Ky = ().

The quantity h,(w) defined below plays a crucial role in this paper. Since
h(z,y) has the same singularity as the Green function, h,(w) corresponds
roughly to the escape time from K,. The square of h,(P) will be show to
behave as the Poincaré constant in Theorem 9.1 for example.

Definition 6.3. Let p be a Borel regular probability measure g on K. We
define

hy(w) = Sup/ h(z,y)pu(dy).

e K, w

for any w € W,. Moreover, define a Borel regular probability measure 1, on K
by pw(A) = u(Fy(A))/pu(K,) for any Borel set A C K. Set

Mp(K) = {u|p is a Borel regular probability measure on K,
w(Ky) > 0 for any w € Wy, u({z}) =0 for any x € K
and h,(0) < 400}

Note that if p € Mp(K), then h,(w) < 400 for any w € W.,.
We immediately have the following lemmas by direct calculations.

Lemma 6.4. (1) If a > 0, then h(Fy(z),Fy(y)) = (ro)"'h(z,y) for any
we W, and any z,y € K.
(2) Ifa=0, then
hz,y) = h(Fu(x), Fu(y)) — [w|logl
for any w € W, and any z,y € K.
Lemma 6.5.
1
——h,(w) ifa>0,
huw((z)) = (r*)‘wlﬂ(Kw) g

for any p € Mp(K) and any w € W,.
Proof.

1 —1
. Pl pmata) = s [ b () )

Now Lemma 6.4 suffices. O

Lemma 6.6. Let v be a Borel regular measure on K with v(K) < 4oo. If
S Wz, y)v(dz)v(dy) < 400, then v is of energy finite integrals or equivalently,
belongs to the class Sp, which is defined in [19, Section 2.2]. Moreover, if
hy (D) < 400, then v € S and, for any compact subset M of K,
M
Cap(M) > V(M) , (6.1)

sup [ gi(z,y)v(dy)
xeM JM

where Cap(-) is the 1-capacity defined in [19, Section 2.1].
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Proof. Set (Gyv)(x) = [ gy(x,y)v(dy) and let a; = [ (Gyv)(x)i ()i (dx),
where 1); is an elgenfunctlon of H appearing in Proposition 5.2. Then by Fubini’s
theorem,

0 = / N | [ ettt doptaa
_ / h /K e—ﬁ“fwi(y)u(dy):@ /K Gily)(dy)

Since the convergence in (5.4) is uniform, it follows that

N —(v+A)L
A e—’ytp(t, x, y)dty(d.’lf)l/(dy) v+ )\* (/ ,(/Jl ) .

= 1

Letting L | 0, we obtain

/Kgy(x,y)u(dx)l/(dy) +/\* (/ Yi(z)v(dx) > < 400

This implies

Z:/\;‘(ai)2 < /Kgfy(x,y)y(dx)u(dy) < 4o00.

Therefore, Gov € F. Let u = Y, bithi € L*(K, vs).

EV(Gyv, Thu) = Z(/\* +7)abie™ Z/ by ()v (d)

i>1 i>1

Now by the same argument as in the proof of Lemma 10.9, there exist a,c > 0
such that ||1;]|cc < ¢(AF)® for any ¢ > 1. Note that |b | < ||ul|2 for any i > 1 by

the Schwartz inequality. This implies that Ez>1 e~ Nitbsp; converges uniformly
on K for any ¢ > 0. Therefore,

&,(GA,V,Ttu):/K(Ttu)(:v)y(dm)

In particular if u € F N C(K), then by Proposition 5.2-(5), we have

&,(le/,u):/Ku(x)u(dx).

By [19, (2.2.2)], we see that v € So. If sup,cx [; h(x,y)v(dy) < +oo, then
Lemma 5.5 shows that G,v is bounded for any v > 0. This immediately implies
v € Spo. If M is compact, then vy belongs to Spg as well, where vy (A4) = v(AN
M) for any v-measurable set A. By [19, Problem 2.2.2], we obtain (6.1). O
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Definition 6.7. Define M%C(K) by

MEC(K) = {ulp € Mp(K)and P,(ry) =0 for any = € K,
where Y is the quasi-support of p.}

Now we use the theory of Dirichlet form and see that time change is possible

if e MEC(K).

Theorem 6.8. If u € MEC(K), then we have a local regular Dirichlet form
(&, F,) on L*(K, p) corresponding a time change of the Brownian motion. More
precisely, let F,, be the completion of FNC(K) with respect to the inner product
Epi(u,v) = E(u,v) + [ uwvdp. Then (€,F,) is a local regular Dirichlet form
on L?(K,u).

Proof. By Lemma 5.5, g1(x,y) < v(1)h(z,y). Hence sup,¢x fK g1 (z,y)u(dy) <
v(1)h,(0). Hence by Lemma 6.6, we see that

Y(Dhy(0)Cap(M) > (M)

for any compact set M C K. Hence u charges no set of 0 capacity. Moreover,
P.(ry =0) =1 for any « € K, where Y is the quasisupport of . Using these
facts and following the general theory of Dirichlet forms in [19], we verify that
(€,F,) is a local regular Dirichlet form on L2?(K, ). See detailed discussion
after Lemma 2.5 of [11]. O

We use ({X}'}i>0, {P!}2cx) to denote the diffusion process associated with
the Dirichlet form (£,F,) on L?*(K,u) and E¥ to denote the corresponding
expectation. Let U be an open subset of K. Define Dy = {uju € Fn
C(K),u|lg\v = 0}. We define Fy,,, be the closure of Dy with respect to the
inner-product &(u,v) 4 [}, uvdp. Note that Fy, € F, and that u(z) = 0 for
p-a.e. x € K\U. Hence Fys,, is regarded as a subspace of L?(U, u|y). Define
Eu,p(u,v) = E(u,v) for any u,v € Fy,,. Using the results in [19, Section 4.4],
we see that (£p,,,Fu,,) is a local regular Dirichlet form on L*(U, u|y). We
denote the diffusion process associated with the Dirichlet form (Ey,,, Fu,u) by
(X7} im0, {PY"}er) and the expectation by {EV+}.

The next theorem gives a sufficient condition for a measure u to belong to

M (K).
Theorem 6.9. Let p € Mp(K). If

oo

N(Km w 5)(7”*)m .
f m —
Z: ;25 hyu(wr ... wps) oo ifar>0,

(6.2)
£ M wy. me) _ . _
E m in ——+oo ifa=0

s€S hy (w1 ... wms)

for any w = wiwy ... € X, then p € MITDO(K),
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To prove the above theorem we need the following lemma, which is a conse-
quence of Assumption 6.1.

Lemma 6.10. Let x € K and let w € W,,,. Suppose x € K,,. Then there exists
s € S such that Kys N Viao(z) = 0.

Proof. There exists i € S such that x € K,;. By Lemma 6.2, we find s € S
which satisfies K,,; N K,,s = 0. Then sincel > 4, it follows that K,,sN\V,,42(x) =
0. O

Proof of Theorem 6.9. First we show that if A is a measurable set with u(A) =
1, then for any z € K,

Zle(r*)mcap(Am(m)) = +00 if a> 0’
Zanl mca‘p(Am(x)) = 400 ifa= 0’

where A, () = AN (Vi—2(2)\Vin(z)) for m > 2.
Assume that « > 0. There exists a compact subset M of AN K, such that
w(M) > u(AN Ky)/2. Note that u(K,) = u(Ky N A). Then

(6.3)

1 . (D —L 1w < 2¢(1) (@)
7 | () < () w) < 2e(1) 2
By (6.1), we obtain
1 p(Kw)

Cap(K,, NA) > Cap(M) >

for any w € W,.
Fix w € ¥ which satisfies m(w) = x. By (6.2), we have either

e 2k+1

Z inf Py waigrs) (T) =400
SES hu(wl..-w2k+15)

=0

or k
e} 2
Z inf ,Uz(le...Wka) (’I“*)

s€S  hy(wr ... wos)

= 400

Assume the latter. By Lemma 6.10, for any k > 1, there exists ¢ € S such that
le___u,%72i - ng_g(:c)\ng(:c). Set w(k) = wi...wak—2. Then

1 p(Kop(rys) ()"
2¢(1) Ry (w(k)i)
1 (K (i) (74) 2
(

() Cap(Aai(x)) = (r)*" Cap(A N Ky ri) 2

2 e(1) sHelg hy(w(k)s)

2
Summing these up from k£ = 1 to oo, we obtain (6.3). The case where a = 0
can be shown by entirely the same arguments.
Now, (6.3) enable us to use the classical Wiener test argument and show
that P, (1y) =0 for any « € K, where Y is the quasi-support of p. See detailed
discussion after Lemma 2.5 of [11]. O
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The rest of this section is devoted to finding more effective sufficient condi-
tion for (6.2). If one has information on order of decay of u(K,,) as |w| — oo,
the next lemma is of some use to calculate the value of h,(w).

Lemma 6.11. Let w € W,.. Assume that there ezist f, : N — (0,1) such that

W Kwo) < follv))p(Ky) (6.4)
for anyv e W,. If a > 0, then

h(w) < cosu(K. \wlzr* fuwlk (6.5)
If a =0, then
hu(w) < co.on(Ku) ((w] + 1) wa > kfu®).(66)
k=1

The constants cg.5 and cgg are independent of p and w.

Proof. Note that
oyl =1 (6.7)

for any x € K, any m > 0 and any y ¢ V,,(x). Write |w| = m. Assume a > 0.
By (6.7), we have

/ h(z, y)u(dy) = Z/ h(w, y)u(dy)
Ky wN Va4, (2)\Vin k41 (2)

o oo

Z D (Vo () 0 Ky) < AN (I Zlo‘(m+k+1)fw(k)

=0 k=0

for anyr € K,. The constant 4N appears in the above inequality because
{v|lv € Witk+1, Ko C Vipyr(z)} contains at most 4" N elements. If o = 0,

/ h(z,y)u(dy) = Z/ h(z,y)p(dy)
w KoVt (2)\Vint k1 ()

<> ((m+k+1)logl + log v/ne) (Vi sk (x) N Koy
k=0

<4"Np(K f: (mlogl+ (k+1)logl) fu, (k)
k=0
< 4" N (log Du(Ko) ((m + 1+ log viie) Y fulk) + > kfulk)).
k=0 k=1
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The following lemma gives a simple sufficient condition for (6.2).

Lemma 6.12. Let p € Mp(K). Let {pm}m>0 satisfy

K
max P Ews) <o
weW,,,seS H(Kw)

for any m > 0. Set 0., = pop1 -+ pm—1 for m > 1. If

Z ko < 400 in case a = 0,

k=1 (6.8)
Z(r*)kék < +00 in case o > 0,

k>0

then (6.2) is satisfied and hence p € MEC(K). Moreover, if (6.8) is satisfied,
then

C6.6 Z (k+1)dk n case a = 0,
B, (w) < kam 6.9
ulw) < C6.5 Z(T*)|w|+k(5|w|+k in case o > 0 (6.9)
k>0

and
Zkzo(k + 1)0)w|

C6.6 5 in case a = 0,
hu, (0) < o (6.10)
C6 5¥ Z(r WS in case o > 0.
’ (T*)‘w|6\w| k=0 " ol

As is shown in Example 8.7, if (6.8) is satisfied, then the resolvent operator
associated with the time changed process is a compact operator on L (K, u).

Proof. We present a proof for the case a = 0. For the case a > 1, the results
follows by entirely analogous discussion by using (6.5). If & = 0, then

(Epw) < 22 (6.11)

for any w,v € W,. By Lemma 6.11, if m = |w|, we have

hu(w) < cs6 5 Kw)
m k+ 1)
< cG,GZ’“Z;—)u(Kw) <ces Y (k+ 1) (6.12)
m k>m
Since p,, > 1/N, we see that
Sk+1)d= Y kot Y S+ (m+1)im
k>m k>m+1 k>m+1
<2 > kbp+ (m+1)0maN<(N+2) > ki
k>m+1 k>m+1
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Using Lemma 6.13, we see that

< cs.6 m min —& = +4o00.
N +2 mZZ:l ZkZerl k&k mzzl wEW,, /J(Kw)
This yields (6.2). Hence Theorem 6.9 implies that u € MEY(K). Since
oK) = (K ) /(o) (6.11) inaplies

o w|+|v
fw(K,) < \5| vl
vl
This and Lemma 6.11 yield (6.10).
O
Lemma 6.13. If Zn21 a, < 400 for a positive sequence {an}n>1, then
S Om L
oo ZkZm-i-l Ok .
Proof. Let b, = m and let A,, =), ai. Then
Z by, > Zlog (14+0b;) =log A; — log A,,.
i=1 i=1
Since A,, | 0 as m — oo, we have Zk21 by, = +o0. O

Making use of Lemma 6.12, we may observe how slow decay of u(K,,) as
|w| — oo can be in order to have time change possible in the next example.
Note that p,, can be chosen as maxyew,, ics (Kuwi)/p(Kw)-

Example 6.14. We use the same notation as in Lemma 6.12. Assume o = 0.

Set
1

= f2te
for some € > 0. Then ké, = 1/k'T¢. Hence
1
> kbp < —
mE
k>m+1

By Lemma 6.12, we have yu € MLEC(K). By (6.11), there exists ¢§ ;3 > 0 such
that

Ok

1
hu(w) < Cé.13w (6.13)

for any w € W,. Moreover, by (6.12), there exists ¢.14 > 0 such that
hyuy (0) < coa|w]?. (6.14)
for any w € W,.

In the above example, we only present the case when a = 0. If a > 0, we
set 0 = () "z Then it follows that h,(w) < ¢/|w|® and hy,, (0) < c|w|.
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7 Scaling of the Green function

If two domains in K are similar to each other, by scale and translation invariance
of the Brownian motion, the Green functions of those domains are expected to
have simple relation. In this section, we are going to rationalize such an intuition
and give upper and lower estimates of integration of the Green function, which
corresponds to average exit time of the time changed process from the boundary,
by means of h,(w)’s.

We start with exact definition of the similarity of domains.

Definition 7.1. Let I'; and I'y beB-similar independent finite subsets of W, let
¢ : T'; — I'y be the B-isomorphism between I'y and I'y and let p(z) = "Mz +a
be the associated B-similitude from K(I';) — K(T'2). We define

T'L(Fl, Fg) =M.
The following lemma is straight forward by the above definition.

Lemma 7.2. For any equivalence class C under ot there exists I'y € C such
that n(T'x,T) > 0 for any T € C.

Definition 7.3. (1) For an independent finite subset of W,, we denote the
equivalence class of I" under the equivalence relation > by [T].

(2) Let C be an equivalence class under ot An element I', € C is said to be
maximal if n(Tx,T’) > 0 for any T € C. Define Ig(C) = maxyer, |w|, where T,

is a maximal element of C.

Remark. There can be more than one maximal element in an equivalence class
C under ~.
B

Now we give relations between Dirichlet forms and the Green functions on
B-similar domains.

Lemma 7.4. Assume that I’y and T's are independent finite subsets of W, and
Iy > I's. Let vy : T'y — T’y be the B-isomorphism between I'y and 'y and let

p: K(I'1) — K(T'3) be the associated B-similitude.
(1) For any u,v € Fror,), uo@,v0 @ € Fror,) and

Exory(uop,vop) = (T*)n'(rl’FQ)gKo(FQ)(U’ v) (7.1)
(2)

gKO(Fl)(x’ y) = (T*)—n(Fl,FQ)gK"(FZ)(()D(x)’ o(y)) (7.2)
for any x,y € K.

Proof. Set U; = K°(T';) for i = 1,2. Note that n(I'1,T'2) = | (w)| — |w| for any
w e Fl.
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(1) By (10.3),

1
5U1(UO<P7UO‘P):Z ( E(UOWOFUHUO(:DOFHJ)

wely T*)lw‘

= Y Al |w| ) € (0 Fy(u), v 0 Fyuy)

wel'y
=r (FI’F2)5U2 (u,v)

(2) Let G' =G fori=1,2, ie.

(Giu)(z) = /U 6% (@, y)u(y)vs (dy)

for any u € L?(U, v.|v,). Recall that G'u € Fy, is also characterized by
8U¢(Giuv v) = (uv V),

for any v € Fy,, where (u,v)y, = [, w(z)v(z)vi(dz). Let u € L*(Us,vilu,)-
Then for any v € Fy,, by (7.1) and the deﬁnltlon of G, we have

(r)" T2, (GHuop)) oo™t v) = Eu, (GHuo ), v o)
= (uop,vo@)y, = N2 (y v)y, .
Hence G?u = (r,/N)"TtI2) (G (wo ¢)) o o=, Therefore

r

/Uz 9V (2, y)u(y)vs(dy) = (];)n(m’m/w 9" (o7 (@), y)ule(y))vs(dy)
= ()" T [ g o @) )l ).
Uz

This immediately imply (7.2). O

Next lemma shows an estimate of integration of the Green function by means
of the sum of h,(w)’s over I'. The important point is that the constants in the
estimates (7.3) and (7.4) only depend on the B-equivalence class of T'.

Lemma 7.5. Let C be an equivalence class under ot Assume that 0K (T) #

for any/some T € C. Let T, be a mazimal element of C.
(1) In case a >0, if T € C, p € MEY(K) and v € K°(T'), then

K°(T)
g dy) < cs.5( Ry 7.3
S8 O nt LY (73)

wel

(2) Incase a=0,ifI' €C, pn € MEY(K) and x € K°(T), then

/KO(F) 9" O (@, y)p(dy) < 55(002) Yy, (0) + (Jw] = n(Ts,T)) log (Ko
wel’ (74)
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Proof. Let ¢ : Ty — T be the B-isomorphism and let ¢ : K(T'y) — K(T') be the
associated B-similitude. Set U, = K°(T'), U = K°(T") and m = n(T,T"). Since
. is maximal, it follows that m > 0 and hence [¢p)~!(w)| = |w| — m for any
w eI By (7.2) and (5.5),

97 (@,y) = ()" g% (07 H(2), 071 (y) < e55 (L) () "™ (), 07 () (7.5)
If « > 0, then by Lemma 6.4 and (7.5), we have
9" (z,y) < ¢5.5(T)h(z, y).
Hence
/g (z,y)(dy) < c5.5(T /hxy p(dy) < cs5.5(0 Zh“
U wel’
If = 0, then we have
9" (x,y) < e5.5(0s) (@, y) — mlogl).

Hence

< es5(L2) Zwu(w) — mloglu(K.,)).

wel
By Lemma 6.5, we obtain (7.4). O

Next we focus on special class of subsets {V,,,(z) } ;>0 ek, which constitutes
a kind of standard system of neighborhoods. Note that V,,,(z) = Uyer,, (2) Kw-

Lemma 7.6. {T',,(x)|z € K,m > 1}/; is finite.
Proof. As we have seen in Example 4.6-(1), the gauge function g.(w) = 1=1*l is

locally finite and elliptic. Due to (4.1), Theorem 4.9 yields the desired conclu-
sion. U

By the above lemma, we have an uniform upper estimate of integration of
the Green function of V;,,(x).

Lemma 7.7. There exist cr.¢,c7.7 > 0 such that

/V()gv’i/(z)(y,Z)u(dZ)ScTG > hu(w) (7.6)

wEFm(w)

and

[ 0 < (o b )"Vl ()
Vin ()

wET, ()

for any x € X, any m > 1 and any y € V5 ().
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Proof. By Lemma 7.6, it follows that {T';,(z)|z € K,m > 1}/; ={Cy,...,Cx}.

Let T'; € C; be a maximal element of C; and define ¢7.6 = max;=1,..  ¢5.5(I).
Then Lemma 7.5 immediately shows (7.6). For o > 0, (7.7) is obvious by
Lemma 6.5. Assume o = 0. If T'p(z) € C;, then |w| — n(T;,Tin(z)) <
Ip(C;). Note that h,,(#) > logl — 1. Since there exists ¢; > 0 such that
x + max;=1,, Ip(C;)logl < cix for any = > logl — 1, (7.4) and Lemma 2.11
yield

/V ()gmm(y,z)u(dz)gc ST b 0" u(Ky)

WL, ()

< on hy, (D) (Vy, ,
< 2% max hy, (D)u(Vin())

where ¢ > 0 is independent of u, z,y and m. O
Finally, we obtain an uniform lower estimate as well.
Lemma 7.8. There exists cz.g > 0 such that if x € K and V,,,(x) # K, then
cra(r)™ < ") (2, y) (7.8)

for any y € Vipy1(z).
Proof. Fix C € {T'y,(z)|z € K,m > 1}/3 and choose a maximal element I', of
C. Then I'y C W,,, for some m,. Set
U= V. 11(2)|z € K, Vi, (2) = K(I',)}.
Then U is a finite set. Hence

: : K°(Ty)
gt (Lm0 ) >0
Define L(C) as the above infimum.

Now assume that I',,, (z) € C. Let ¢ : I'y, — T, () be the B-isomorphism and
¢ : K(T'y) — Vpu(z) be the associated B-similitude. Then m, = m — n(T,,T)
and K(I'y) = Vi, (90_1(33)) and I'x =Ty, (‘P_l(x))~ By (7.2),

inf V(@) €L, = (I« (1) inf Ko (o=t z),z
yEVmH(I)g (@) = () zeVm,*+1(<P’1(ac))g (¢ (@), 2)
> L(C)(ry)™ ™
Since L(C)(r.)~ ™= only depends on C, Lemma 7.6 implies (7.8). O

8 Resolvents

In this section, we study resolvents associated with time changed processes. The
aim is to find a usable sufficient condition for the compactness of resolvent as
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an operator from L™ (K, u) to itself. Throughout this section, we assume that
p € MEC(K). Recall that by Theorem 6.8, this assumption holds if (6.2) is
satisfied. _ _ B _

For simplicity, we write P, = P* X, = X}, PY = PUV+ E, = E! and
BU — pUs.

By [9, Theorem 5.9], we immediately have the following lemma from the
elliptic Harnack inequality.

Lemma 8.1. There exist k € N, ¢;1 > 0 and £ > 0 such that

[h(z) = h(y)| < erle —y[51" sup  |h(z)]
TEVm (x0)

for any m > 0, any xg € K, any harmonic function h on V,,(z¢) and any
T,y € Vingr(wo).

Next we define resolvent operators associated with the time changed pro-
cesses ({X¢}i>0, {Pr}oer) and ({X{ }is0, {Py Yoek)-

Definition 8.2. Let v > 0 and let U be an open subset of K. Define
~ 0 ~ - TU -
(@@ = E( [ 5 (Rit) and (@r i) =Bl [ e s (Royie)
0 0

for any bounded measurable function f : K — R and any = € K. If no confusion
may occur, we use G and Gg to denote G% and Gg’” respectively.

We do not define G, nor Gf/] merely as a operator on some LP-space. Instead,
(G, f)(z) and (GY f)(z) are determined for every = € K.

Proposition 8.3. Let A be an open subset of K. Then, for any v > 0,
Grf(w) = G (@) + Eale 7 GH f(Xr)).
Proof.

G () = B, ( / e f@)dt)

EI(/OTA evff()?t)dt) + Ey(/: e”tf()N(t)dt)

E( /0 "t f(f(t)dt) +E, <ew /0 et f(f(mt)dt)

Let F;, be the o-algebra associated with 74. Since e™7™4 is F,,-measurable,
we have

B [Tt Eenie) =B (B (e [Tt F iz ) )
0 0

:Ex (G_WTAEI ( /Oo e_fytf(j(vaA+t)dt|]:7-A)>
0
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(See [12, (1.12) Proposition| for example.) Using the strong Markov property,
we may continue the above equality:

=i (e ([T etiR0)) = B (R,

Lemma 8.4. There exists ca > 0 such that if V,(x) # K, then

B < &
y(TVnL(I)) = C2 wérl—l‘i}fm) ! (w)

forany x € K, any m >0 and any y € V().

Proof. Using the fact that T',, (x) < 4™, we obtain this lemma immediately from
Lemma 7.7. O

Next lemma is the main result of this section.

Lemma 8.5. Assume that

n}gnoo Jnax hy(w) = 0. (8.1)

Then there exist cgo > 0 and a monotonically increasing continuous function

F :]0,00) — [0,00) with F(0) =0 such that for any v >0,

(G ) (@) = (GL )] < esa(l+77 ) F(Jz = yD)|I ]l (8.2)

for any bounded measurable function f : K — R and any x,y € K, where

£ lloe = sup,ex 1f ()]

By this lemma, if (8.1) holds, then G, maps bounded measurable functions
to continuous functions and it is bounded as an operator from L (K, i) to itself.
Such a property is sometimes called strong Feller property of resolvents. More-
over, under the Feller property, if U is a bounded subset of L>°(K, u), then by
the Arzela-Ascoli theorem, G, (/) contains an uniform convergent subsequence.
As a result, one can see that G, can be thought of as a compact operator from
L™ (K, ) to itself.

Proof. We adapt the discussion in the proof of [14, Proposition 3.3]. Fix k as
in Lemma 8.1. Let z,y € K satisfy |z — y| < [~(*+2)_ Define

m(z,y) = max{mly € V7 (z)},
where V2 (z) = K°(T'(z)). (Recall that V,,(z) = KTy (x)).) Then there
exists c3 > 0, which is independent of z,y and m(z,y), such that [~(m+D <

|z — y| < esl™™, where m = m(x,y). Note that m(z,y) > 2k + 2. Let p =
[m(z,y)/2]. Then p > k + 1. Hence

m(z,y) >2p>p+k+1. (8.3)

31



Proposition 8.3 yields

Gof(2) = Gy f(2) + Bo((e77 = )Gy f(X7) + B (G4 £(X0)).

for any z € Vj(x), where 7 = Tyo;). Set Ay = maxuew,, hu(w). By

Lemma 8.4, "
E( / e‘“’tf()?t)dt>
0

Again using Lemma 8.4, we have
|B.((e77 = DG f(X0))| € 7B (TG flloo < cMpllflloc- (8:5)

As a function of z, EZ(GWf()?T)) is harmonic on Vp41(x) by [19, Theorem 4.6.5].
(8.3) shows that y € V,1141(x). Therefore Lemma 8.1 implies

G p ()| = < B flloo € 2l flloo- (8:4)

|Ea(Gr F(X0)) = By (Gr(X:))] < el =yl UG fllo
c
< o =y flloe- - (86)
Since p = [m(x,y)/2], there exists c4 and c5 such that c,177 < |z —y|'/? < ¢517P.
There exists a continuous monotonically increasing function F; : [0, 00) — [0, 00)

such that F1(0) = 0 and F;((c4)?172™) = \,, for any m > 1. Then by (8.4),
(8.5) and (8.6), choosing a proper constant C' > 0, we have

G () = G )] < €1+ ) (Fall =) + o =yl

for any x,y € K. Finally we set F(t) = Fy(t) + t5/2. O

If u(Ky) decays exponentially as |w| — oo, then the image G, f is Holder
continuous.

Corollary 8.6. Let u € MLEC(K). If there exist ¢ >0 and § > o such that

p(Ky) < clvl
for any w € W,. Then (8.1) is satisfied. In particular, (8.2) holds with F(t) =
toind8/2,(0=0)/2} if o > 0. If @ = 0, then for any € > 0, (8.2) holds with
F(t) = tmin{€/2.6-0/2)
Proof. Letting c,, = cl =1l /u(K,,), we see that

1K) < col Ol u(K,).
for any v € W,. If @ > 0, then Lemma 6.11 yields that
hu(Ky) < 1~ 0—a)|w]|

for any w € W,. Hence in this case, F;(t) = ct®=®)/2 if o > 0. The case where
«a = 0 is entirely the same. O
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Example 8.7. Let u € Mp(K) and let §; be the same as in Lemma 6.12. By
Lemma 6.12, if (6.8) is satisfied, then u € ML, Moreover, in case a = 0 by
(6.12), we have

max h,(w) < ce.6 g kdr, — 0 as m — oo.
weW,,
k>m+1

Hence the assumption (8.1) of Lemma 8.5 holds.
In case a > 0, (6.9) implies maxyew,, P (W) < c65 D oo (M) ™ 0ktm — 0
as m — oo. Hence (8.1) is satisfied in this case as well.

9 Poincaré inequality

In this section, we are going to show Poincar’e inequality (9.1) for the Dirich-
let form (€,F,) associated with time change. Let H, be the non-negative
self-adjoint operator on L?(K, ;1) associated with (€,F,). Poincaré inequality
essentially gives a lower bound of the second eigenvalue of H,. Note that the
first eigenvalue of H,, is 0 since H, is Neumann Laplacian. We will use the
Poincaré inequality to derive Nash type inequality in Section 10.

As in the last section, we assume that u € ML (K) throughout this section.

Theorem 9.1. There exists cg.y > 0 such that if p € MgC(K) and v € Fy,
then

C9.1
) 2 395 [ (o) ~ (0,2t (9

We will give a proof of the above theorem at the end of this section. As a
step to prove Theorem 9.1, we first show a weak Poincaré inequality (9.5) by
adapting the method developed in [13].

Definition 9.2. For any s € S, define I'(s) = {s'|s’ € S, K; N K # 0}.

By Assumption 6.1, Ky C K°(I'(s)) # K for any s € S. Write K°(s) =
K°(T'(s)). By Lemma 5.6, the Green function ¢g“(*)(z, y), which is denoted by
9°(z,y), is continuous on {(z,y)|z,y € K,z # y}. The next three lemmas lead
to the weak Poincaré inequality (9.5).

Lemma 9.3. There exists cgo > 0 such that

co.2h(z,y) < g°(z,y) (9-2)
for any s € S and any x,y € K.
Proof. Note that if z € K, then B, (z,171/2) C K°(s). Define

05 = {(z,)l(z,y) € Ky x Ky, |z —y| < c36/(2)}.

By Lemma 5.9, there exists ¢ > 0 such that ch(z,y) < g°(x,y) for any (z,y) €
Os. Since h(z,y) and g°(z,y) are both positive and continuous on the compact
set (K;)?\Os, there exists ¢’ > 0 such that ¢'h(z,y) < ¢°(z,y). Letting cgo =
min{ec, ¢}, we have (9.2). O
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Lemma 9.4. There exists cg.3 > 0 such that if y € M}QC(K), then

ooy - 725 [ a0 Gne = Gy 03

for any s € S and any x,y € K, where hy s(0) = sup,er. [ bz, y)u(dy).

Proof. Let X1 ={z|z € K,|x—z| > |z —y|/2} and let X = {z]z € K, |z —z| <
|z — y|/2}. Note that |y — z| > |x — y|/2 for any z € X5. Hence there exists a
constant ¢, which only depends on «, such that h(z,2) < c h(z,y) if z € X3
and h(z,y) < coh(z,y) if z € Xo. Write g(x,y) = ¢°(z,y). By (5.5), we have

/K oz, 2)gz, wu(dz) = / oz, 2)g(z, v)uldz) + / oz, 2)g(zy)u(dz)

X1 X2

SAg/X h(%z)h(z,y)/i(dz)-h‘lz/x h(z, z)h(z, y)u(dz)

< cu A2 /K h(z,y)h(z, y)u(dz) + co A? /K h(z, z)h(x,y)u(dz)
< 2CaA2h,u,s(®)h(ma y)v

where A = maxeg cs5.5((s)). Choosing cg.3 so that 2c,A%co3 = c9.2/2, we
deduce the desired inequality by Lemma 9.3. O

Lemma 9.5. There exists cg.4 > 0 such that if p € MLEC(K), s € S, v =
c9.3/hus(0) and u: K — [0,00) be a bounded measurable function, then

(Gu)e) = ens [ ulwuldy (0.4

s

for any x € K.

Proof. Let u,. = xk, - u, where xg, is the characteristic function of Ky, and let
U = K°(s). By the resolvent equation and Lemma 9.4,

(Gyu)(@) > (Gyu) (@) > (GYu) (@) = (CVu) (@) — 1(GV oG u.) (x)
> (@Y u,) (@) = 1(GYoGVu,)()

- / <g(x7y)—7 / g(x,z)g(z,y>u<dz>>u<y>u<dy>
K K

C .
> [ hle () = 92 min hewz) [ ().
K, T1,72€K K

s

O

Proposition 9.6. There exists co5 > 0 such that if p € MEC(K) and f €
FNC(K), then

)2 oS [ (00 = (1) Pty (9.)

for any s € S, where (f)us = [ f(y)u(dy)/p(Ks).
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The inequality (9.5) can be thought of as weak Poincaré inequality. The
reason why it is “weak” is that the quantity E(f, f) reflects the values of f on
the entire space K while the right-hand side of (9.5) depends on information of
w and f only on K.

Proof. Write v = ¢g.3/h,,s(0). For any f € FNC(K), let u(y) = (f(y) —
+(Gf)(z))2. Then

YGyu) (@) = Y(Gy f2) () = 29°(G ) (2)? + 72 (G ) (%) (G4 1) (2)
= (G /) (@) = (UG- N(@)*. (9.6)
By (9.6) and Lemma 9.5,

V(G ) (@) = (1(Gyf)(@)” = 70944/ (f(y) = (G )())*1(dy)

s

> vens [ (#0) = (D)t (07
for any = € K.

Let H,, be the non-negative self-adjoint operator associated with the Dirich-
let form (€, F,) on L?(K,u) and let {Zp}g>o be the spectral resolution of H,,.
Then

[ (6 £2)@) = (4G @) Yutdn) = 1715 = 1€ 11

-/ ) (1 - (719)2)d<zef, e Codizef 20y = 2€07. 1), ©08)

Note that G u(z) > 0 for any « € K. Combining (9.7) and (9.8), we obtain

E0.0) 2 yrenan() [ (1) = (De Pty

s

O

To prove strong Poincaré inequality (9.1) from the weaker version (9.5), we
make use of the self-similarities of the space K, the measure v, and the Dirichlet
from (&, F).

For s € Q, let U, : Hy — H, be the folding map introduced in [10, Defini-
tion 2.12], which is characterized by the following properties:

(FM1) 9, : Hy — H, is continuous and piecewise affine. U,(K) = K.
(FM2) For each sg € Q, define 7, 5, = \I/S|HSO' Then 7y 5, is an (affine) isome-
try from H,, to Hy, 7, s is an identity on K, and 7, 5 (K,) = K, if 5,50 € S.

Proposition 9.7. If f € F and s € S, then foF;1oU, € F.
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Proof. Since we have the heat kernel estimate (5.2), by [25, Theorem 4.2], it
follows that v € F if and only if

2

Vi (dy) vy (dx) < 400 9.9
R / /B ) ) Py ) (9.9)
Let 0 <r < 1/I. Fix j € S. If x € K}, then B.(x,r) € Ujer, ;) Ki, where
I'y(j) = {ili € S, K;NK,; # 0}. Define p;; : H; UH; — H; UH, as the reflection
in H; N H;. If By(z,r)NK; # 0 for i € I'1(5)\{j}, then p;;(Bi(z,r) N K;) C

B.(z,7) N K;. Moreover, if u = foF;'oW,, then u(y) = u(p;:(y)) for any
y € By(z,7) N K; because ¥ (y) = ¥ (p;:(y)). Hence

/ () — uly) P (dy) = / () — u(y) P (dy)
B, (z,m)NK; pj,i(Bx(z,m)NK;)
< /B o @) = )P )

nk;

Therefore, since #(I'1(5)) < 3™, we have

/ () — u(y)Pra(dy) < #T1()) / () — u(y) v (dy)
B, (z,r)

B, (z,r)NK;

This implies

/K,. /B*u,r) [u(x) = u(y)Pr-(dy)v.(dz)
<o [ [ )~ ()P s

__Qn ulz) = u 21/ v .
_ 3" e
w L ) SR ).

Summing this over j € S, we obtain

rdHl+dw/K/B o u(x) — u(y)Pr.(dy)v.(da)
lQr:if]Xd //B( r) — f@)Pva(dy)v.(dz)  (9.10)

Since f € F, (9.9) shows that the supremum of the right-hand side over r €
[0,1/1] is finite. Hence the supremum of the left-hand side over r € [0,1/]] is
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finite as well. By the fact that

[ )~ )P ao)
K JB,(x,r)
< [ [ 20u@P + )P o) < +o0
KJK
we see that the supremum of the left-hand side of (9.10) over [0, 1] is finite.
Again by (9.9), we conclude that v € F. O
Definition 9.8. For s € S, we define ®; : F — F by ®4(f) = fo (Fs) 1o U,.
Note that if f € FNC(K), then &4(f) € FNC(K).

Corollary 9.9. Let s € S.
(1) F={uoF,lueF}.
(2) {u: K, —RluoW, € F} = {fo(F,)!|f € F}.

Proof. (1) Theorem 5.1 shows {u o Fslu € F} C F. Since @4(f)oFs = f, the
converse is obvious.

(2) Ifu: Ky — R and uo¥, € F}, then u = uo¥, o (Fy)~!. Conversely, if
f € F, then fo(F,)"toW, = d,(f) € F. O

Remark. The set {u: Ky — Rluo ¥, € F} is denoted by F* in [10].
Lemma 9.10. For any f € FNC(K),

E@(1).2.(1) = ~-E(S. 5.

Proof. By (5.1),
1
(@), @a(£)) = —— D E(Ds(f) 0 F, () 0 ).
*ies
Note that ®s(f)oF; = fo(Fs) toms,;0F;. Since (F5) o ;oF; is an isometry

from K to itself, the invariance of £ under isometries of K implies

E(Ps(f) 0 £y, @s(f) 0 Fy) = E(f, f)-

Finally, we are ready to prove the Poincaré inequality (9.1).

Proof of Theorem 9.1. For € MEC(K), we define a Borel regular probability
measure u*%) for A\ € (0,1) and s € S as the Borel regular measure which
satisfies

(I-MNN

w(z) M (dp) = ~—— 220 u(z)vy (de woF,(x T
J om0 = G2 [ w2 [ ok @t
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for any u € C(K). It is easy to see that u(**) € MEC(K). First we assume
that f € FNC(K). Tt follows that ) (K,) = X and

/K B (f) ()™ (dir) = A /K Jo(F) ™ o Fu(a)u(de) = A /K f(@)uldz).

Hence we have (®4(f)),0.5 s = (f),- In the same way,

/ (‘I>s(f)(ff)—(<1>s(f))w,s)=s)2u“’s)(de):/\/(f(w)—(f)u)Q)#(dfv)

K

s

Now applying Proposition 9.6 to u**) and ®, (f) and using Lemma 9.10, we

see
2

N
r EG ) 2z sy

/K (@) — (luld).  (9.11)

On the other hand, since

=1*h(z,y) ifa >0,

it follows that

h#(k,s)’s(m)
1— AN
g% sup / h(z, y)v.(dy) + A sup / h(z, Fs(y))u(dy)
_ zeK, JK\K, r€Ks JK

~ (1= X1+ A sup /K W(EL (@), Fu(y))u(dy)
< (1 — )\)Cl + /\Cghu(qj),

where C7 = &5 sup,ek. fK\KQ h(z,y)vi(dy) and Cy = max{l*, 1 + logi}.
Therefore, (9.11) yields

)\2
(1= N)C1 + ACoh, (0))

YEU ) 2 e [ @) = (1Putdo)

By letting A — 1, we obtain (9.1) for f € F N C(K). Since the closure of
FNC(K) is F,. We obtain (9.1) for any f € F,. O

10 Heat kernel, existence and continuity

In this section, we will present a class of measures, called measures controlled by
rate functions, for which time change is possible and the associated heat kernel
exists and is jointly continuous. As we will see in the following sections, this
class contains many examples like self-similar measures, some class of random
measures including the Liouville measure on [0,1]? and measures having the
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volume doubling property. The main tool is Poincaré inequality obtained in the
last section.

We start with introducing a gauge function &, naturally associated with
time change.

Definition 10.1. Let p be a Borel regular probability measure on K.
(1) Define o, (w) and 7, (w) by

O'M(w) = (T*)‘qulﬂ(Kw)

and

ou(w) = sup o,(wv)/ sup o,(v).
vEW, vEW,

(2) p is called admissible if u € MEC(K) and (8.1) is satisfied.

Note that 7, is a kind of normalized version of ¢,. Intuitively, o, (w) is
proportional to the average exit time from K. In fact, this intuition will be
justified (partially at least) in (12.4) and (12.5).

Proposition 10.2. If u is admissible, then T, is a gauge function.

Proof. Since | —y| < /nl~!"! for any z,y € K,, it follows that

—a/2 .
() > n o (w) if >0,
~ | (Jw|logl + 1), (w) if a=0.

Therefore, if (8.1) is satisfied, then 7, is a gauge function. O

Throughout the rest of this section, we assume that p is admissible. As a
consequence, 1 € MEC(K) and hence (€, F,) is a local regular Dirichlet form
on L?(K, p1). Recall that H,, is the self-adjoint operator associated with (£, F,).

Definition 10.3. A function f : [0,00) — [0, 00) is called doubling if and only
if there exists v > 1 and ¢ > 1 such that f(vt) < ¢f(¢t) for any ¢ > 0.

Now we define measures controlled by rate functions.

Definition 10.4. Let u € Mp(K). p is said to be controlled by rate functions
(&.,&5,€n) if and only if the following conditions (CRF1) and (CRF2) are sat-
isfied:

(CRF1) &, and &, are monotonically non-decreasing doubling functions from
[0,00) to itself satisfying

and
,Uz(Kw) > fo’ (Eﬂ(w))
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for any w € W, and any i € S.
(CRF2) &, is a monotonically non-increasing continuous function from (0, co)
to itself and

Ry (0)? < & (T (w)

for any w € W,. There exist ¢l > 1 and ¢2,; > 0 such that c}j,c3,; > 1,

€n(cioat) = cfo.1én(t) (10.1)
for any ¢ > 0. Moreover &;,(¢)t is monotonically increasing, and limy o &, (¢)t = 0.
Remark. If a = 0, then 7, (w) = o, (w) = u(K,) and hence &, (t) = t.

If v is elliptic, then ¢, can be chosen as a constant. In addition if

sup /L(Kwi)/,u(Kw) < min{l, 1/T*}7
weEW, ,i€S

then (6.10) implies sup,, ey, hu, (0) < +o00. Hence in such a case, &, can be
chosen as a constant as well. In particular, if @« = 0 and p is elliptic, then p is
controlled by rate functions (c1,t, ¢), where ¢, co > 0 are constants.

Notation. For a bounded linear operator A : LP(K, u) — LI(K, i), we define
||Al[p—q as the operator norm sup e (k) 20 1AS|p/11f1l4-

The next theorem shows that the strong continuous semigroup associated
with the Dirichlet form (€, F,) on L?*(K,u) is ultracontractive as a operator
from L'(K,u) to L (K, u) if p is controlled by rate functions. The Poincaré
inequality is crucial in the proof.

Theorem 10.5. Assume that u is admissible and controlled by rate functions
(€4, &0,6n). Set Ty = e~ Het. Define 0 as the inverse of t&,(t). Then Ty maps
LY(K,u) to L®°(K, ) and there exists c19.2 > 0 such that

| T4 [1— 00 < c10.2max{1, &)1} (10.2)

for any t > 0, where £(t) = £,(0(1))€,.(&-(8(2))). In particular, {T;}i>0 is
ultracontractive.

Remark. If oo = 0, then £(t) = 0(t)€,.(6(2)).

Lemma 10.6. Assume that (v is controlled by rate functions (§,,&5,&n). Let
f(t) =t&n(t). If O is the inverse of f, then 0 is doubling.

Proof. Let ¢1 = ¢}y and let ca = ¢3¢}y 1. Then ¢; > 0 and ¢ > 0 and

flert) = eaf(t)
for any ¢ > 0. This implies ¢10(f(¢)) > 0(ca f(1)). O

40



Proof of Theorem 10.5. If A is a partition of 3, then by using (5.1) and induc-
tion on the number of elements of A, we see that

£ = X e T foF). (103)

weEA

for any f € F,. By Theorem 9.1, we have

9.1 1

(i) hyuy (0)7 (7)1

> R (/K(“F e Pield) = ([ o Pl w<dy>)2>

C9.1 9 B 1 . 9
> Oﬁ('LU)gh((?'p,('LU))</j(w U(y) M(dy) ,Uf(Kw)</Kw (y)u(dy)) ) (10.4)

Write A, = A?. Let w = wy...wm € A, Set w' = wy...wp—y. If C =
SUP,ew, 0u(w), then

E(uwoFy,uoFy) > /K (w0 Fop(y) — (10 Fip)y )t (dy)

Tuw') > p > 7u(w) > Zoy(w),
Hence pu(Ky) > o (G (w')) > &5 (p). This yields
p(Kw) = p(Kow )6 (W Kuw)) 2 €6 (p)€u(€o(p) = & (p)Eu 0 &a(p).  (10.5)

Since £, () is monotonically increasing, (10.4) implies

E(uo Fy,uoFy) >

C9.1 9 1 . 9
Cpén(p) (/K uly) uldy) M(Kw)(/xw (y)u(dy)) ) (10.6)

for any w € A, and any u € F,,. Define A,(u) = {w|w € A,, K,,Nsupp(u) # 0}.
Then, by Lemma 2.11,

> (/] WU(y)u(dy))z > e ([ wtwntan)

1
!

weA, weh, (u) n .
2
= y)|u(dy
MIlye A, (u) B <’LU€AZ('U. / >
SRS S—THT CTY
B ul|s, .
- MiNyen,(v) :“(Kw) w1
Making use of (10.3), (10.6) and (10.7), we have
cg12?"C1 Co.1 ,

Elwu) > ———|[ull 2 10.8
( ) Pfh( )mlnweA (u)//[/( )H ||P'1 Eh(p)” ||;L,2 ( )
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for any w € F, and any p € (0,1]. Furthermore, by (10.5), this inequality
implies

69.122'”0_1 2 C9.1 2
E(u,u) + ————|lu > ——|u
(o) ety 1"l = g gy e
for any u € F,, and any p € (0,1]. Hence,
69_122’”071 2 C9.1 2
E(u,u) + W'M w2 THUH;L,Q- (10.9)

In [31], (10.9) is called a homogeneous Nash inequality. Since 6,&, and &, are
doubling by Lemma 10.6, £ is doubling as well. Therefore by [31, Theorem 3.2],
we obtain (10.2). O

Using the above theorem, we are about to show the existence and the conti-
nuity of heat kernel. Next lemma shows that the ultracontractivity of {T}}i~0
yields the fact that H,, has compact resolvent.

Lemma 10.7. If a Borel regular probability measure p on K 1is admissible
and controlled by some rate functions, then H, has compact resolvent and any
eigenfunction of H, is continuous. Furthermore, if {¢;}i>1 is the complete
orthonormal base of L*(K, j1) consisting of the eigenfunctions of H,, and {\;}i>1
be the corresponding eigenvalues, i.e. H,p; = Aip; for any i > 1, 0 < A\ <
Az ... and lim,, oo Ay = 00, then 1 =1, A1 =0 and Ay > 0.

Proof. By Lemma 8.5, G is a compact operator from L (K, i) to itself and
G (L (K,u)) C C(K). Let T; = e~ Hut. Note that {T}}¢~0 is ultracontractive
by Theorem 10.5. Hence if {u,},>1 is a bounded sequence in L?*(K, ), then
{Tyun}n>0 is a bounded sequence in L (K, u). This implies that {G Tyt }n>1
contains a subsequence which converges in L (K, u) and in L?(K, ) as well.
Thus, if follows that G, T} is a compact operator from L?(K, p) to itself. Now
there exist a complete orthonormal system {¢; };>1 of L?(K, u) and {a;};>1 such
that G, Typ; = a;p; and a; > a1 for any ¢ > 1 and lim; .o a; = 0. Let A; be
the unique real number which satisfies

e—)\it

YA

a;.

Then by the spectral resolution of H,,, we see that H,p; = Aj¢;. Furthermore,
since every eigenfunction of H, is a finite linear combination of {y;};>1, an
eigenfunction of H,, is continuous. Since £(1,1) = 0, we see that A; = 1 and
p1 = 1. Note that @9 is orthogonal to ¢p; = 1. The Poincaré inequality (9.1)
shows that £(¢2,p2) > 0. Hence Ag > 0. O

Remark. Note that ¢; and A\; depend on p. In this sense, they should be written
as ¢! and M respectively. By using these exact notations, ¥; and A appearing
in Proposition 5.2 are identified with ¢} and A;* respectively. If no confusion
may occur, however, we mainly use y; and \;.
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In the rest of this section, we assume that p is admissible and controlled
by some rate functions. Then by the above lemmas, any eigenfunction is con-
tinuous, H,, has compact resolvent and |[|T;||ic < 400 for any t > 0. In
particular, there exists a sequence {(\;,;)}i>1 of pairs of an eigenvalue and
an eigenfunction such that \y =0 < A2 < A3 < ... and {p;};>1 is a complete
orthonormal system of L?(K, ).

Lemma 10.8. Define

n

polt,z,y) =D e i (@)pi(y).

i=1

Then for any x € K and any t > 0, p,(2t,z,z) < ||T}
i e N S o for any n > 1.

?

12 - In particular,

2
1—o0

Proof. Let pi;*(y) = pa(t,z,y). Since p; € L=(K, ),
Ty oo < o5 11Tl 1~ 00 < 1P [2l| Tl 100

On the other hand,
(Tipy")(y) = pu(2t,2,y).

Therefore,

Pu(2t, 2, 2) < sup [pn (2, 2,y)| < [|py" |2l T2l1— 0

yeK
Since |[p4®]|3 = Yo, e PNt (z)? = pa(2t, z,2), it follows that
pn(2t, 2, 2) < [T}

Lemma 10.9. For any L > 0, the sum

> e i) en(y)

i>1
converges absolutely and uniformly on [L,00) x K x K.

Proof. Since ¢ is doubling, there exist ¢ > 0 and a > 0 such that £(¢) > ct® for
any t € (0,1]. Hence by (10.2),

1Tt 2—00 < |Tt]1—00 < cmax{1,t~}

for any t > 0. By the fact that Typ; = e~ iy, it follows ||@;||c < et
Letting ¢t = 1/);, we obtain

|Tt]|2— 00

lpilloo < e(Xs)®
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This yields
“Mpi(@)pi(y)| < e(Ai)* e N E

for any @,y € K and any t > L. Note that if M = sup,>,(\;)**e"*%/2, then
M < 4o0. Hence by Lemma 10.8,

SN < MY e N2 < MITL .

i>1 i>1

e

Therefore by the Weierstrass majorant convergence theorem, (M-test), we have
the desired statement. 0

Combining all the results together, we have the following theorem.

Theorem 10.10. Assume that p is admissible and controlled by rate functions
(&1,85,€n). Then there exists a jointly continuous heat kernel p,(t,z,y) > 0
associated with the Dirichlet form (€,F,) on L*(K,u), i.e. p,(t,x,y) is con-
tinuous and positive on (0,00) x K x K and

(Tyu)(z) = /K pult, 2 y)u(y)u(dy) (10.10)

for any u € L*(K, i), any t >0 and any x € X. Moreover,

Ba(u(X)) = /K Pt 2 y)u(y)u(dy) (10.11)

for any bounded measurable function v : K — R, any z € K, and any t > 0.
Furthermore, H,, has compact resolvent and there exists a complete orthonormal
system {@i}ti>1 of L*(K,u) consisting of the eigenfunctions of H, such that
Hupi = Nipg and A\ =0 < X\ < Aiq1 forany i > 2, o1 =1, ¢; is continuous
on K for anyi>1 and

pltmy) = et ©i(y), (10.12)

i>1

where the infinite sum converges uniformly and absolutely on [L,00) x K x K
for any L > 0.

Proof. We have proved all the statements except the positivity of p,(t,z,y)
and (10.11) in the course of the discussion in this section. Using the same
argument as in the proof of [30, Proposition 5.1.10-(1)], we obtain the positivity
of p,(t,z,y). About (10.11), in [1, Proof of Theorem 5.1-(i)], the authors have
essentially shown that the strong Feller property of resolvents and the uniform
convergence of (10.12) suffice for (10.11). Recall that G, has strong Feller
property by Lemma 8.5 and that the uniform convergence of (10.12) has been
shown in Lemma 10.9. Thus, we obtain (10.11). O
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Remark. If p is controlled by rate functions (£,,&s,&n), then (10.2) implies

Pt y) < emax{L,¢(t) "'} (10.13)
for any ¢t > 0.
By (10.12), we also have expansions of the time derivatives of p,(t,z,y) as

follows.

Theorem 10.11. Assume that p is admissible and controlled by some rate
functions as well. Under the same notations as in Theorem 10.10, for any x,y €
K, pu(t,z,y) is a C>-function of t on (0,00) and the derivatives %pu(t, x,y)’s

form =1,2,... are jointly continuous on (0,00) x K x K. In particular,
atmpu(t T,y) = Z()‘z)m N t(p (@)pi(y),
i>1

where the right-hand side converges uniformly on [L,00) x K x K for any L > 0.
Moreover,

m 1 /2m\m™
‘atmm(t,x,y)' < g<7) \/pu(t/27x,x)pu(t/27y7y) (10.14)
for any (t,z,y) € (0,00) x K x K.
Proof. Similar arguments as in the proof of Lemma 10.9 imply that

S he M (@)en(y)

n>1

converges compact uniformly on the right-half plane Hr = {z|Rez > 0} C C.
Hence it is analytic on Hr and

s

azimpﬂ('z? z, y) = Z(_/\n)me_AHZSDn(m)wn(y)

n>1

for any z € Hp, where the right-hand side converges compact uniformly on Hp.
Since max;cr z™e"* = m™ /e,

2 ttn| < e o <
n>1
2\™ Apt ™ _ _ 2\ m M
(E) Z (7) e Ant/2e )\"t/2§0n(x)2 < (E) Tp#(t,x,x).
n>1

Hence by the Schwartz inequality,
’ m

pn(t)| < 0" o (a)on ()] <

n>1

O ) ) < () a2 a2
g Pebm, @) 5oty y <-(5 pu(t/2,2,2)pu(t/2,y,y

O
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11 Measures having weak exponential decay

In this section, we introduce a class of measures, called measures having weak
exponential decay, which will turn out to be a subclass of measures controlled by
rate functions. The reason why we need this subclass is that the conditions for
having weak exponential decay are more feasible to verify than those for being
controlled by rate functions. Naturally, if 4 has weak exponential decay, then
one has all the consequences in the last section. In particular, u € M}QC(K )
and the time change of the Brownian motion with respect to p has a jointly con-
tinuous hear kernel p, (¢, z,y). In Section 14, certain class of random measures
is shown to have weak exponential decay for example. Moreover, if a measure
has weak exponential decay, then the associated heat kernel is shown to satisfy
a diagonal lower estimate in Section 12.

Definition 11.1. A Borel regular probability measure p is said to have weak
exponential decay if and only if there exist positive constants C1, Cs, Cs, A1, Ao
such that 0 < Ay < A9 < 1/7,,

C1(A)™! < p(Iy) < Ca(g)! (11.1)
for any w € W,, and
p(Kwo) < C(r) 71 u(K) (11.2)
for any w,v € W,.

Note that if & =0, i.e. 7. = 1, then the condition (11.2) always holds.
The following proposition gives an equivalent condition for the condition
(11.1) in terms of Euclidean balls.

Proposition 11.2. Let p be a Borel reqular probability measure on K. The
condition (11.1) holds if and only if there exist positive constants ci1,ca, a1, s
such that a; > as > a and

1™ < p(By(z, 1)) < cor®? (11.3)

for any x € K and any r € (0,1]. Furthermore, if (11.1) holds, then Ay =1~
and Ay =172, In particular, if o« =0, i.e. v, =1, then p has weak exponential
decay if and only if it satisfies (11.3).

Remark. Tt follows by Proposition 11.6-(1) and (2) that
1

— <
NS
Proof. For any w € W, there exists © € K,, such that

/\1 S )\2 and (65} Z dH Z 9.
B, (2,1=™*) C K,, C B.(z,v/nl™™).
This implies (11.1) from (11.3). Conversely the fact that
By (z,17™) C Vyu(2) € Bu(w,3v/nl™™)
implies (11.3) from (11.1). O
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Example 11.3 (Liouville measure on the square). By [20, Theorem 2.2] and
[1, Lemma 3.1], the condition (11.3) holds for Liouville measure on [0, 1] and
hence it has weak exponential decay.

Next we introduce a refined version of a measure having weak exponential
decay.
Definition 11.4. Let n > 1,p = (p,p) € (0,(r.)"1)? and let k = (&, x) be a
pair of a monotonically non-decreasing function from [0.00) to [0,00). A Borel
regular probability measure p on K is said to have (7, p, k)-weak exponential
decay if ¥ is doubling,

sup Fm) < 400, (11.4)
meN N
p if o] = R(wl),
Kuw) < ni(Ka) X 11.5
ue ) < niKw) {(m)"“ otherwise, ( )
there exist positive constants c}; 4 and ¢?; 4 such that
K@+ c11.6) < (@) + ¢l g (11.6)
for any x > 0, and
1
u(Kui) 2 oK) (11.7)
for any w € W, and any ¢ € S and
1
() 2 ot (11.8)

for any w € W,. If both § and k are bounded, then pu is said to have uniform
exponential decay.

Proposition 11.5. Let p be a Borel reqular probability measure on K. p has
weak exponential decay if and only if u has (0, p, kK)-weak exponential decay for

some (1, p, k).

Proof. Assume (11.1). Let A\; = (A2)**Y and let C' = C3/C;. Then
(K o) < Co) "I < O ) 1 () (K.

Choose sufficiently small € > 0 so that (A2)!™¢ < 1/r.. Set p = (A\2)!7¢ and
R(z) = yx/e. Then we have u(Ky,) < CplVlu(K,) for any v € W, with
[v| > E(Jw|). Combining this with (11.2), we obtain (11.4) and (11.5).

Next, let p = min{A;, A\1/A2} and define k(x) = 2. Then

A
p(Ku) 2 er ) = 2palehp i)
for any w € W, and i € S, and

1(Kyp) > Cip®!
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for any w € W,. Thus we have obtained (11.6), (11.7) and (11.8). (The constant
n can be chosen properly.)

Conversely, if p has (n, p, k)-weak exponential delay, we can deduce (11.1)
from (11.5) and (11.7) by letting w = (). The condition (11.2) follows from
(11.5). Thus p has weak exponential decay. O

Suppose p has (n, p, k)-weak exponential decay. Note that the conditions on
Kk : [0,00)2 — [0,00) only concern the values of x on nonnegative integers. In
other words, given values on NU{0}, we may interpolate values between integers
so that ¥ and k are continuous monotone functions without losing the required
properties. Moreover, adjusting the value of 7, we may assume that

#(0) = 5(0) = 0 (11.9)

without loss of generality. Furthermore, due to (11.4), modifying ® without
changing the order of increase, one may assume that

ATPR(x) is monotonically decreasing and lim A\™*&(x) = 0, (11.10)
where A = r,p. Thus whenever x has (1, p, x)-weak exponential decay, then the
conditions (11.9) and (11.10) are always assumed to be true hereafter.

The followings are basic facts on the conditions in Definition 11.4.

Proposition 11.6. Let p € Mp(K).

(1) If (11.5) holds, then D > 1/N.

(2) If (11.7) holds, then p <1/N.

(3) (11.7) holds and & is bounded if and only if u is elliptic.

(4) p has uniform exponential decay if and only if there exist n > 1, p,p €
(0, (r«)™Y) such that

1 v — U
for any w,v € W,.
(5) If p is a self-similar measure on K with weight (u;);cs. Then p has weak
exponential decay if and only if p;re < 1 for any i € S. Moreover, if p;r. <1
for any i € S, then p has uniform exponential decay.

Proof. (1) Choosing sufficiently large 7, we have u(K,,) < np/*! for any w € W,.
Hence

1< Y u(Ky) <n(Np)™
weW,,

This immediately implies p > 1/N.
(2) By (11.8),

2" > > p(Ky) =0 (Np)™
weW,,
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Therefore, we obtain p < 1/N.
(3) Assume that (11.7) holds and k is bounded. Choose M € N so that
SUP,>0 k(x) < M. Then

,U/(sz> > ’r]_lle:U/(Kw)

for any w € W, and any i € S. Set v = 7 'p™. Then we can verify the
condition (ELm) in [32, Theorem 1.2.4]. Hence by [32, Theorem 1.2.4 and its
remark], we see that p is elliptic. The converse direction is obvious.

(4) This is immediate from definitions.

(5) Let p be a self-similar measure with weight (4;)ics. By [32, Theorem 1.2.7],
it follows that u(Ky) = fiw, - fhw,, for any w = wy...w, € W,. Hence if
(11.5) holds, then p > max;eg ;. This yields p;r. < 1 for any i € S. Conversely
if p;re < 1 for any ¢ € S, we let p = max;ecg p; and obtain (11.5) with n = 1
and %(z) = 0 for any z. At the same time, we obtain (11.7) by letting x(x) = 0
for any x € X and p = min;eg ;. O

The following proposition shows an upper estimate of h,(w) if u has weak
exponential decay. As a result, u is shown to be admissible as well.

Proposition 11.7. Let p have (n, p, k)-weak exponential decay. Define A = r,p.
If a > 0, then

u(w) < cosn(R(lwl) + 2 Jou(w) (11.11)

for any w e W,. If a« =0, then

ha(w) < coon(ll (R(w) + ) +F(w)? +

) 1-

for any w € W,. In particular, p is admissible. Moreover,

Lou(w) < 7, (w) < o (w) (11.13)

and
Al if o] > R (|w)),

1 otherwise.

7, (wv) < 9’5, (w) x { (11.14)

for any w,v € W,.

Proof. The estimates (11.11) and (11.12) are immediate by Lemma 6.11. Com-
bining these with (11.4), we obtain (6.2). Hence u € MEY(K). By (11.5), there
exists 7/ > 0 such that o, (w) < n’Al*! for any w € W.. This and (11.4) imply
(8.1). (11.5) yields

ou(wv) < noy,(w) (11.15)

for any w,v € W,. Note that 1 < 7,(0) < 5. It follows by (11.15) that
ou(w) < noy(w). Thus p is admissible. At the same time we have (11.13).
Combining (11.15) and (11.13), we obtain (11.14). O
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The next proposition shows a simple equivalence condition for having uni-
form exponential decay.

Proposition 11.8. Let p € Mp(K). G, is an elliptic gauge function if and
only if p has uniform exponential decay.

Remark. By [32, Theorem 1.2.4], if u is elliptic, then u(F,(Vp)) = 0 for any
w € W,, where Vy = 0HoN K. This implies that y(0K(I")) = 0 for any I' C W..
Furthermore, if I' C W, is independent, then

/K(F) f(@)p(dr) = Z/Kw f(@)pu(dx) (11.16)

wel
for any f € L'(K, p).

Proof. Assume that 7, is an elliptic gauge function. Then, there exist a > 0
and b € (0,1) such that
ou(wy) < ablv‘ﬁu(w) (11.17)

for any w,v € W,.. If M = min{m|ab™ < 1}, then 7, (w) = max{o,(wv)||v| <
M}. Hence there exists v, € W, such that |v,| < M and 7,(w) = o, (wv,) =
()" (Ko, ). This implies that

0u(1) < Tu(w) = () p(Ko) < () Mopw)  (1018)

By (11.17) and (11.18), we have

Ql

o, (wv) <7, (wv) < abl'lF, (w) < a(r.)

This yields
p(Kuwo) < alr)™ (0/r.)" p(Ky).

Let %(x) = 0 for any z > 0, n = a(r.)™ and p = b/r.. Then (11.5) holds. Since
G, is elliptic, there exists ¢ > 0 such that &,(wi) > c(w) for any w € W,
and any ¢ € S. This along with (11.18) shows that there exists ¢’ > 0 such
that o, (wi) > o, (w) for any w € W, and any ¢ € S. Therefore, pu(Kyi) >
¢ (r.) 'u(Ky). Thus we have shown that p has uniform exponential decay.
Conversely assume that p is has uniformly weak exponential decay. We have
(11.14) by Proposition 11.7. By Proposition 11.6-(3), there exists v > 0 such
that pu(Kywi) > yp(Ky) for any w € W, and any i € S. Hence o,(wi) >
y(re) Lo, (w) for any w € W, and any i € S. Using (11.13), we see that there
exists ¢’ > 0 such that 7, (wi) > G, (w) for any w € W, and any i € S. This
and (11.14) shows that &, is an elliptic gauge function. O

As is shown in Proposition 11.7, a measure having weak exponential decay
is admissible. In the next theorem, we show that such a measure is controlled
by some rate functions. As a consequence, if a measure has weak exponential
decay, then time change is possible and there exists a jointly continuous heat
kernel with upper estimate (10.13).
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Theorem 11.9. If a Borel regular probability measure p on K has weak ex-
ponential decay, then p € MEC(K) and it is controlled by some rate functions
(&::€5,6)- More specifically, assume that pi has (1, p, k)-weak exponential de-
cay. If v1 = —1/log (r.«p) and v2 = 31 logn, then

5 (t) = lpﬁ(*% log t+2)
“w )

n=

erpy = 2T 52 ifa >0,
7 t if a =0,

and
&h(t) = v3(R(—y1logt 4+ 72)? +1) if a >0,
" v3(R(—71logt 4+ 72)* + 1) if =0,
where v3 s a constant determined by (n,p, k). In particular, if p has uniform
exponential decay, then &} and &, are constants.

We will prove the above theorem later in this section. For the moment, we
present a corollary on diagonal upper heat kernel estimate.

Corollary 11.10. Let p be a Borel reqular probability measure on K. As-
sume that p has (n, p, k)-exponential decay. If p is controlled by rate functions
(&uéaaéh) and hmx—>oo @(.Z‘)/CC = 07 then

1 *
limsup  2BPu(b2®) o Tog (max{Eo(s), £(5))
t10 log ¢ 10 log s

(11.19)

for any x € K. In particular, if o =0, then

lim sup _logpu(t z,z) <
t10 logt

for any x € K.

Remark. If £1(t) = max{&,(t), &5 (1)}, then €L(¢) is better than both &, (¢) and
& (t) as a rate function. In fact, u(K,) > &1(7,(w)) > & (o, (w)) for example.

Remark. If p has uniform exponential decay, then k is bounded and hence
lim, o0 £(x)/z = 0. Thus we have (11.19).

Proof of Corollary 11.10. Define £} (t) = max{&,(t),£%(t)}. Note that p is con-
trolled by rate functions (£}, 1,&:). Hence by Theorems 10.5 and 10.10, we
have

1
Pl ) S GG E D)
for any € X and any t € (0,1]. Since 6 is the inverse of £ (¢),
log £5(5)&,1(65(s))

1 t
lim sup _logpu(t z,7) < limsup - (11.20)
t] logt 510 log s (s)
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By (11.4), for sufficiently small ¢ > 0, we see that 1 < &;(s) < c(log s)*. Hence

log &ji(s) _

i
sl0 logs

Furthermore, log &} (£7(s)) = (logp)k(—cilogt + ca) — logn, where ¢; > 0 and
cg are constants. Since lim, o £(z)/z = 0 and [log £ (&5 (s))| > |log £ (£3(s))]
for sufficiently small s > 0, it follows that

1 *(¢1
g i(€h(s))
510 log s
Hence, we obtain (11.19) from (11.20). O
We now begin to prove Theorem 11.9. First we prepare a lemma.

Lemma 11.11. Assume that & : [0,00) — [0,00) is a doubling non-decreasing
function and satisfies (11.4). Fizk € N and ¢ > 0. Define f(t) : (0,00) — [0, 00)
by
R(—clogt)® +1 ift € (0,1],
Flty = { el 7ie 1]
1 ift>1.

Then there exist ¢ > 1 and co > 0 such that cico > 1 and
fleit) > caf(t)
for any t > 0.

Proof. Since % is doubling, there exist v1,72 € (0, 1) such that B(y1t) > y2&(t)
for any ¢t > 0. Let © = —logt for ¢t € (0,1]. Choose s > 1 so that 1 —1/s = ;.
Let A > 1. Then if z > slog A,

R(c(x —log A))k +1
Rex)k +1

R(c(x —log A))k
R(cx)k

> min{l, } > (’Yg)k.

On the other hand, for 0 < z < slog A, we see that

1 1
> .
Rlcx)k +1 = R(eslog A)F +1

These inequalities imply that

f(At)
f(t)

Define F'(A) as the right-hand side of this inequality. Then by (11.4), we see that
AF(A) — 0o as A — oo. In particular, we may choose A > 1 so that AF'(A) >
1. Letting ¢; = A and ¢y = F(A), we obtain the desired conclusion. O

1
> mi k-
= mln{(%) ’E(CSIOgA)k-F].}
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Proof of Theorem 11.9. First we discuss &;. By (11.14) and (11.9), 7,(w) <
Al for any w € W,. Hence

-7 log@,(w) + v2 > |w| (11.21)

Hence by (11.11) and (11.12),

—=(_ — 2 .
B, (0)2 < 75 (f( M logiu(w) +vz)4 +1) ?fa > 0,
(R(—71logT,(w) +72)* +1) if «=0.
for some 3 > 0. Thus h,(0)? < & (7,(w)). Furthermore, by (11.10), &5 (¢) is
continuous, monotonically increasing and limy o t&}; (¢) = 0.
Next, if a = 0, we may choose £(t) = t. Assume a > 0. By (11.8) and
(11.21),

V2

1 w b —v1lo

WEy) 2 ~(p)" = = (7, (w) 12
n n
Therefore, u(K,,) > ( w(w)). Obv1ously &* is doubling.
Finally about £}, ( 1.7) and (11.21),

(Kwi) 2 &0 (w)) u(Kw)

By (11.6), &, is doubling. O

12 Protodistance and diagonal lower estimate of
heat kernel

In this section, we will present a diagonal lower estimate of heat kernel (12.11)
in which the volume of the “ball’ with respect to “protodistance” J, plays
the principal part. Note that we do not attempt to create a general notion of
“protodistance” but we are going to call the nonnegative function 6,, : K x K —
[0,00) defined later in this section by the name “protodistance”, which is not
even symmetric nor a quasimetric in general. Once p has the volume doubling
property with respect to d., however, our protodistance J,, is equivalent to some
power of a distance under which sub-Gaussian heat kernel estimates (1.7) and
(1.8) hold as we will see in Section 15.

After the introduction of ¢, assuming that p has weak exponential decay,
we study lower estimate of p,(t,z, ) as t | 0. Note that uniform upper estimate
of p,(t,x,x) has obtained in the previous section.

Throughout this section, we assume the following property:

lim (ry)"pu(Vim(z)) = 0. (12.1)

m— 00

for any x € K. If u has weak exponential decay, then this assumption is satisfied.
Next we define our “protodistance” d,,.
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Definition 12.1. For m >0, z € K,
ep(m, x) = max{(r.)" u(Vi(z))[k > m}

(4 2) max{mle,(m,x) >t} +1 if €,(0,2) > ¢,
my(t,z) =
e 0 if €,(0,2) < t.

and
Su(w,y) = inf{tly € Vi, (1,2)(2)}

We call §,, a protodistance associated with the measure . By the assump-
tion (12.1), €,(m, z) is well-defined and lim,, .o €,(m,z) = 0 for any = € K.
Consequently, m,(t,z) and 6, (z,y) are well-defined as well and §,(x,y) > 0
and d,(z,y) = 0 if and only if x = y. Mostly, however, the protodistance is
not a (quasi)metric. For example, d,(x,y) # d,(y, ) in general. Later in Sec-
tion 19, we will show inequalities (19.1), (19.3) and (19.4) whose combination
can be regarded as a kind of primitive counterpart of weakened triangle inequal-
ity d(z,y) < C(d(x,z) + d(z,y)), where C > 1 is a fixed constant. Indeed, the
combination of(19.1), (19.3) and (19.4) will be shown to yield the weakened
triangle inequality if p has the volume doubling property.

If no confusion can occur, we write e(m,x), m(t,x) and é(z,y) instead of
eu(m,x), my(t,z) and d,(x,y) respectively.

The protodistance ¢, has another expression by means of the separation
number k(z,y) defined below.

Definition 12.2. Let z,y € K. A sequence (w(1),...,w(j)) € (W)’ is called a
chain between x and y if and only if z € K1),y € Ky(j) and Ky) N Kyit1) #
¢ for any i =1,...,7 — 1. Define

fm(os,y)
= min{k|there exists a chain (w(1),...,w(k)) € (W;,)* between = and y}

and
k(z,y) = max{ml|ly,(z,y) < 2}.

The number 4,,(z,y) is the length of shortest walk in W, between x and y.
k(x,y) represents the level at which two points z and y are separated. Obviously,
k(x,y) < +o0 if  # y. In case x = y, we think of k(x,y) = +00. The following
lemma is straight forward from the above definition.

Lemma 12.3. Ifx #y € K, then y € Vi(z.)(@)\Vi(z,y)+1(2).
Immediately by the above definitions, we obtain the next lemma.

Lemma 12.4. Let j > 1. Then my(t,x) = j if and only if €,(j,z) < t <
e.(j—1,z).

The above lemmas gives the following alternative expression of ¢, using
k(z,y).

o4



Proposition 12.5. For any z,y € K,

0u(,y) = eu(k(z,y), ).
Proof. Let k(z,y) = k. Then by Lemmas 12.3 and 12.4,
{tly € Vingay(0)} = {t]l = m(z, 1)} = {t]e(k, z) < }.
Hence d(x,y) = e(k(z,y), x). O

A “ball” with respect to the protodistance §, is identified with V,,(x) as
follows.

Proposition 12.6. Define Bs, (x,7) = {y|d,(z,y) < r} for x € K and r > 0.
Then
Bs, (2,t) = Vi, (t.2) (%) (12.2)
and
t

(ry) i (00) (12.3)

(Vi (o) (7)) <
for any x € K andt > 0.

Proof. First assume that §(z,y) < ¢. Then by the definition of (-, -), if follows
that y € Vi,2)(x). Conversely, if y € Vi 2 (), then k(z,y) < m(t,z) and
e(m,z) <t < e(m —1,z), where m = m(t,z), by Lemma 12.4. This implies
0(z,y) = e(k(z,y),x) < e(m,x) < t. Thus we have obtained (12.2).

By the definition of €(m, ), it follows that e(m(¢, x),x) < t. Hence

(r) ™ (Vi (@) _ e(i(t,z), ) t
N(Vﬁz(t,w)(x)): (T*)m(t,x) < (1) (t:2) (r*)'fﬁ(t,x)

IN

O

The above proposition implies that J,, gives the same topology on K as d..
More precisely, we have the following fact.

Corollary 12.7. Define
Os, = {0|0 C K, for any x € O, there exists r > 0 such that B;, (x,7) C O}.
Then Os,, coincides with the collection of open sets with respect to d..

Now we start to study diagonal lower heat kernel estimate. In the rest of
this section, p € Mp(K) is assumed to have (7, p, k)-weak exponential decay.
By the results of the last section, there exists a jointly continuous heat kernel
Pult.z,y).

To begin with, we have an upper estimate of exit time from a neighborhood
Vin ().
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Lemma 12.8. If i has (1, p, &)-weak exponential decay, then there exists ci9.4 >
0 such that

sup By (1v,, () < C12.4(r) " (Vin () % (12.4)

YEVm ()

R(m)+1 if >0,
R(m)? +1 ifa=0

for any x € K and any m > 1.

Proof. Note that p,, has (1, p, k|,|)-weak exponential decay, where %, (k) =
®(k 4+ m) and k,,(k) = (k +m). Hence by (11.11) and (11.12),

cesn(R(lw|) + 1) if a >0,
h,uw (@) S — 2 . o
ce.6n(R(Jw])* + 1) ifa=0.
Combining this with (7.7), we obtain (12.4). O
We also have a lower estimate of the exit time from V,,(x) as follows.

Lemma 12.9. _
Eo(Tv,, () = cr8(re)" p(Vin g1 () (12.5)

for any x € K and any m > 1.
Proof. This follows immediately by (7.8). O

Next we present three estimates concerning exit time and a heat kernel,
which are know to hold in general setting of diffusion processes on metric
measure spaces. The following fact has been obtained in the proof of [27,
Lemma 3.12].

Lemma 12.10. Let U be an open subset of K. If x € U, then

E. (1) < t+ Pu(ry > t) sup E, (1) (12.6)
yeU

Lemma 12.11. Let U be an open subset of K. Then for any z € U,
Py(1o > ) < u(U)p,(2t, z, ). (12.7)

Proof.

2
ﬁw(TU > 1) < P (X: € U ( Pult,z,y)p (dy))

< (U / pult, 2, 9)u(dy) = p(U)p, (24, 7, )

O

Using Lemma 12.10 and 12.11, we obtain the following lower estimate of
Pu (2t7 z, x)
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Lemma 12.12. Let U be an open subset containing x. If E$(TU) > t, then

EJ)(TU) -1 2 1
<S“Pyeuf~7x(m)> n(U) < pu(2t, @, 3). (12.8)

Remark. The inequality (12.8) hold without assuming that u has weak expo-
nential decay as long as u € M]TDC(K).

Combining the previous lemmas, we obtain the following lower estimate of
pu(t, z,x) for a special t = t,,.

Lemma 12.13. Assume that p has (1, p, k)-weak exponential decay. Define
b = %67‘8(T*)mﬂ(vm+1($)) and set

) = {E D a0,
(R(m)? +1)2 if . =0.

Then

o (V@)1
o (B ) iy SPRn) (129

for any m >0 and any © € K, where c19.9 = %(07_8/012_4)2.

Proof. It U = V,,,(x), then (12.8) yields

=~ 2

E, ) —t

(Tvm(~)) 1 < pu(2t5.2)
SUDy v, () Ba (T, () ) (Vi ()

Setting ¢ = t,, and making use of (12.4) and (12.5), we obtain (12.9). O
Now we have diagonal lower estimate of the heat kernel p, (¢, z, ).

Theorem 12.14. Assume that p has (n, p, k)-weak exponential decay. Define

T = T*/C'?.S;
ma(t, 2) = (vt ) — 2, (12.10)

and

_ (Vi (¢ w)+1($)))3(u(Vm (t a;)+2(1‘))>
CH(t,x) = cro.9F (M, (t, A poo .
:3) = xna (my1) V@) ) \ iV g 2(@)
Then _ . i
(T*)m“(’y* ) < Cu(tvx)
t 1(Bs, (z,7st

for any t € (0,1] and any x € K.

Cult, )

R Pult; z,y) (12.11)

Remark. If p has weak exponential decay, then (12.1) is satisfied. Therefore,
we may use the results on the protodistance in the following proof.

o7



Proof. Tt follows that
my,(t, @) = max{m|cz.s(r.)" (Vi1 (z)) = t}.

By (12.9), the above equality yields

. (Vim0 () \ 2 1
cra () (2 e < pultia,a)
. N(Vmu(t,x) (I)) Vmu(t,:r) (x) g
Since the left-hand side of this inequality equals to C}(t, x)Vm#(tm)H(m)_l, we
obtain (12.11) by Proposition 12.6. O

The part C}(t,z) is expected to be a higher order term comparing with
11(Bs, (z,7.t))"" as t | 0. In fact, we show that liminf; o C}:(t, )| logt[” > 0
for p-a.e. x € K in Theorem 12.16. Furthermore, if ¢ has the volume doubling
property and uniform exponential decay, then C7(t,x) is bounded from below
by a constant which is independent of ¢ and =x.

The next lemma has essentially obtained by Andres and Kajino in [1]. They
have used it to show a lower diagonal estimate of the heat kernels of the Liouville
Brownian motion. We modified their result in accordance with our setting.

Lemma 12.15. Let p be a Borel regular probability measure on K and let
{an}n>1 be a positive sequence. If > -, 1/an < 400, then for p-a.e. x € K,

there exists n(x) € N such that ampu(Vin(z)) > p(Vin—1(x)) for any m > n(z).
Proof. For w € W,,, set V) (w) = V2(K,) and V,}(w) = V,}(K,). Then

m

VO(w) C Viu(z) C Vi(w) if 2 € K,. Note that #(T} (K,)) < 5 Define

W=wW...Wp_q for any w =wj ... w,. Using Lemma 2.11, we obtain
1(Vin—1(z)) / 1 (Vin—1(z)))
dx) < e (d) <
[ By ) < 2 S Tl ) <

S V@) ey o S uw o @)

o Vi (w)) e
<5'N Y p(K,) 10PN (12.12)
WEW, 1
Let
Am = {zlr € K, amp(Vin(2)) < p(Vin-1(2))}-
By (12.12),

amp(Am) < 10N

and hence )~ u(A,) < 4+oo. Now the Borel-Cantelli lemma implies the
desired conclusion. O

Theorem 12.16. Assume that p has (n,p, k)-weak exponential decay. Then
there exist c12.13 > 0, ¢ € [0,9] and {Ty }rex such that T, > 0 for py-a.e. z € K
and if t € (0,T,], then
C12.13
|logt|a —

C(t, ). (12.13)
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Remark. By the following proof, one can see that if a > 0, then ¢ = 6 + ¢ for
any € > 0 and if « = 0, then ¢ = 8 4 ¢ for any € > 0.

Proof. Since (r,)"!u(K,) < et Al for any w € W, we have (7)™ V;q1(z) <
coA™. By the definition of m,,(t,z), it follows that m,(t,z) < c3|logt| for any
€ (0,1].

£et c]zm = (m — 1)1 for some € > 0. Then Zm>2 2 < too. Lemma 12.15

implies that for p-a.e. x € K, m~1+9) < u(V,, 1 (z ))/,u( m(2)) for sufficiently
large m. Hence,

Cq < Vm,t(t,z)+1(m)

‘logt‘lﬂ - Vmu(t,x)(x)

for sufficiently small ¢ > 0.

On the other hand, ®(m) < ¢sm for any m > 1. Hence if a > 0, §*(m) >
cem~2 for sufficiently large m. Moreover, it follows that m*(1+5)(m+1) (1+e) <
w(Vina2(2))/ (Vi (2)). Hence combining these with (12.14), we obtain (12.13).
If & = 0, then the arguments are entirely the same except that &*(m) > cym

(12.14)

—4
O
Since r, =1 if & = 0, we immediately obtain the next corollary.

Corollary 12.17. Assume that 1 has (0, p, k)-weak exponential decay and that
a = 0. Then there exists g € [0,9] such that for p-a.e. xz € K,

C12.13
|10gt|qt < pu(t,x,y)

for sufficiently small t > 0. In particular,

log p,(t,x,x)

1 < liminf —
t10 logt

for p-a.e.x € K. Furthermore, if lim, o k(z)/x = 0. then

i o8 pu(t w, )
t10 logt

for p-a.e.x € K.

13 Proof of Theorem 1.1

In this section, we are going to give a proof of Theorem 13.1 which is an exact
restatement of Theorem 1.1.

Theorem 13.1. Assume that o = 0. Let p be a Borel reqular probability
measure on K. Suppose that there exist positive constants c1,ca, a1, s such
that a1 > ag and

179 < p(Bi(z, 1)) < cor?. (13.1)
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for any x € K and any r € (0,1]. Then p has weak exponential decay, there
exists a jointly continuous heat kernel p,(t,x,y) on (0,00) x K x K associated
with the time change of the Brownian motion with respect to p and there exist
Y >0, T, >0 and c¢; > 0 such that Ty, > 0 for p-a.e. x € [0,1]? and

C1 < C1
t|logt[> = p(Bs, (z,7st))|logt

5 <Pult ) (13.2)

for any t € (0,T,]. Furthermore, if there exists a monotonically non-increasing
function f: (0,00) — [1,00) such that

p(Ba(z,2r)) < f(r)u(B.(z,r)) (13.3)

for any x € K and any r > 0, and

L FAG Y (13.4)
rl0 logr
then | ;
i 08Pult @) _ (13.5)
t10 logt

for any x € K.

The condition (13.3) is a relaxed version of the volume doubling property.
Note that the volume doubling property corresponds to the case when f(r) is
bounded. There is a slight difference between Corollary 12.17 and this theorem.
Namely, in this theorem, (13.5) holds for any x € K while it holds only for
p-a.e.xz € K in Corollary 12.17.

Proof. By Proposition 11.2, u has weak exponential decay. The existence of the
heat kernel and (13.2) can be immediately verified by Theorems 12.14 and 12.16
and Corollary 12.17.

For any r1 > 0, we define

k(r1)
k(r1) = min{m|m € NU{0},2" > ni} and f(r.r) = [T £27'r)
i=1

Then
w(Bs (@, 7)) < fr,r1) (B, 7)) (13.6)
and by (13.4)
IOg f(r7 7‘1)
m oS\
rl0  logr
Choose z € K and R > 0 so that B.(z,R) C [0,1]". Then for any w € Wi,
B.(Fy(z),RlI"I*) C K,,. Set z, = F,(z). Note that

= 0. (13.7)

Ky C B.(z,2v/nl~ Y C B, (24, 3v/nl~ "))
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for any « € K. Let fi(r) = f(r,2/nl/R). Then by (13.3)

(K i) > p(Bu (2, R
p(Bu e 2V1) ()

. (13.8
ARy ey 159)
Set no = f1(RI™!) and define
1 —m—1
£(m) = @(10gf1(Rl ) — 10.%770)-
Then we see that .
p(Kwi) = 717&(‘10'):“([(71))
o
and, by (13.7),
m 20 (13.9)
m—oo M
By Corollary 11.10 and (13.9),
lim sup — 08Peb: 2.0 (13.10)
t10 logt

for any x € K. Next note that
Bi(x,17™) € Vin(z) € Bi(@,3v/nl™™).
Define fo(r) = f(r,3y/nl). Then

1(Vin(2)) < p(Bi(z,3v/nl™™))
< L7 Bz, 7)) < 07" (Vinga (2))
By the definition of C};(¢, ) given in Theorem 12.14,
F(m)
NAGEEAGEED
where m = m,(t,x) and c is independent of ¢t and x. Recalling the proof of

Theorem 12.16, we see that m,(t,z) < c3|logt|. This fact along with (13.7)
shows that

log fo(1~™mu(t:2)=1) - log fo(I7™+ @)1 my, (¢, 2)
| log t| - my(t, ) |log t|

Ch(t,r) >

(13.11)

— 0

ast | 0. Again by the proof of Theorem 12.16, it follows that &*(m) > cgm ™
for sufficiently large m. Making use of (13.11), we obtain

log Ci(t,z)
#10 logt
and hence by (12.11),

lim inf >
10 logt
for any x € K. This, together with (13.10), completes the proof. O
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14 Random measures having weak exponential
decay

In this section, we study a class of random measures {PY},cq and prove that
they almost surely have weak exponential decay. Our random measure P}
can be though of as a random self-similar measure where the weight (u;)ics
is randomly chosen in every step according to a probability measure v on the
space of weights Ay .

Definition 14.1. Define Ay C RY by

N
{(xl,...,xN)‘inz 1,z; € ]0,1] for any ¢ € {1,...,]\7}}
i=1

Let B be the collection of Borel sets of Ay. For a Borel regular probability
measure v on Ay, let {(Anw,Buw,Vw)}wew. be a collection of independent
copies of (Ay,B,v) and define (2, F,P,) be the product probability space
[Toew, (Aw; Buw, V). For any w = {wytwew, € Q, we define a probability

measure ﬁu’j on X by

ﬁ:)’(zwl---wm,) = wp(W1)ww, (W2)Wayw, (W3) *** Wiy -,y (W),
where wy, = (W (1),...,wy(N)) € Ap.

The measures {P” },cq are measures on the Cantor set ¥. Using the canon-
ical map 7 : ¥ — K, we are going to induce them on the generalized Sierpinski
carpet K.

Such random measure have been considered by Falconer [17]. In his case,
however, spaces are also randomized, i.e.there is randomness in contraction
ratios of the collection of similitudes which characterizes the space. We remark
that wider classes of random self-similar measures have been studied by many
authors, for example, [22, 36, 2].

Throughout this section, we fix a Borel regular probability measure on Ay
which satisfy the following assumption.

Assumption 14.2. v(Ax N (0,1/r.)Y) =1 and there exists ¢ > 0 such that

/ (z;)"%dv < +00
AN

foranyi=1,...,N.

Recall that 7 : ¥ — K is the natural surjective map given by {m(i1i2...)} =
Ni>1 K. ;-

Definition 14.3. For any w € €2, define a probability measure P by PY(A) =
PY(r=1(A)) for any Borel set A C K.
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We use E, and E, to denote the expectation with respect to v and P,
respectively. If no confusion can occur, we use P, P, P, and E in place of
P,, Py, Py and E, respectively.

By Lemma 2.7, 7 is one to one on 7~ *(K\V.). The next proposition shows
that for P -a.e. w, ]%’(A) = PY(w(A)) for any Borel set A C ¥. In other words,
we may identify two probability spaced (X, 15: ) and (K, PY) in the measurable
sense.

Proposition 14.4. Under Assumption 14.2, for P,-a.e. w, PY(V,) = 0. In
particular, for P,-a.e. w, B
P:(Kw) = P(Z(Ew) (14'1)

for any w € W,.
To prove the above proposition, we use the following lemma.

Lemma 14.5. Let J C{1,...,N}. IfEu(ZjeJ z;) <1, then, for P,-a.e. w,
P (wJY) =0

for any w € W, where wJY = {wjyjo .. .|j; € J for any i € N}.

Proof. Set Z = E,(>_ ;¢ ; %;). Define

Fp(w) = Zlm > Pu(Suww)-

veJ™

Fm(w) ! Py(zw) Z Ww('l}l)u)wvl (UQ) o 'wwvl...vm_l (Um)

- Z?n
V]V, €™

Define B™ be the Borel set of [ e jwj<m Anw and Fp, = {A[A C 0, A =

B x HweW*,Iwbm AN, B € B™}. Then {F,,}n>0 is a P,-martingale with
respect to the filtration {F,,}m>0. By the martingale convergence theorem, for
Po-a.e. w, F(w) = limy, o Fn(w) exists and is finite. Then

P (wJV) < Z™F,,(w) — 0
as m — oo. O

Proof of Proposition 14.4. By Proposition 2.6 and Lemma 2.7, we see that

V., = U U Fu(Bi;) and 7 Y(V.)= U U w(S; ;).

weW, i=1,...,n,j=1,2 wWEW, i=1,...,n,j=1,2

By Assumption 14.2, EV(EkeSij xr) < 1. Using the above lemma, we see

that for P-a.e. w, ﬁv(w(si,j)N) = 0 for any w € W, and any 1, j. Therefore,
PY(r=1(V.)) = 0 and hence P%(V.) = 0. N
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Next we show that P} almost surely has weak exponential decay with linear
% and K.

Theorem 14.6. Under Assumption 14.2, for P,-a.e.w, there existn, > 1, p =
(@,p) € (0,1/r.)? and ay, b, > 0 such that if Ku,(s) = aws and k,,(s) = bys for
any s > 0, then PY has (0, P, kw)-weak exponential decay, where Ky, = (Rw, K,,)-

To prove this theorem, we need the next two lemmas.

Lemma 14.7. Let (r1,...,7n) € (0,1)Y. Define ry = 7y, 7w, for any
W=wy... Wy € W,. If

N
EV % a
3 ((7‘%(1)) <1 (14.2)
= ()
for some q > 1, then for P,-a.e. w € Q, there exist n, > 1 and a, > 0 such
that if |v] > a,|w|, then
P (Kuy) < nwro Pl (Ky).

Proof. We may assume that (14.1) holds for any w € W,. Set f,.,(v) =
PY (X)) /PY(2y). For any v = vy ... v,

fww H Wwwvy..v;_1 U’L)

i=1,....k

Hence we have

k k

Ey(fow(©)?) =[] Eo((2.,)7) = H/A (o, ) Tv(d). (14.3)

=1 =1

Define Ay (w) = {w|w € Q, fuw(v) > 7, for some v € Wi }. Using Chebyshev’s
inequality and (14.3), we obtain

P(Ax(w)) < Z ]P(fw,w(v) > ry)

veWy
w,w va al Eu T a *
<y Bl g (B (§ B0
veEWy vEW) i=1 @ j=1

Hence if (14.2) holds, then the Borel-Cantelli lemma implies that there exists
m € N such that f, ., (v) < r, if [v] > m. Define M(w,w) as the minimum of
such m. Then {w|M(w,w) > k} = U;>rA;(w). Hence

P(M(w,w) > k for some w € W,,) < Z P(M(w,w) > k)
weW,,

= Z P(UiZkAi(w)) < )\km,

weEW,,
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where A = 321, B2 Choose L € N so that ALN < 1. Then the above

inequality implies

= (AEN)™
ZIE” (w,w) > Lm for some w € W,,) §Zi<+oo.
m>0 = 1_>\

Again by the Borel-Cantelli lemma, for P-a.e. w, there exists k& € N such that
if |w| > k, then M (w,w) < L|w|. Hence if a,, = max,ew,\w, M (w,w)/|w| and
Nw = sup,ew. (1) ' PY(K,), then a,, and 7, are finite and we have the desired
statement. O

Lemma 14.8. Let (ry,...,rn) € (0, 1)V, If

N

> B ((z) () < 1 (14.4)

i=1
for some q > 0, then for Py,-a.e. w € Q, there exist n, > 1 and B, € N such
that if |v] > b,|w|, then

1
Py (Zwy) > —ruPr(3w)

w
for any w € W,.

Proof. We use the same notation as in the proof of Lemma 14.7. Define By (w) =
{w|lw € AN, fuw(v) <1y for some v € Wi }. Using Chebyshev’s inequality and
(14.3), we obtain

< N P(fol(v) < D E(fuw(®) ™))

vEW), vEWy

N k
= 3 T El@) ), (ZE ) l>>_

veEW) i=1
The rest is entirely analogous to the counterpart of the proof of Lemma 14.7. [J

Proof of Theorem 14.6. By Assumption 14.2,
PY(Kuo) < (r)~"IPY(Ky)
for any w,v € W,. Again by Assumption 14.2, for any i € {1,..., N},
Ey,((rex:)?) — 0
as ¢ — 0o. Hence for sufficiently large ¢, we may choose p € (0,1/r,) so that

5 B

i=1

65



By Lemma 14.7, for P,-a.e. w, if R, (x) = a,, then we have (11.4) and (11.5).
By Assumption 14.2, there exists p € (0,1/7.) such that

N

Z E,((z:)")p? < 1.

i=1
Hence by Lemma 14.8, we have (11.6), (11.7) and (11.8). O

By Theorem 14.6, PY has weak exponential decay with k(z) = byx. If v
decays rapidly near the boundary of Ay, we have better k.

Theorem 14.9. Define F,(t) = v(Apy N[0,8]Y). Let r € (0,1) and let & :
[0,00) — [0,00) be monotonically nondecreasing. If

3" NTE(r5™) < foo, (14.5)

m=0

then for P,-a.e. w, there exists ¢, > 0 such that

V(Kyi) > cori®Dy(K,) (14.6)
for any w e W, and any i € S.
Proof. Set

Y,, = {wl|there exist w € W,,,i € S such that w, (i) < 7™}

Then
P,(Ym) < > Py(ww(i) < rE0M) < NFUE, (rs0m),
WEWy i€S
Since we have (14.5), the Borel-Cantelli lemma shows that for P,-a.e. w, there
exists k € N such that PY(K,,;) > r=I“DPY(K,) if w| > k. Choosing suffi-
ciently small ¢, > 0, we verify (14.6). O

For example, if v([0,t.]™) = 0 for some ¢, > 0, then we we may choose k()
as a constant. In case o = 0, Corollary 12.17 implies the following assertion.

Corollary 14.10. Assume that a = 0. Letr € (0,1) and let & : [0, 00) — [0, 00)
is nondecreasing. If k(x)/x — 0 as x — oo and (14.5) is satisfied, then for P,-
a.e. w, PY has weak exponential decay and

. logppe(t,z,x)
hm _ 2w

=1
t10 logt

for PY-a.e. x € K.
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15 Volume doubling measure and sub-Gaussian
heat kernel estimate

After this section, we consider the case when p has the volume doubling prop-
erty with respect to d,, which is the restriction of the Euclidean metric to K.
The volume doubling property is known to be one of the indispensable parts
for sub-Gaussian heat kernel estimates. See [26, 31, 27] for example. At the
same time, however, by Theorem 15.3, it turns out to be hopeless to have sub-
Gaussian heat kernel estimates with respect to d, unless u is comparable with
the normalized dg-dimensional Hausdorff measure v,. Consequently we must
find another metric to be used in our heat kernel estimates, if it exists at all.
One candidate of such a metric is the “protodistance” J, introduced in Sec-
tion 12. Indeed, although 0, itself is not a metric, it is going to produce a
family of intrinsic metrics under which sub-Gaussian heat kernel estimates are
obtained in Theorem 15.7.
Throughout this section, we always assume that yp € Mp(K).

Definition 15.1. Let y € Mp(K).
(1) Let d be a metric on K. p is said to have the volume doubling property
with respect to d if and only if there exists ¢ > 0 such that

w(Ba(z,2r)) < cu(Ba(x, 7))

for any x € K and any r > 0.
(2) We say that p has upper uniform exponential decay if and only if there
exist n > 1 and r € (0,1/(r,)) such that

M(va) < mﬂlv‘/‘(Kw)
for any w,v € W,.

Immediately by the above definition, u has upper exponential decay if and
only if there exist > 1 and A € (0,1) such that o, (wv) < nAl’lo, (w). This
fact yields the following proposition.

Proposition 15.2. Let p € Mp(K). If u has upper uniform exponential de-
cay and the volume doubling property with respect to d., then u has uniform
exponential decay. In particular, in case a = 0, if p has the volume doubling
property with respect to d., then it has uniform exponential decay.

By this proposition, if p has upper uniform exponential decay and the volume
doubling property with respect to d., then pu € MITDC(K ) and we have jointly
continuous heat kernel p, (¢, z,y).

Proof. Since p has upper uniform exponential decay, we have (11.5) with a
bounded . By [32, Theorem 1.3.5], the volume doubling property implies that
w is elliptic. Using Proposition 11.6-(3), we see that (11.7) holds with a bounded
k. Thus p has uniform exponential decay. O
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Now, we show that the volume doubling property and upper sub-Gaussian
heat kernel estimate with respect to d. imply comparability of i to the normal-
ized Hausdorff measure v,.

Theorem 15.3. Let p € Mp(K). Assume that u has upper uniform exponen-
tial decay and the volume doubling property with respect to d,. If there exist
B>1,ct5, >0 and ¢35, > 0 such that

1 By 1
C15.1 2 di(z,y)"”\ 71
pu(t,z,y) < (B (z, 11/9)) exp ( C15.1< t ) (15.1)

for any x,y € K and any t € (0,1], then 3 = d,, and there exist ¢l 5,35 5 > 0
such that
c15.24(A) < p(A) < cf5 v (4) (15.2)

for any Borel set A C K.

Proof. By Proposition 15.2, p has uniform exponential decay. Hence E(z) is
bounded. By (12.4) and (12.5), there exist ¢5 > 0 and ¢4 > 0 such that

e3(r) " 1(Vins1(2)) < Bo(rv,,.(m) < ca(r) " n(Vin ()

for any x € K and any m > 0. Note that B.(z,1™™) C Vi, (z) C B (x,3y/nl™™).
The volume doubling property along with this fact and the above inequality im-
plies that there exist c¢5 > 0 and c¢g > 0 such that

esr " u(Bi(z,r)) < E$(TB*(LT)) < cer ™ u(By(z, 1)) (15.3)

for any « € K and any r € (0, 1].
On the other hand, applying [31, Theorem 2.10], we see by the volume
doubling property and (15.1) that there exists ¢; > 0 and cg > 0 such that

e < EI(TB*(%T)) < cgr? (15.4)

for any € K and any r € (0,1]. By (15.3) and (15.4), there exist cg > 0 and
c10 > 0 such that
corPT < (B (z,1)) < c10r*™P (15.5)

for any © € K and any r € (0,1]. Since there exist ¢;; > 0, ¢12 > 0 and
{zw}wew, C K such that B*(zw,clll*|w‘) C K, C B*(xw,clgl*‘“") and
B, (%, e~ N 0K, = 0 for any w € W, by (15.5),

cffralefm(oﬁﬁ) < p(Upew,, Be(Tw,c11l™™)) <1

< Z w(By (T, c120™™)) < c‘f‘;ﬁle*m(”ﬁﬁ).
weW,,

for any m > 0. This yields a + 3 = dy and hence 8 = d,,. Moreover,
(c1) ™ v (Ky) < p(Iy) < (c12)™ v (Ky)
for any w € W,. Using [30, Theorem 1.4.10], we obtain (15.2). O
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To state our main theorem of this section, we need several notions. The first
one is quasisymmetry which has been introduced by Tukia and Viiséla in [39)
as a generalization of quasiconformal mappings in the complex plane.

Definition 15.4. Let d; and da be metrics on K giving the same topology as d..
dy is said to be quasisymmetric to ds if and only if there exists a homeomorphism
h from [0,+00) to itself such that h(0) = 0 and, for any t > 0, di(z,2) <
h(t)dy(z,y) whenever ds(x,z) < tda(z,y). If dy is quasisymmetric to da, we
write dy c,:)vs ds.

The relation &9 among metrics on K has been shown to be an equivalence

relation in [39]. See also [33, Section 12]. Since quasisymmetric deformation of
metrics distorts the balls in uniformly bounded fashion, it preserves the volume
doubling property and the elliptic Harnack inequality.

Next, we introduce the notions of quasimetric and bi-Lipschitz equivalence.

Definition 15.5. (1) Let ¢ : K x K — [0,00). ¢ is called a quasimetric if and
only if p(z,y) = o(y,x) > 0 for any z # y € K, o(x,z) =0 for any € K and
C, < 400, where C, is defined as

o(x, z
O R T AT
(2) Let 1 and o be non-negative valued function on K x K. We say that o1
is (bi-Lipschitz) equivalent to s if and only if there exist ¢1,co > 0 such that
ap1(z,y) < p2(z,y) < c21(,y)
for any x,y € K. We write ¢ o P2 if and only if oy is (bi-Lipschitz) equivalent
to pa.

Remark. There seems an ambiguity in the usage of the word “quasimetric” in
mathematical community. Our definition is based on the book by Heinonen|[28].
The same notion is called “near-metric” and the word “quasimetric” has differ-
ent definition in Deza & Deza[16].

The quantity C, is the optimal value of C' of the extended (or weakened)
triangle inequality
p(x,2) < Cle(x,y) +¢(y, 2)). (15.6)
Note that C > 1 in (15.6) because ¢(z,2) < C(p(x, 2) + ¢(z, 2)) = Cp(z, 2).
The quasisymmetric equivalence ~ is weaker than the bi-Lipschitz equiva-

lence ~, i.e. if d and p are metrics on K and d ~ p, then d ~ p.
BL BL QS
We need one more definition to state our main theorem.

Definition 15.6. For a Borel regular probability measure u on K, define

B, = {f|there exists a metric d on K giving the same topology as d,
such that d° ~ 4.
such that d I~ Ou-}
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Theorem 15.7. Assume that p has upper uniform exponential decay and the
volume doubling property with respect to d. Then B, # 0 and

log Cy,
B, = U [1+ o 2 ,oo) C [2,00). (15.7)
4,0:quaszmetrw,Lp]é\/LéH

Furthermore, for any § € B,, if d is a metric on K and dP I~ O, then d

is quasisymmetric to d. and there exist positive constants cis g, 35 g, Cls g, Cl5 o
and c15.19 such that

ct x, )P\ 741
pu<t,x,y>smexp<—cf5.g(c“ﬁ) ) (15.5)

for any z,y € K and any t € (0,00),

1
C15.9
p(Ba(z, t1/5)) < pult,,y) (15.9)

if d(z,y)? < 2y ot, and
pu(t, x, x) < ci5.10p(2t, 2, ) (15.10)

for any x € K and any t > 0. In particular, if r. = 1, then u(Bq(z,t'/?)) in
(15.8) and (15.9) can be replaced by t.

We are going to prove this theorem step by step in the subsequent sections
starting from Section 17.

Remark. By Proposition 15.2, the assumption of Theorem 15.7 is equivalent to
that p has uniform exponential decay and the volume doubling property.

Remark. The protodistance J,, is not even symmetric in general. Under the
assumption of Theorem 15.7, however, it is bi-Lipschitz equivalent to the sym-
metrized version v, defined by v, (x,y) = 0, (x,y) + 0, (y, ) which will turn out
to be a quasimetric. See Propositions 19.3 and 19.7.

Remark. If d is a metric on K and d° I~ 0., then by Corollary 12.7 the metric
d induces the same topology on K as d..

Observing (15.8) and (15.9), one notices that the protodistance 4, plays
the essential roll. Namely, we can replace d(z,y)? by du(x,y) and obtain the
following corollary.

Corollary 15.8. Assume that p has upper uniform exponential decay and the
volume doubling property with respect to d.. If 3 € B,,, then there exist positive
constants cig 11,35 11,510 and ¢35 15 such that cig 1, and ¢35 1, depend on 3
while ¢t 15 and ¢35 15 do mot,

pu(t,x,y) < %GXP (—0%5.11 ((W,y))l> (15.11)
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for any (z,y,t) € K? x (0,00), and if 0, (z,y) < ¢35 15t, then

1
C15.12
——~ < pult,z,y). 15.12
u(Bs, (x,t)) ~ ( ) ( )

In view of (15.11), it is interesting to know what happens if we lower the
value of 3 towards inf%,. In the special case where u = v., we see that
%, = [dy,00) and the metric d which is equivalent to (5,)'/% is the restriction
of the Euclidean metric d,. In particular, d,, = inf 8,,_. This means that inf B,
is a characterization of the walk dimension d,, in this case. In general, we need
to solve the following problem first.

Open Problem Let §, = inf®,. Then 3, € B, or not? If 5, € B, and d is
a metric giving the same topology on K as d, and d’ I~ 0., then does d satisfy
the chain condition?

A metric space (X,d) is said to satisfy the chain condition if and only if

there exist C' > 0 such that, for any z,y € X and any m € N, there exists a
sequence {z;}i=1,.. m+1 C X such that z1 =z, 2,41 = y and

d(z,y)

d(xs,xip1) < C

for any ¢ = 1,...,m. It is known that if the chain condition is satisfied, then
we can deduce the off-diagonal lower sub-Gaussian estimate

1 [C P ——
C15.13 2 d(z,y) Bx—1
1(Bg(z, t1/6+)) eXp < ~ C15.13 (7?5 ) < pult,z,y) (15.13)

from (15.8) and (15.9) with 8 = (.. See [27] for example. If this is the case,
then the metric d can be regarded as the best intrinsic metric for the heat kernel
pu(t,z,y) and the infimum S, may be called the “walk dimension”.

Next we introduce substitutes of ¢, under the volume doubling property.
Even with the alternative expression in Proposition 12.5, the definition of d,, is
rather complicated and difficult to see what it is intuitively. So it is nice to have
simpler version.

Definition 15.9. Define D, (z,y) for each z,y € K by

Du(xvy) = d*(x’y)dwidH:u(B*(x’ d*(x’y)))

and
Dy(z,y) + D,(y, )
5 )

The function 9, is the symmetrized version of D,,.

w#(xvy) =

Proposition 15.10. Assume that p has upper uniform exponential decay and

the volume doubling property with respect to d.. Then d, I~ D, i~ Uy
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This proposition will be proven in Section 19.

By this proposition, we may replace J,, in Theorem 15.7 and Corollary 15.8
by D, or 1,. As a consequence, we obtain the following statement: under
the same assumption as in Corollary 15.8, if 8 € B, then there exist positive
constants cly 14, ¢35 14, Cl5 15 and ¢35 = such that

1 1
C15.14 2 <¢H(‘xay)) A1
t < —— — —_ . 15.14
pﬂ( ,J},y) — N(Bw#(xvt)) exp < 015.14 t ( )
for any (z,y,t) € K? x (0,00), and if ¢, (z,y) < ¢?5 15t, then
_ Csas < pu(t,z,y). (15.15)
W(By, (2,1)) =

The next theorem is a version of Theorem 15.7 without using any expression
related to self-similarity of K. In other words, it is written in the “conventional”
language.

Theorem 15.11. Let u € Mp(K). Assume that there exist c,e > 0 such that
i(Bu(z,ar)) < ca®<p(Ba(z, 7)) (15.16)

for any r € (0,1] and any a € (0,1]. Then p has the volume doubling prop-
erty with respect to d. if and only if the following conditions (TC1), (TC2) and
(TC3) are satisfied:

(TC1) Let D = FNC(K). Then (€|pxp,D) is closable on L*(K,u) and its
closure (€, F,) is a strong local reqular Dirichlet form on L*(K, ).

(TC2) There exists a diffusion process ({Xi 10, {Ps }ack) associated with the
Dirichlet form (€,,F,) on L*(K,u) and a continuous function p,(t,z,y) :
(0,00) x K x K — (0,00) such that

B (f(X)) = /K pu(t,z,y) f(y)n(dy)

for any bounded measurable function f: K — R, any x € K and any t > 0.
(TC3) There exists a metric d on K which is quasisymmetric to d. and positive
constants B3, cis g, s g, Cls 9, Cas o and ci5.10 such that 3 > 2, (15.8) holds for
any t > 0 and any z,y € K, (15.9) holds if d(x,y)? < 25 ot and (15.10) holds
for anyt >0 and any x € K.

By the definition of D, (z,y), the condition (1.6) is equivalent to the condi-
tion (15.16).
In the rest of this section, we show that Theorem 15.7 implies Theorem 15.11.

Lemma 15.12. Let p € Mp(K). Assume that there exist c¢,e > 0 such that
(15.16) is satisfied for any r € (0,1] and any a € (0,1] and that u has the volume
doubling property with respect to d.. Then p has upper uniform exponential
decay .
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Proof. For each w € W, define {W"(w)}n>0 and { K™ (w) }.>0 inductively by
WO (w) = {w}, K™(w) = K(W™(w)) and W (w) = FlowI(Wm(w)). Choose
z € Ky, 50 that Ky, C B.(z,/nl~1"?). Let M = [\/n] + 1. Then K, C
B.(x,y/nl~"1) € KM(w). Since u has the volume doubling property with
respect to d., p is elliptic and g, o H by [32, Theorem 1.3.5]. (The definition
of the relation ou is give in Definition 17.1.) Hence there exists ¢ > 0 such that

p(Ky) < cou(Ky) for any w € W, and any w’ € WM (w). Since #(WM (w)) <
(2M)", we see that

H(B. (/™) < o (2M)" (K.

Therefore,

1(Kwo) < (B (@, /Al 1y < c(i=1")o+e u(B, (, /i1l
<c- Co(QM)n(lf\ﬂ)omLe'u(Kw) =c- CO(2M)H(T*)7I1)|(le)i‘vllu(Kw)_

This implies
o (wv) = (1) (Ko < - co(2M)™ (1)1 ()9 (K ) = 1A, (w),

where A = 17¢ € (0,1) and ¢1 = ¢ - ¢o(2M)™. Thus we see that p has upper
uniform exponential decay. O

Proof of Theorem 15.11. Assume (15.16). By Lemma 15.12, if ¢ has the volume
doubling property with respect to d,, then it has upper uniform exponential
decay. Making use of Proposition 15.2, we see that y has uniform exponential
decay. Now, Proposition 11.7 implies that g € MEY(K) and Theorem 11.9
shows that p is controlled by some rate functions. Theorems 6.8, 10.10 and 15.7
yield (TC1), (TC2) and (TC3). Conversely, assume that (TC1), (TC2) and
(TC3). By (15.8) and (15.9),

8 __a
(Ba(x, /7)) (Ba(x, /7))
for any ¢ > 0 and any € K. This along with (15.10) implies the volume

doubling property of p with respect to d. Since d is quasisymmetric to d,
has the volume doubling property with respect to d.. O

<pult,z, o) <

16 Examples

In this section, we will present two classes of examples of measures which satisfy
the condition of Theorem 15.7, namely, measures having the volume doubling
property with respect to d, and upper uniform exponential decay. The first
class consists of self-similar measures and the second class consists of measures
which are absolutely continuous to the normalize Hausdorff measure v,.

It is known that not all the self-similar measures have the volume doubling
property with respect to d.. We are going to apply results in [32] to our case to
obtain simple criterion.
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Definition 16.1. Let i € {1,...,n}. For Q1 € S;o and Q2 € S; 1, we write
Q1 ~ Q2 if and only if @1 and Q5 are symmetric with respect to the reflection
in the hyper-plane x; = 1/2.

Theorem 16.2. Let p be a self-similar measure on K with weight (14;)ics-

(1) p has the volume doubling property with respect to d. if and only if po, =
Lo, whenever Q1 € S;o and Q2 € S;1 for some i€ {1,...,n} and Q1 ~ Q>.
(2) p has the upper uniform exponential decay if and only if u;re < 1 for any
i€sS.

Proof. (1) Define ¢; : S;o — Si1 by (pi(Ql) = @2 if and only if Q1 € S;p, Q2 €
Sﬂ and Q1 ~ QQ. If

R = {(510751'17()0%51752)” € {17 . 'an}aShSQ € S7FS1 (B’io) = FSz(Bil)}7

then, by [32, Proposition 3.4.3], £ = (K, S, {Fg}ges) is a rationally ramified
self-similar structure with a relation set R. Since the gauge functions p and g,
are elliptic and g, is locally finite, by [32, Theorem 1.3.5], u has the volume
doubling property with respect to d, if and only if p o 8 where & is defined

in Definition 17.1-(1). Applying [32, Theorem 1.6.6], we see that u o 8 if and

only if ug, = pg, for any pair (Q1,Q2) € Sio x Si1 satisfying ¢;(Q1) = Q2.
Thus we have obtained the desired equivalence.
(2) Set A = max;eg pirs. If A <1, then

0,u(wv) < Ao, (w)

for any w,v € W,. Hence u has upper uniform exponential decay. The converse
is immediate. O

The second example is a measure given as pu(dz) = c|z — .| v, (dz), where
x € K, 0 < § and c¢ is a normalizing constant. If 0 < § < dp, then fK |z —
.| %v.(dr) < +o0o and the normalizing constant c is given by the reciprocal of
this integral.

Theorem 16.3. Let x, € K and let 0 < § < dy. Define

o) = [ fo=awdo) ] [ o= o)

for any Borel set A C K. Then g, s has upper uniform exponential decay if
and only if 0 < 6 < dy. Moreover, if 0 < § < dy, then p has the volume
doubling property with respect to d.

The rest of this section is devoted to proving this theorem.
For simplicity, we only consider the case where x, = 0. We define

o) = [l o)
A
for any Borel set A C K. Note that p. = pos [} |z|~°vi(dz). Therefore, to

show the upper uniform exponential decay or the volume doubling property for
Ho,s, it is enough to show the corresponding properties for fi..
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Lemma 16.4. p, has upper uniform exponential decay if and only if 0 < § <
dy -

Proof. Let w € Wy, and let I € S. Set I, = [0,1/]] x ---[0,1/]] and write
K, = K(,ym. Then

1 (K) = / &+ | v (dz),

Km

where a,, = F,,(0), and
ps (Kwr) = / |+ ay + Fr(0) /1™~ v, (dar)
K'm+l
1
= [ o/t aw B )

16
_ N/K &+ ayl + Fy(0)/17 v, (de)

Since a,, and F;(0) are nonnegative vector,
|z + aw| < |z + awl + Fr(0)/1M]

for any = € K,,. Hence
§

l
i (Kuwr) < Nﬂ*(Kw)-

Note that if w = (I,)™ and I = I, equality holds in the above inequality. By
the definition of d,,, we see that

r
210 <1
N <
if and only if 6 < d,,. Thus p. has upper uniform exponential decay if and only
if § < dy. O

Lemma 16.5. There exists ¢ > 0 such that p1(Kwi) < cpp(Kuwj) for any w € W
andi,j € S.

Proof. Note that
oK) = [ o+ el (o)
K?n«{»l

for any w € Wy and i € S. Set In = [1 —1/1,1]"™. Since |2 + awli| < |2+ awi| <
|+ a1, for any x € Ky, 41 and any i € S, we see that pi. (Kuwr,) < pa(Kuwi) <
i (Kyr,) for any ¢ € S. Assume that w # (I,)™. Then

fn(Kwry) > (Jaw| + vl )N~ and  u(Kyr,) < Jay| P N~MmHD,
Set ¢; = (v/n + 1)%. Since w # (I.)™, |a,| > 1/ and this implies

e (Kuwry) 2 e1(law| + \/ﬁlil)iéNi(m+l) > |aw|7éN7(m+1) > p(Kur,).
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Next, let w = (I,)™. Then

W) = [ ol e = o [l ey
K41 (L)

u(Kur) = [ ol ) = o [l et
-y e N™ Jy—ajiage

Hence there exists co > 0 such that copu(Kyi,) > p(Kyr,) for any m > 0.
Finally define ¢ = max{ci,co}. Then p(Ky;) < cu(Ky;) for any w € W, and
any i,j € S. O

Lemma 16.6. u. is elliptic.

Proof. For any w € W, there exists ¢ € S such that pu.(Ky;) > pus(Ky)/N. By
Lemma 16.5, for any j € S,

s (Kuwj) = po(Kwi) = pis(Kw) /N.
Combining this with Lemma 16.4, we see that u, is elliptic. O

Lemma 16.7. Define e, = (01k,...,0nx) € R, where &;; is Kronecker’s 6.
Then there exists c3 > 0 such that

1(Kw) < esp(Ky)
ifw,v € Wy, |w| = |v], ay = aw + e /1! for some k € {1,...,n}.
Proof. Let |w| = m. Note that

e (Kw) :/ |z + ayw| °vi(dz) and g, (K,) :/ |z + @y + ex /1™ Ov, (d).

m m

In case w # (I,)™, then since = + a,, — e /I™ is a nonnegative vector,
|2 4+ aw| < |z 4+ aw + /1] < |+ ay + e /I + (& + ay — ex /1™ = 2]z + ay.

Hence 27°u(Ky) < p(K,) < p(Ku).
If w = (I,)™, then

om

M*(Kw):l‘sm/Nm/ || v, (dz) and p.(K,) = Nm/ |z + ex| v, (dx)
K K

Hence there exists ¢ > 0, which is independent of m, k, such that u(K,) <
¢ w(K,). Thus we have shown the lemma. O

Proof of Theorem 16.3. By Lemma 16.4, u, has upper uniform exponential de-
cay if and only if 0 < 0 < d,,. Now we show that u has the volume doubling
property if 0 < § < d,,. By Lemma 16.6, u, is elliptic. Moreover, Lemma 16.7
shows that u oo Ve (The definition of & is given in Definition 17.1.) Then by

[32, Theorem 1.3.5],  has the volume doubling property with respect to d,.. O
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17 Construction of metrics from gauge function

From this section, we start preparations to prove Theorem 15.7. In this section,
we briefly review the theory of gauge functions and metrics developed in [32, 34]
and modify it for our purpose.

Definition 17.1. (1) A gauge function g; on W, is said to be gentle with
respect to a gauge function go on W, if and only if there exists ¢ > 0 such that
g1(w) < cgi1(v) whenever w,v € A%? and K,, N K, #  for some p € (0,1]. We
write g1 o 82 if gy is gentle with respect to go.

(2) For v > 0, we define g7 : W, — (0, 1] as g7(w) = g(w)” for any w € W,.

Note that g” is again a gauge function and if g is elliptic (resp. locally
finite), then so is g7.

Proposition 17.2 ([32, Theorem 1.4.3]). (1) Among elliptic gauge functions,
ol s an equivalent relation.

(2) Let g1 and go be elliptic gauge functions on W,. If g1 is locally finite and
g1 jord g2, then g is locally finite.

Note that U&(z,r) was introduced as the “ball” with center z and radius r
associated with a gauge function g.

Definition 17.3. Let g be a gauge function on K. A metric d on K is said to
be 1-adapted to g if and only if there exist ¢1, ¢y > 0 such that

Bi(x,c1r) CUB(z, 1) C By(z, car)
for any z € K and any r € (0, 1].

This definition enable us to regard U8(z,r) as a real ball with respect to the
metric d if d is 1-adapted to g.
Next we propose a natural way to construct a metric from a gauge function.

Definition 17.4. Let g be a gauge function on W,. For any x,y € K, define

m

Dg(x,y) = inf { Zg(w(z))‘m > 1Lw(l),...,w(m) € Wi,z € Kyn),
i=1

Ky N Kygigry #0 forany i =1,...,m—1and y € Kw(m)}

It is easy to see that Dg is a pseudo distance, i.e. Dg(z,y) = Dg(y,x) > 0,
Dg(z,2) =0, Dg(x,y) < Dg(z, 2) + Dg(z,y). Unfortunately, we do not know
whether Dg(z,y) > 0 if  # y or not in general.

Example 17.5. The restriction of the Euclidean metric d, is 1-adapted to the
gauge function g, defined in Example 4.6. Moreover, Dg, is a metric which is
equivalent to d,.
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The following theorem suggests that two relations gentle o and quasisym-

metric ~ are closely related.
Qs

Theorem 17.6. Let g be an elliptic gauge function on W,. Assume that g o8
8-

(1) If d is a metric on K which is 1-adapted to g€ for some e > 0, then d is
quasisymmetirc to d,.

(2) There exists € € (0,1] such that Dge is a metric which is 1-adapted to g
and quasisymmetric to d.

Proof. (1) This is a direst consequence of [34, Theorem 3.4].

(2) Since g, is locally finite, g is locally finite by Proposition 17.2-(2). Note
that the self-similar structure associated with generalized Sierpinski carpet is
rationally ramified. Combining [32, Theorem 2.3.11] and [32, Corollary 2.3.15],
we see that Dge is a metric on K which is 1-adapted to g¢ for some € € (0, 1].
Hence by (1), Dg- is quasisymmetric to d,. O

The next theorem is one of the keys in the proof of Theorem 15.7.

Theorem 17.7. Let u has uniform exponential decay. Then the following three
conditions are equivalent:
(1) p is elliptic and gentle to g..
(2) p has the volume doubling property with respect to d,.
(3) @, is elliptic and gentle to g,.

Furthermore, if any of the above conditions holds, then there exists € € (0, 1]
such that Dz, )< is a metric on K which is 1-adapted to (7,)¢ and quasisym-
metric to dy.

Proof. (1) < (2): Since d, is adapted to g, and g, is locally finite, this follows
from [32, Theorem 1.3.5].

(1) = (3): Proposition 11.8 yields that 7, is elliptic. Since p & B there
exists ¢ > 0 such that if w,v € A% and K,, N K, # 0, then p(K,) < cu(Ky).
Note that |w| = |v] if w,v € A%~. Hence o,(w) < co,(v) if w,v € A%~ and
K, NK, #0. By (11.13), we see that 7, is gentle with respect to g..

(3) = (1): Proposition 11.8 yields that y is elliptic. Since 7, o B there exists
¢ > 0 such that if w,v € A% and K,, N K, # 0, then 7,(w) < co,(v). By
(11.13), there exists ¢’ > 0 such that o, (w) < ¢’o,(v). Note that |w| = |v] if
w,v € A& . This implies u(K,) < u(K,) if w,v € A% and K, N K, # 0.
Hence p C?]:: -

The rest of the statement is immediate by Theorem 17.6. O

18 Metrics and quasimetrics
In this section, we prepare another piece for the proof of Theorem 15.7. The

main subject is the construction of metrics from powers of quasimetrics. First
we give basic definitions.
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Definition 18.1. Let X be a set. Let ¢ : X x X — [0, 00).

(1) q is called symmetric if g(z,y) = q(y, z) for any z,y € X

(2) ¢ is called predistance if ¢(z,z) = 0 and ¢(z,y) > 0 for any = # y.
(3) Define p4(z,y) by

k
pq(z,y) = inf{Z(J(fEi»%H)‘k 2 1Lx =2, 2841 = y}

=1

for any z,y € X.
(4) Let p: X x X — [0,00). ¢ said to be (bi-Lipschitz) equivalent to ¢ if and
only if there exist c1,co > 0 such that

crp(z,y) < q(z,y) < cap(x,y).

We write ¢ K if and only if ¢ is equivalent to ¢. If no confusion may occur,

we omit the word “bi-Lipschitz” and simply say that ¢ is equivalent to q.
(5) Let C > 0. g is called C-quasimetric on X if and only if ¢ is a symmetric
predistance and

q(z, z) < Clq(w, y) + q(y, 2)) (18.1)

for any z,y,z € X. ¢ is said to be a quasimetric if ¢ is C-quasimetric for some
C>0.

(6) Let k > 0. ¢ is called k-quasiultrametric on X if and only if ¢ is a symmetric
predistance and

q(z,2) < kmax{q(z,y),q(y, 2)} (18.2)

for any z,y,z € X.

Remark. pg(z,y) < g(z,y) for any z,y € X.

In the above definition, if X contains more than two points, we have C' > 1
in (5) and k > 1 in (6).

If ¢ is a quasimetric, then its power is also a quasimetric as is seen in the
next proposition.

Proposition 18.2. Let C > 1. If q(z,y) is a C-quasimetric, then for any
e>0,
g(w,y)" < C 20 (g(2, 2)  + q(y, 2)°).

One can prove the above proposition by routine calculus. Next we discuss
when a predistance is equivalent to a metric.

Proposition 18.3. Let g : X x X — [0,00) be a symmetric predistance. The
following three statements are equivalent:

(A) There exists a metric on X which is equivalent to q.

(B) There exists ¢ > 0 such that q(z,y) < cpy(x,y) for any z,y € X.

(C) pq is a metric on K and p, o
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Proof. (A) = (B): Let d be a metric on X which is equivalent to g. Then there
exist ¢y, co > 0 such that

cld(:r,y) S q(l’,y) S CQd(z7y)‘
Hence if 21 =z and z,41 = vy, then
ad(z,y) <o Y d@iwin) <Y q(@i, ).
i=1 i=1

This shows that ciq(z,y)/c2 < c1d(z,y) < pg(z,y). Thus we have shown that
(A) implies (B).
It is straight forward to show the statements (B) = (C) and (C) = (A). O

A metric is always 2-quasiultrametric. How about the converse of this state-
ment? The following old theorem gives a kind of answer to this question. It
shows that 2-quasiultrametric may not be a metric but it is always equivalent
to a metric.

Theorem 18.4 (Frink[18]). Assume that q(x,y) is a k-quasiultrametric. If
k < 2, then q(z,y) is equivalent to a metric. More precisely, if k < 2, then

pa(®,y) < q(,y) < 26pq(2,y) (18.3)
for any x,y € X.
See also [37] for a proof of Theorem 18.4.

Corollary 18.5. Let g be C-quasimetric. If (2C)¢ < 2, then pge is a metric.

log 2
More precisely, if € < m,

then
Pae (2, y) < q(z,y)" < 4pge (2, y)
for any x,y € X.

This corollary is a quantitative version of [28, Proposition 14.5], where the
condition has been (2C)¢ < v/2 instead of our condition (2C)¢ < 2. (The condi-
tion (2C)¢ < /2 has not explicitly written in the statement of [28, Proposition
14.5]. One can extract, however, this condition from its proof.) This improve-
ment is crucial to obtain Theorem 18.7.

Proof. For any z,y,z € K, we have

q(z,y) < Clg(z,2) + q(2,y)) < 2Cmax{q(z,2),q(z,9)}-

Thus we see that

q(z,y)* < (2C)  max{q(z, 2)%, q(2,y)}.

Using Theorem 18.4, we conclude our proof of this corollary. O
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Definition 18.6. For a quasimetric ¢, define

C,—  sup q(z, 2)
z,y,z€X,x#z Q(wv y) + q(yv Z)

and
Ay = {e|q(x, y)¢ is equivalent to a metric}.

The following theorem gives a characterization of A,.

Theorem 18.7. If q is a quasimetric of X, then

log 2
A, N (0,1] = U <0, o7+ loa | (18.4)

: quasimetric ~
P q ’(pBL

Proof. Choose any € € A.N(0,1]. Then pye is a metric on K which is equivalent
to ¢°. Set ¢ = (pge)'/¢. By Proposition 18.2,

o(a,y) <2 Np(x,2) + @(2,9))

log 2
log 2+log Cy, *
Next, if ¢ is a quasimetric equivalent to g, then ¢ is C,-quasimetric. Using

Corollary 18.5, we see that (0, l()gZIj-%%ong'V,} C A,.

for any x,y,z € X. This implies C, < 2¢~! and hence € <

O

19 Protodistance and the volume doubling
property

In this section, we study properties of the protodistance ¢, with or without
the volume doubling property of u. Although J, is not symmetric and does
not fulfill extended triangle inequality (15.6) in general, it satisfies primitive
counterparts given in Lemma 19.2 and Proposition 19.5. In fact, if x has the
volume doubling property, the combination of Lemma 19.2 and Proposition 19.5
is shown to imply that J,, is equivalent to a quasimetric in Proposition 19.7.
In this section, we always assume that 4 € Mp(K) and (12.1) holds. Note
that this assumption is satisfied for all measures having weak exponential decay.
First we consider how far ,, is apart from being symmetric.

Definition 19.1. Define
Ju(m,x) = min{k — m|k > m, (r*)k,u(Vk(x)) = e (m,x)}.

Lemma 19.2. For any z,y € K,

z ryin @) MV 1 W) o
O(E:) < ) ) du(y, ). (19.1)
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Proof. Since V(g (2) € Vi(z,y)—1(y), We see that

., YH@D) o < Vi@ -11))
(r ) n Ve @) < = )

V)1 0)) oy
Ve () # 0 0Y)

(T*)k(x7y)M(Vk(z,y) ()

/J/(Vk(ac,y)fl (y>)

N(Vk(x,y) y)) 6#(:% x)

Hence
Su(@,y) = €u(k(z,y), @) = (ry) e FEVDTREY) (V4 o (e (2))

< (r )P EEDD (e YD (V) (@)

Vie(w.y)—
7w) lu’( k( ,y) 1(y))5#(y’x)'

< (1, )In k(@)
M(Vk(z,y) (y))
O

Under the volume doubling property, (12.3) leads to the fact that d,(z,y)
and d,,(y, ) are comparable as follows.

Proposition 19.3. Assume that sup,,>q ycr ju(m,z) < +oo. Then there ex-
ists c1g9.9 > 0 such that
5}t(x7y) < 619.25/L(y7$) (192)

for any x,y € K if and only if pu has the volume doubling property with respect
to d.

Proof. Let M = sup,;, >0 yer Jju(m,z). If p has the volume doubling property,
then there exists ¢; > 0 such that

p(Vin(2)) < crp(Vinga (7))
for any m > 0 and any = € K. By Lemma 19.2, it follows that
6/1(xa y) < (r*)Mcl(;#(ya IB)

Conversely, for any m > 0 and = € K, choose y € V,,,(2)\Vin+1(x). Then there
exists some k < M such that

()" (Vi (y)) < 6,(y, ) < cr9.20,(2,y)
= c19.2(r) " u(Vingw (7)) < c10.2(r) "M (Vi ().
Hence if ¢y = c19.2()M, then
1V (y)) < coap(Vin(z))

for any z,y € K with ¢,,(z,y) < 2. Using this inductively, we see that if
L (z,y) <k, then
(Vi () < (e2)" (Vi ().
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On the other hand,
Vm_l(.’L’) - U Kw.

wely ™ ()
Choosing y,, € K,, for each w € I'2=1(z), we have

pVinr(@) < >0 Vi)

wel2l=1(z)
< #(0H@)) () u(Vin (@) < (41— 1) (e2) ™~ (Vi (@)

Set c3 = (41 — 1)"(c2)#~ 1. Inductively, we obtain

1(Vin(2)) < (e3)"n(Vink (@)

Note that Bi(x,l17™) C V,,(z) C Bi(z,3y/nl™™). Let k = min{i € N|I! >

3y/n}, then
(B, 17™) < (e3) u(Bu(x, (3v/nl~*F)I7™)

for any m > 0 and any x € K. Since 3y/nl~% < 1, p has the volume doubling
property with respect to d.. O

Lemma 19.4. For any x,y,z € K.
mln{k(z,y),k(y,z)} -1 < k(x,z)

Proof. Set m = min{k(x,y), k(y,z)}. Then ¢,,(z, z) < 3. Hence £,,1(x, z) < 2.
This immediately implies m — 1 < k(z, 2). O

Next we have a primitive version of extended (or weakened) triangle inequal-
ity (15.6), although it is difficult to see why this is the case at a glance.

Proposition 19.5. For any x,y,z € K, either

N(Vk(z,y)—l(x» -
O, 2) < max{—r*#(vk(w)y)(z)) ) 1}5u( .Y) (19.3)
. max M(Vk(z“y)fl(x)) .
8,(% ) < ma {—w(Vk(Z,y) (I)),l}éu( ) (19.4)
holds.

Proof. We have two cases as follows.
Case I min{k(x,y),k(y,2)} < k(z, z): In this case,

6/4(5652) < 5#(33’9) if k’(x,y) < k($7z)’
0z, ) < 0,(z,y) if k(y, 2) < k(z, 2).

Case II min{k(z,y),k(y,z)} > k(x, z): Lemma 19.4 shows that

k(x,z) = min{k(z,y), k(y, 2)} — 1.
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Suppose k(z,z) = k(z,y) — 1. If j, (k(z,y) — 1,2) > 1, then e(k(z,y) — 1,z) =
e(k(z,y),x). This implies 0,(z,z) = e(k(z, 2),x) = e(k(z,y),x) = ou(x,y). If
Ju(k(z,y) — 1,2) =1, then

0u(,2) = e(k(z,y) — 1) = (r)" O (Vi) 1 (2))
1 M(Vk(z,y)fl(‘T)) -1 M(Vk(l’»y)*l(l‘))

< () e(k(z,y), ) = (1) Su(x,y)
M(Vk(x,y) x)) /U(Vk(x,y) (x)) .
Hence if k(x,z) = k(z,y) — 1, we have (19.3). In case k(z,2) = k(z,y) — 1,
exchanging = and z, we obtain (19.4). O
Lemma 19.6. If u has upper uniform exponential decay, then
sup  ju(m,z) < 4o0.
zeK,m>0

Moreover, there exists c19.5 > 1 such that

(r) D (Vi) () < 0@, y) < e10.5(r) O 1(Viga ) () (19.5)

for any x,y € K.

Proof. By the definition, p has upper uniform exponential decay if and only
if there exists > 1 and A € (0,1) such that o, (wv) < n\*lg,(w) for any
w,v € W,. Since v1 ...vy, € Typ(x) for any v = vy ... vak € Tipar(2), we have

)" u V@) = Y 0u(w)

VE 4k ()

< #(Ferk(w))n)‘k weHIl‘a)Ez) Uu(“’) < 4n77)\k(7“*)m,“(vm($>)-

Hence choosing k so that 4"nAF < 1, we have j,(m,z) < k. At the same time,
if C19.5 = (T’*)k, then (195) holds. O

Proof of Proposition 15.10. For any =,y € K,
B (z, 17" Y)) C Vo () € Bi(w, 3/l k)

and
l—k(z,y)—l < d*(x,y) < 2l—k($ay)_

Combining these with the volume doubling property, there exist ¢, ce > 0 such
that

ctp(Bu(@, d (2, 9))) < Vi) (7)) < copp(Ba(z, du(2,y))) (19.6)
for any x,y € K. Since (r,)*@¥) = (]=F@y)ydw=du  the inequalities (19.5) and

(19.6) imply that ¢, I~ D,,. By Proposition 19.3, it follows that d, I~ P, as

well. O
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Now assuming the volume doubling property, we are going to deduce the
extended triangle inequality from (19.3) and (19.4) as promised.

Proposition 19.7. Assume that u has upper uniform exponential decay and the
volume doubling property with respect to d.. If v,(z,y) = 0u(x,y) + 0,(y, ),
then v, is a quasimetric.

Proof. By Proposition 19.5 and the volume doubling property, there exists ¢; >
0 such that 6, (z, z) < c1d,(x,y) or §,(z, ) < ¢16,(2,y) for any z,y,z € K. On
the other hand, by Proposition 19.3 and Lemma 19.6, 6,(z,y) < c19.20,(y, z)
for any z,y € K. Hence
5#(1'7 Z) S (&1 min{éu(xv y)a 019.25,u(za y)}
< ey min{d,,(2,y), ¢l9.20,(y: 2)} < e1¢tg 2(3u(2,y) + 8u(y, 2))-

Exchanging (z,y, 2) to (z,y, ), we obtain

UH($7Z) S 010%9.2(’0#(‘7;’3/) + Uu(y7z))'
O

If v, (z,y) is a quasimetric, then by [28, Proposition 14.5], there exists ¢g > 0
such that, for any e € (0,€], (v,)© -~ de. By (19.2), we have (d,)¢ >~ de. In

fact, the metric de ~ Dz as follows.
BL  w

Theorem 19.8. Assume that p has upper uniform exponential decay and the

volume doubling property with respect to d.. Then B, # 0. Let 3 € B, and

let d be a metric on K satisfying d° I~ 0. Then d and D_./s are 1-adapted to
i

1/8 ~ ~ ; ~ 16)B
(Tu)'’, d I~ Dgt/g and d 0% d.. In particular, J,, I~ (Dﬂ/g)

To prove the above theorem, we need several lemmas.

Lemma 19.9. Under the same assumption as Theorem 19.8, there exist clq , >
0 and ¢3¢, > 0 such that

clo.70u(w) < 8, (x,y) < g 77, (w) (19.7)
for any x,y € K and any w € Uy (7).
Proof. By Theorem 17.7, 7,, and p are elliptic and gentle to g,.. Since W,,, =
A, and ' (2) = A, ;(2), there exist ¢; > 0 such that pu(K,) < c1pu(Ky)
for any z € K, any m > 0 and any w,v € I';;,(z). This implies
()" p(Kw) < (1) p(Vin (@) < 14 (1) p(Ky) (19.8)

for any © € K, any m > 0 and any w € T';,(x). By Proposition 15.2, u has
uniform exponential decay and hence by (11.14), there exist ¢g,c3 > 0 such that

20 (w) < ()" p(Vin(2)) < 30, (w)
for any x € K , any m > 0 and any w € T';,(z). This immediately implies
(19.7). O
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Definition 19.10. Define

du(z,y) = inf{sly € U%+(z,s)}.

and BgM (x,r) = {y\gu(l“all) <r}.

By the above definition, it is easy to see that §(z,y) is a predistance and
Bz(z,r) C U (x,r) C Bz(x,~7) (19.9)

for any x € K, r > 0 and v > 1. However, 51 does not satisfy the (extended)
triangle inequality in general.

Lemma 19.11. Under the same assumption as Theorem 19.8, §,, i~ gﬂ.

Proof. 1f maxwepk(zyy)(m)ﬁu(w) < s, then for any w € Ty, (2), w = vu for
some v € Af’l(m) and u € W,. Therefore, y € U%#(z,s) and hence 0(z,y) <

Since @, is elliptic, there exists v € (0,1) such that A" N A4 = 0. Hence if
Yminger,, ,, () ou(w) > s, then for any w € Af“l(x), there exists v € Iy, (2)
such that w = vu for some u € W, and v € W\Wy. If y € U%#(z,s), then
there exist w,w’ € Afﬁ (z) such that x € K, y € K, and K,,N K, # ). Since
|w| > k(x,y) + 1 and w’ > k(x,y) + 1, it follows that ly(y )11 (2, y) < 2. This
contradiction yields y ¢ U7#(z, s) and hence 8(z,y) > Yminger,, @ ou(w) =
Y(ctg.r) " ol y). O

Proof of Theorem 19.8. By Proposition 19.7 and Lemma 19.11, it follows that
d,, is a quasimetric. Using [28, Proposition 14.5] (or equivalently [32, Propo-
sition 2.3.3]), we obtain ey > 0 and a metric de for each € € (0, €] satisfying

d. I~ (8,)¢ ~ (6,)¢. Hence B, # 0. Let 3 € B, and let d be a metric giving the

same topology on K as d, and satisfying d° I~ 8, The fact that d° >~ 6, along
with (19.9) implies that d is 1-adapted to (7,)'/?. By [32, Lemma 2.3.10], we
see that d I~ Dz, y1/8. Since (E#)l/ﬁ is elliptic and gentle with respect to g, by

Theorem 17.7, Theorem 17.6-(1) shows that d and Dz )1/s are quasisymmetric
to d. O

20 Upper estimate of p,(t,z,y)

In this section, we are going to give the first half of our proof of Theorem 15.7.
Throughout this section, we assume that p has upper uniform exponential decay
and that p has the volume doubling property with respect to d.. Hence by
Proposition 15.2, p has uniform exponential decay. For simplicity, we write A, =
NS, A(@) = AS (@), K(z,p) = K7 (x,p), Apa(z) = A% (2) and Uz, p) =
U%x(x,p) as far as no confusion may occur.
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By Theorem 17.7, u and @, are elliptic and p ot T, o 8+ Hence by

Proposition 17.2, 1 and &, are locally finite. In particular, there exists cao.1 > 0
such that
H(Kwi) Z 82041ﬂ(Kw) (201)

for any w € W, and any 7z € S.

Lemma 20.1. There exists mag.2 > 0 such that if w,v € A, and K, N K, # 0,
then
[lw| = Jv]| < mao.2. (20.2)

Proof. Since s, o 8 there exists ¢ > 0 such that if w,v € A, and K,,NK, # 0,

then g, (w) = 271"l < ¢g,.(v) = ¢271*I. This immediately implies the desired
statement. O

Lemma 20.2. There exist cy 5 > 0 and 3y 5 > 0 such that

3030 < op(w) < C30.3P (20.3)
for any p € (0,1] and any w € A,.
Proof. Since 7, is elliptic, there exist positive constants ¢; and ¢y such that
c1p <au(w) < cop
for any p € (0,1] and any w € A,. This along with (11.13) suffices. O

Lemma 20.3. There ezist p1 € (0,1] and ¢l 4,394 > 0 such that

C%O.U’ < Ee(Tu(a,p) < 050.40 (20.4)
for any p € (0,p1] and z € K.

Proof. Choose w € A,(x) so that |w| = max{|v| : v € Ay(z)}. Lemma 20.1
implies that v > |w|+mag.2 for any v € A, 1 (x). Hence we have Vjy|4ms, 5 (2) €
U(z,p). By Lemma 7.8, if M = mag2 + 1, then

er.s(r)l T2 u(Viyg o () < / 9" (@, y)p(dy) = ol (a.p)-

U(z,p)
(20.5)
Since w € A, (), there exists v € Wi such that 2 € Kyy € Viglem(2). By
(20.1), p(Kuo) > (20.1) (). By (20.5),

07.8(T*)m20‘2 (020.1)M0'H(w) < E; (TU(a;,p))'

Using Lemma 20.2, we obtain ¢, 3¢7.8(rs)™202(co0.1)Mp < EI(TU(x,p)).

Next we show the upper estimate. Since 7, is locally finite and elliptic,
Theorem 4.9 implies that the number of equivalence classes of {A, . }ze k. pe(0,1]
under ~ is finite. Let {I'y,...,Tx} be the collection of equivalence classes of
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{Ap 2 }oek pe(o,1) under ~ Set C' = max;—=1,.. cr.3([I';],m, A). Note that there

exists p1 € (0,1) such that U (z,p) # 0 for any (z,p) € K x (0,p1]. By
Lemma 7.4, if p € (0, p1], then

Bulro) = / V@) <C S ouw)  (206)
U(z,p) WwEA 1 ()

Since 7, is locally finite, it follows that L = sup,cg pe(0,1] #(Ap,1(2)) < +oo.
Combining this fact with Lemma 20.2 and (20.6), we obtain

E, (TU(w,p)) < CgO.SCp'

Lemma 20.4. There exists cog.7 > 0 such that

ea01u(Ko) = p(U (2, p)) (20.7)
forany x € K, any p € (0,1] and any w € A,(z).

Proof. By the fact that p & T, there exists ¢; > 0 such that

(K y) > crp(Ky)
whenever € K and w,v € A, 1(x). Hence if w € A,(x), then

1
C1

wU(z,p)) = Z p(Ky) <

vEA, 1(x)

Z W(Ky) < EM(Kw)a

vEA, 1(x)
where L = sup,c g pe(0,1] #(Ap,1(2)) appearing in the proof of Lemma 20.3. [

First part of proof of Theorem 15.7. By Theorem 19.8, 9B,, is not empty.
Let 8 € B, and let d be a metric on K satisfying d? > 0,. Again by Theo-

rem 19.8, d &g d, and d is 1-adapted to (Eu)l/ﬁ. Consequently p has the volume

doubling property with respect to d. Moreover, since U(E“)I/B(x, r) =U(x,r?),
Lemma 20.3 implies that there exist c3; g, ¢35 > 0 and R > 0 such that

C%O.srﬁ < Ez(TBd(x,r)) < Cgo.srﬁ (20.8)

for any « € K and any r € (0, R]. By [31, Lemma 4.4], it follows that § > 1.
For a compact set A C K and a gauge function g, define A%(A) = {wlw €
A8, AN K, # 0}. Then by Lemma 20.4,

co07  inf  p(Ky) > inf u(U(z,p))
wWEATH (A) €A
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for any p € (0,1]. Let r = p'/8. Since d is 1-adapted to d and p has the volume
doubling property with respect to d, we have

inf  p(Ky) > e inf w(U(z, p))
U)EAZ“(A) z€A

> inf u(B, > inf u(B,
Z C2 ;IelAM( d(.”[?,CgT)) ZC ;IelAM( d($7r))7

where the constants ¢y, cq, c3 and ¢4 are independent of A and r. This and (10.8)
yield

Cs
ELN+ 5 1(Ba(z,r))

zesupp(f)

C
112 = 51112 (20.9)

for any r € (0,1] and any f € F. This inequality (20.9) is called the local
Nash inequality in [31]. Recall that p has the volume doubling property with
respect to d. Combining this fact with (20.8) and (20.9), we have (15.8) by [31,
Theorem 2.10]. Now Theorem 22.2 shows that § > 2. Thus B,, C [2,00). Since

v, is a quasimetric by Proposition 19.7 and 4§, I~ 0, by Lemma 19.11, we see

that gﬂ is a quasimetric. Again by the fact that J,, I~ 51, we obtain

B, ={1/ele € .Agﬂ}

from Definition 18.6. Since B, C [2,00), (18.4) implies (15.7). O

21 Lower estimate of p,(t, z,y)

This section is devoted to giving the second half of the proof of Theorem 15.7.
The ideas of the proof in this section are essentially due to [27, Section 5]. We
adapt their arguments to our situation where the space is compact. As in the
last section, we assume that y € Mp(K) has uniform exponential decay and
the volume doubling property with respect to d.. Let 8 € 9B, and let d be a
metric on K satisfying d° I~ 0,. Then, by the results in the last section, d is

quasisymmetric to d, and

c z,y)P\ 71
pu(t,z,y) < mexp (— cz(d( ;y) ) ) (21.1)

Since d is quasisymmetric to d,, (€, F) satisfies the elliptic Harnack inequality
(5.3) with respect to d as well.

Let {(Ai, ¢:)}i>1 be the collection of pairs of an eigenvalue and an eigen-
function given in Lemma 10.7. Define

ub(y) =Y (i + e M oi(@)ei(y). (21.2)
i>1
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Using the same discussion as in the proofs of Lemma 10.9 and Theorem 10.11, we
see that the above infinite sum converges uniformly on (¢, z,y) € [T, 00) X K x K
for any 7' > 0, and that

G’Yutym(y) = pﬂ(t,x,y) (213)

and P
ut,w (y) = P}/pu (ta z, y) - apu (ta z, y) (214)

for any (t,z,y) € (0,00) x K x K.
The next lemma is well-known consequence of the elliptic Harnack inequality.
The present statement is a slight modification of [27, Lemma 5.2].

Lemma 21.1. There exist ¢ > 0 and 0 > 0 such that for any x € K, anyr > 0,
any bounded harmonic function f on By(z,r) and any y € By(x,r),

d(z,y)

0
(@) — 1) <c( ) 11l Baom

where || f[|oo,a = supgea |f(2)]-

Lemma 21.2. For any f € C(K), any v >0 and any x,y € K, if r > d(z,y),
then

Gy f(x) =Gy f(y)l <
0
250p E(r0) 11+ 711G 1) + o L) 116 flom (209

where ¢ and 0 are the same constants as in Lemma 21.1 and B = By(x,r).

Proof. By Proposition 8.3, we have
Gof(2) =GR f(2) + E.((e77™ = 1)Gy f(Xrp)) + Ex (G f(X7,)).  (21.6)

For the first term, it follows
B = i v
i) =B [ o)
0
< E(7)||flls0.5 < SUEE(TB)HfHoo,B-
zE
For the second term,

|EZ((€_’YTB - 1)G7f()~(7'3))| < 'YEZ(TB)HGWwa,B'

By [19, Theorem 4.6.5], the last term o (G,yf(f(TB)) is a harmonic function on
B whose boundary value at 0B is G f. Hence by Lemma 21.1,

6
Bu(6 (X)) = By (G Fep)) = o L2 Gl

Combining all three terms, we have (21.5). O
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Lemma 21.3. There exists C1 > 0 such that

O

0 t, —_—

ot
if d(z,y)? < t.
Proof. By (10.14) and (21.1),

)
’mpu(t z,y ’ \/pu (/2 2, 2)pu(t/2,y,y) <
c1

t \/u(Balx, (t/2)1/7

\/;_n

(Baly, (t/2)Y/5))
. 1
t /u(Ba(w, 1/8)) i(Ba(y, t1/8))

By the volume doubling property, there exists ¢ > 0 such that

w(Ba(x,7)) < u(Ba(y,2r)) < cu(Ba(y,r))

)

<

whenever d(z,y) < r. Hence

C1 1
't \/u(Balz, 0179) u(Baly, 11/7))

if d(z,y)? < t. O

< cic 1
=t p(Ba(z,t1/8))

9 ultia,y)| <
atpu Yy Ly Y) | >

Lemma 21.4. For any A >0 and any T > 0, there exists C > 0 such that

A
— o (t < —
|pu(t,217,1') pu( 2, y)] < M(Bd(x,tl/ﬁ))

whenever t € (0,T] and d(z,y)”? < Ct.

Proof. Let f = ub® in (21.5). Assume that d(z,y)” < t¢. Then by (21.1), (21.3),
(21.4) and Lemma 21.3, there exist c3, ¢y and ¢5 such that

9
Ipu(t, x,x)—pu(t, z,y)] < (rﬁ(cf+04> +c5(d(xra y)> )u(Bd(xl tl/ﬁ)) (21.7)

if d(x,y) < r. Set ¢g = max{l,(2c5/A)/?}. Define R = cgd(x,y). We have

0
d(z,y) < 2R and c5 (d(;},;/)) < A/2. Next, note that if ¢ € (0,77,

. . T
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Let C = min {1, m} Then

R (T +e) <

if d(x,y)? < Ot. Thus, letting r = 2R in (21.7), we verify the desired inequality.
O

Lemma 21.5. For any T > 0,

0< w,yelp(ftﬂpu(t, z,y) (21.8)

Proof. By (10.12), if F(t,2,y) =359 e~ M=)t ()4 (y), then

pult,z,y) =1+ e 2'F(t,2,y).

Since F(t,x,y) is bounded on [1,00) x K x K and Ay > 0, there exists T, >
0 such that e *2tF(t,z,y) < 1/2 for any (t,x,y) € [T,00) x K x K. Tt is
enough to consider the case where T' < T,. Since p,(t,z,y) is positive, 0 <
inf, ek e, Pu(t, z,y). This immediately implies (21.8). O

Proof of (15.9). Since p has uniform exponential decay, k and k can be chosen
as constants. Moreover, by the volume doubling property of p with respect to
d., it follows that C};(t, z) defined in Theorem 12.14 is uniformly bounded from
below. Hence by (12.11), there exists ¢; > 0 such that

C1

m < pu(t,x, Z/)

for any « € K and any ¢ € (0,1]. Note that d,, o d” and that p has the volume
doubling property with respect to d. So, there exists co1.9 > 0 such that

C21.9
H(Baa, 1777 = Pr0::7) 21

for any x € K and any t € (0,1]. Using Lemma 21.5 and changing the value
of ¢o1.9 if necessary, we verify that (21.9) holds for any z € K and any ¢ > 0.
Set T = diam(K,d)?. Then for t > T, if D = inf, yex > pu(t, z,y), which is
positive by Lemma 21.5, then
D
(Ba(z, /7))

for any (t,z,y) € [T,00) x K X K. Let A = ¢91.9/2. Applying Lemma 21.4 and
using (21.9), we have

=D <pu(t,z,y) (21.10)

1 C21.9
- < t 21.11
2M(Bd($,t1/6)) _pu( a$7y) ( )

if d(z,y)’ < Ct and t € (0,T]. Combining (21.10) and (21.11), we obtain
(15.9). O
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Proof of (15.10). Now it follows that

¢l
1(Ba(e, 1177))

C2

< t < ————
=T S LB 7))

for any t > 0 and any x € K. The volume doubling property of p with respect
to d immediately yields (15.10). O

22 Non existence of super-Gaussian heat kernel
behavior

In this section, we will give a proof of the fact that if the heat kernel estimate
(15.8) holds, then 8 > 2, which means there is no super-Gaussian heat kernel
behavior. If u is Ahlfors regular, i.e. u(Bg(z,7)) < r®, and the presence of the
lower off-diagonal heat kernel estimate as well as (15.8), this inequality 5 > 2
has been shown in [3, 25, 24]. In the general framework of local and conservative
Dirichlet spaces, it has shown by Hino-Ramirez [29, Section 3] by using their
version of extended Varahdan’s formula. Here we present an alternative proof
using Theorem 22.3, which characterizes the domain of the Dirichlet form under
(15.8). Unlike Hino-Remirez’s approach, we do not need the local property of
Dirichlet forms a priori.

Throughout this section, we assume that (X, d) is a locally compact metric
space, that p is a Radon measure on (X, d) and that (£, F) is a regular Dirichlet
form on L?(X,u). We set By(z,r) = {yly € X,d(z,y) < r} and Vy(z,r) =
w(Ba(z,r)) for any € X and r > 0.

The following is an abstract definition of a heat kernel.

Definition 22.1. p(t,z,y) is said to be a heat kernel associated with the Dirich-
let form (£, F) on L*(X, u) if and only if

(1) For any t > 0, p(t,x,y) is non-negative measurable function on X x X.
(2) For any t > 0, p(t,z,y) = p(t,y, z) for any z,y € X.

(3) Fixing t > 0 and z € X, define p"®(y) = p(t,x,y). Then pt* € L (X, u) N
L?(X, ) for any t > 0 and any = € X.

(4) Forany f € L*(X,p), (Tf)(z) = [ p(t,z,y) f(y)u(dy) for p-ae. z € X,
where {T; }+~ is the strongly continuous semigroup associated with the Dirichlet
form (€, F) on L?(X, p).

Now we state the main theorem of this section.

Theorem 22.2. Assume that p has the volume doubling property with respect
to d and that there exists a heat kernel p(t,x,y) associated with the Dirichlet
form (€, F) on L*(X, ) which is stochastically complete, i.e.

/Xp(t, z,y)u(dy) =1
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for anyt > 0 and p-a.e. x € X. If there exist a monotonically non-increasing
function ® : [0,00) — R and 8 > 1 such that

/OO P01 D(s)ds < 400 (22.1)
0
and
(tay) < —C cp(d(9”7y)> (22.2)
POBY) =9 (@, 0179) /5 '

for any t € (0,1] and any z,y € X, then § > 2.

The key step to prove the above theorem is the following fact. We define
E(u,u) = +oo if u € L?(X, ) and u ¢ F.

Theorem 22.3. Under assumptions of Theorem 22.2, there exists C' > 0 such
that

E(u,u) < O1 - pu(d d 22.3
o <Ol [y (L ) — ) Putan) Jutan) 223
for any v € L*(X,p). In particular, uw € F if the right hand side of (22.3) is
finite.

This theorem is essentially due to [25] if p is Ahlfors regular. The general-
ization under the volume doubling condition has been given by Sturm-Kumagai
in [38].

Lemma 22.4. Let (X,d) be a locally compact metric space. Define

Co(X) ={f|f € C(X),supp(f) is compact.}
CE(X) = {f|f € Co(X), f is Lipschitz continuous}.

Then for any f € Co(X), there exist a compact set K C X and {hp}n>1 C
CH(X) such that ||f — hu|loo — 0 as n — oo and supp(h,) C K for anyn > 1.

Proof. If X is compact, then this is immediate from the Stone-Weierstrass the-
orem. (See [40], for example, for the Stone-Weierstrass theorem.) Assume that
X is not compact. Let f: X — [0,00) belong to Cy(X). Let F = supp(f).
We may choose an open set U C X such that F C U and U is compact. Us-
ing the result for the compact case, we may choose {f,}n>0 € CF(U) such
that [|fn — f|[.o 7 — 0 as n — co. Without loss of generality, we may assume

that [|fn — fllo g < 27" Define hy(2) = max{f,(z) —27",0} on U and
hy(x) = 0 on the compliment of U. Since inf, o d(z,y) > 0, it follows that

h, € C¥(X) and ||f — hnllco,.x — 0 as n — oo. Moreover, supp(h,,) C U. Thus
we see that {hy},>1 is the desired sequence if f > 0. This suffices for a general
case by considering the positive and the negative parts of f € Cp(X). O
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Proof of Theorem 22.2. Assume that 3 < 2. Let u € C(X) and let L be the
Lipschitz constant of u, i.e.

L= sup Ju(z) — u(y)l
z,yeX,x#y d(xay)

Denote the support of u by F. There exists an open set U C X such that
F CU and U is compact. Let R = inf,cpyex\v d(2,y). Then R > 0 and, for
any r € (0, R),

1 0 < L*? ifzeU,
_ du) 4=
V(.T,T‘) /Bd(:n,r) |u<x) U(y)| ‘u( y) {: 0 otherwise.

Hence by Lemma 22.4,

E(u,u) < %Lzrzfﬁu(U) =0

Consequently u € F and E(u,u) = 0. This immediately implies £(u,v) = 0 for
any v € F. Hence letting H be the non-negative self-adjoint operator associated
wiht the Dirichlet from (€, F) on L?(X, i), we see

/quzO
X

for any v € Dom(H). By Lemma 22.4, if v € Dom(H), then

/quzO
X

for any u € Co(X). By the regularity of (£,F), Co(X) is dense in L?(X, ).
Hence Hv = 0 for any v € Dom(H). This implies that H = 0 and T;f = f
for any f € L?(X,p) and any ¢t > 0. This contradicts to the existence of the
integral density p(t, z,y) of T;. O
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