
BACKWARD REPRESENTATION OF ROUGH INTEGRAL: AN
APPROACH BASED ON FRACTIONAL CALCULUS

YU ITO

Abstract. On the basis of fractional calculus, the integral of controlled paths
along Hölder rough paths is given explicitly as Lebesgue integrals for fractional
derivative operators, without using any arguments from a discrete approxima-
tion. In this paper, we introduce a backward version of the integral and provide
fundamental relations between both integrals from the perspective of the back-
ward representation of the rough integral.

1. Introduction

On the basis of fractional calculus, Hu and Nualart [6] introduced an approach
for rough path analysis. One of the notable features of this approach is the concept
of integrals with respect to rough paths, called rough integrals. The usual rough
integral is based on arguments from a discrete approximation and is given as the
limit of the compensated Riemann–Stieltjes sums as follows:∫ t

s

(Y, Y ′) d(X,X) := lim
|Ps,t|→0

n−1∑
i=0

Yti(Xti+1
−Xti) + Y ′tiXti,ti+1

for 0 ≤ s < t ≤ T . Here, (X,X) ∈ Ωβ([0, T ],Rd1) is a β-Hölder rough path

and (Y, Y ′) ∈ Qβ
X([0, T ], L(Rd1 ,Rd2)) is an X-controlled path with β ∈ (1/3, 1/2].

(See Section 2.2 for the basic concepts of rough path analysis.) This limit is
taken over all finite partitions Ps,t := {t0, t1, . . . , tn} of the interval [s, t] such that
s = t0 < t1 < · · · < tn = t and |Ps,t| := max0≤i≤n−1|ti+1 − ti|. However, as
defined in Definition 2.2, the rough integral of the approach based on fractional
calculus is given explicitly in terms of Lebesgue integrals for fractional derivative
operators without using any arguments from the discrete approximation. The
integral I(X,X)(Y, Y

′) in Definition 2.2 was introduced by Hu and Nualart [6] and
the author [10], and can be regarded as an extension of the (forward) integral of Y
with respect toX in the integration theory developed by Zähle [18]. It follows from
[10, Theorem 2.5] that I(X,X)(Y, Y

′)s,t is consistent with the usual rough integral;

specifically, the identity I(X,X)(Y, Y
′)s,t =

∫ t

s
(Y, Y ′) d(X,X) holds. (See [7–9, 11,

12] for related studies.) Such explicit expressions directly lead to a quantitative
estimation of the rough integrals and solutions to differential equations driven by
a rough path (e.g., [1, 2, 16]).
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In this paper, we introduce a backward version of the integral I(X,X)(Y, Y
′)

and consider the relations between these integrals from the perspective of the

backward representation of the rough integral in [3] as follows: Let (
←−
X,
←−
X ) and

(
←−
Y ,
←−
Y ′) be the (time T ) time reversal of (X,X) and (Y, Y ′), respectively. Namely,

(
←−
X,
←−
X ) is a β-Hölder rough path defined by

←−
X t = XT−t for t ∈ [0, T ] and

←−
X s,t =

−XT−t,T−s + (XT−s −XT−t) ⊗ (XT−s −XT−t) for 0 ≤ s ≤ t ≤ T , and (
←−
Y ,
←−
Y ′) is

an
←−
X -controlled path defined in the same way as

←−
X . Then, the equalities∫ T

s

(Y, Y ′) d(X,X) = lim
|Ps,T |→0

n−1∑
i=0

{
Yti+1

(Xti+1
−Xti)

+ Y ′ti+1
(Xti,ti+1

− (Xti+1
−Xti)⊗ (Xti+1

−Xti))

}
= −

∫ T−s

0

(
←−
Y ,
←−
Y ′) d(

←−
X,
←−
X ) (1.1)

hold for 0 ≤ s < T and are called backward representation of the rough inte-
gral (cf. [3, Proposition 5.12]). The purpose of this paper is to clarify the struc-
tures of rough integrals based on fractional calculus from the perspective of the
fundamental property (1.1).

In Section 2.4, we introduce a backward version of I(X,X)(Y, Y
′), denoted by

J(X,X)(Y, Y
′) in Definition 2.2. Note that J(X,X)(Y, Y

′) can be regarded as an
extension of the backward integral of Y with respect to X in [18] (see (1) of
Remark 2.3). In Section 3, using the basic formulas of fractional calculus, we
describe the derivation of J(X,X)(Y, Y

′) from the usual rough integral. Because we
are studying the backward version, it will be useful to keep these aspects in mind.
In Section 2.5, we focus on the backward representation (1.1). First, we show that
the equalities

J(X,X)(Y, Y
′)s,t = −I(←−X,

←−
X )
(
←−
Y ,
←−
Y ′)T−t,T−s

and

I(X,X)(Y, Y
′)s,t = −J(←−X,

←−
X )
(
←−
Y ,
←−
Y ′)T−t,T−s

hold for 0 ≤ s < t ≤ T (Theorem 2.5). To prove these equalities, we use
Lemma 2.4, which provides the relations between the fractional derivative op-
erators and time reversals. Next, using Theorem 2.5 and the results of the pre-
vious study [10, Theorem 2.5] mentioned in the first paragraph, we show that
J(X,X)(Y, Y

′) is also consistent with the usual rough integral; namely, the iden-

tity J(X,X)(Y, Y
′)s,t =

∫ t

s
(Y, Y ′) d(X,X) holds (Theorem 2.6). Therefore, from

Theorems 2.5 and 2.6, we obtain the backward representation (1.1) and see that
J(X,X)(Y, Y

′)s,t gives an explicit expression on the right-hand side of the first equal-
ity of (1.1). Although the definition of J(X,X)(Y, Y

′) is more complicated than that
of I(X,X)(Y, Y

′), the proofs of Lemma 2.4, Theorems 2.5, and 2.6 in Section 2 are
obtained through straightforward computations.
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The remainder of this paper is organized as follows: In Section 2, we introduce
the definition of the integrals and the main theorems. We also recall some basic
components of rough path analysis and fractional calculus. In Section 3, we
provide another proof for Theorem 2.6 without using [10, Theorem 2.5].

2. Framework and Main Theorems

In this section, we introduce the definitions of integrals and the main theorems.
We also briefly review concepts such as rough paths, controlled paths, and frac-
tional integral and derivative operators. We follow the standard treatments for
rough path analysis [3–5,13–15] and fractional calculus [17, 18].

2.1. Notation. Let V and W be finite-dimensional normed spaces with norms
∥ · ∥V and ∥ · ∥W , respectively. Although the fundamental theories of rough paths
and controlled paths are valid for suitable infinite-dimensional Banach spaces, we
consider only finite-dimensional cases in this paper to avoid technical difficulties
that are not relevant to our theme. Let L(V,W ) denote the set of all linear maps
from V toW . Let T denote a positive constant that is fixed throughout this paper.
Let a, b ∈ R with 0 ≤ a < b ≤ T . Simplex {(s, t) ∈ R2 : a ≤ s ≤ t ≤ b} is denoted
by △a,b and is a closed subset of R2. Let C([a, b], V ) and C(△a,b, V ) denote
the spaces of all V -valued continuous functions on the interval [a, b] and △a,b,
respectively. For ψ ∈ C([a, b], V ), we define δψ ∈ C(△a,b, V ) as δψs,t := ψt − ψs

for (s, t) ∈ △a,b. Let λ ∈ (0, 1]. We then set

∥ψ∥λ;[a,b] := sup
a≤s<t≤b

∥ψt − ψs∥V
(t− s)λ

and ∥Ψ∥λ;[a,b] := sup
a≤s<t≤b

∥Ψs,t∥V
(t− s)λ

for ψ ∈ C([a, b], V ) and Ψ ∈ C(△a,b, V ). We omit [a, b] from the notation if there
is no ambiguity; that is, we write ∥ψ∥λ and ∥Ψ∥λ instead of ∥ψ∥λ;[a,b] and ∥Ψ∥λ;[a,b].
We set Cλ([a, b], V ) := {ψ ∈ C([a, b], V ) : ∥ψ∥λ;[a,b] <∞} and Cλ(△a,b, V ) := {Ψ ∈
C(△a,b, V ) : ∥Ψ∥λ;[a,b] <∞}. Hereafter, d1 and d2 denote positive integers; E and
F denote the Euclidean spaces Rd1 and Rd2 , respectively; and | · | denotes the
Euclidean norms of E, F , and their tensor spaces. Let k be a positive integer.
For α ∈ R and a ∈ E⊗k, we set (−1)α := eiπα and |(−1)αa| := |a|. Let β
denote a real number with 1/3 < β ≤ 1/2 and let γ denote a real number with
(1− β)/2 < γ < β. These numbers are fixed throughout this paper.

2.2. Rough paths and controlled paths. To describe the main theorems of
this paper, we slightly reformulate the definitions of both Hölder rough paths and
controlled paths. The usual definitions correspond to the case a = 0, b = T . Let
a, b ∈ R with 0 ≤ a < b ≤ T . We say that pair (X,X) is a β-Hölder rough path
on [a, b] with values in E if (X,X) satisfies the following two conditions:

(1) X ∈ Cβ([a, b], E) and X ∈ C2β(△a,b, E ⊗ E);
(2) for s, t, u ∈ [a, b] with s ≤ u ≤ t,

Xs,t − Xs,u − Xu,t = (Xu −Xs)⊗ (Xt −Xu). (2.1)
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The space of all β-Hölder rough paths on [a, b] with values in E is denoted by

Ωβ([a, b], E). For (X,X) ∈ Ωβ([a, b], E), we set
←−
X t := Xa+b−t for t ∈ [a, b] and

←−
X s,t := −Xa+b−t,a+b−s + (Xa+b−s −Xa+b−t)⊗ (Xa+b−s −Xa+b−t)

for (s, t) ∈ △a,b. Then, the pair (
←−
X,
←−
X ) is a β-Hölder rough path on [a, b] with

values in E. When a = 0, b = T , (
←−
X,
←−
X ) is called the (time T ) time reversal of

(X,X) ∈ Ωβ([0, T ], E).
Given X ∈ Cβ([a, b], E), we say that pair (Y, Y ′) is an X-controlled path on

[a, b] with values in F if (Y, Y ′) satisfies the following two conditions:

(1) Y ∈ Cβ([a, b], F ) and Y ′ ∈ Cβ([a, b], L(E,F ));
(2) RY ∈ C2β(△a,b, F ), where R

Y
s,t := Yt − Ys − Y ′s (Xt −Xs) for (s, t) ∈ △a,b.

The space of all X-controlled paths on [a, b] with values in F is denoted by

Qβ
X([a, b], F ). For (Y, Y ′) ∈ Qβ

X([a, b], F ), we set
←−
Y t := Ya+b−t and

←−
Y ′t := Y ′a+b−t

for t ∈ [a, b]. Then, the pair (
←−
Y ,
←−
Y ′) is an

←−
X -controlled path on [a, b] with values

in F , and

R
←−
Y
s,t = −RY

a+b−t,a+b−s + (Y ′a+b−s − Y ′a+b−t)(Xa+b−s −Xa+b−t)

holds for (s, t) ∈ △a,b. For further details and examples of Hölder rough paths
and controlled paths, see [3–5].

2.3. Fractional integrals and derivatives. Let a and b be real numbers with
a < b. For p ∈ [1,∞), let Lp(a, b) denote the complex Lp-space on the interval [a, b]
with respect to the Lebesgue measure. Let f ∈ L1(a, b) and α ∈ (0,∞). The left-
and right-sided Riemann–Liouville fractional integrals of f of order α are defined
for almost all t ∈ (a, b) by

Iαa+f(t) :=
1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds

and

Iαb−f(t) :=
(−1)−α

Γ(α)

∫ b

t

(s− t)α−1f(s) ds,

respectively, where Γ denotes the gamma function. For p ∈ [1,∞), let Iαa+(L
p)

and Iαb−(L
p) denote the images of Lp(a, b) by operators Iαa+ and Iαb−, respectively.

In addition, let f ∈ Iαa+(L1) (resp. Iαb−(L
1)) with 0 < α < 1, the Weyl–Marchaud

fractional derivative of f of order α is defined for almost all t ∈ (a, b) by

Dα
a+f(t) :=

1

Γ(1− α)

(
f(t)

(t− a)α
+ α

∫ t

a

f(t)− f(s)
(t− s)α+1

ds

)
for the left-sided version, and

Dα
b−f(t) :=

(−1)α

Γ(1− α)

(
f(t)

(b− t)α
+ α

∫ b

t

f(t)− f(s)
(s− t)α+1

ds

)
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for the right-sided version. Here, the integrals above are well-defined for almost
all t ∈ (a, b). The inversion formulas, i.e.,

Iαa+(D
α
a+f) = f (resp. Iαb−(D

α
b−f) = f) (2.2)

for f ∈ Iαa+(L1) (resp. Iαb−(L
1)) with 0 < α < 1, and

Dα
a+(I

α
a+f) = f, Dα

b−(I
α
b−f) = f (2.3)

for f ∈ L1(a, b) and 0 < α < 1 are fundamental and are used in the proof of
Lemma 2.1. The following two formulas are used in the proof of Lemma 3.1 in
Section 3. The first is the composition formula:

Dα
a+(D

β
a+f) = Dα+β

a+ f (resp. Dα
b−(D

β
b−f) = Dα+β

b− f) (2.4)

for f ∈ Iα+β
a+ (L1) (resp. Iα+β

b− (L1)), 0 < α < 1, and 0 < β < 1, with α + β < 1.
The second is the integration by parts formula of order α:

(−1)α
∫ b

a

Dα
a+f(t)g(t) dt =

∫ b

a

f(t)Dα
b−g(t) dt (2.5)

for f ∈ Iαa+(L
p), g ∈ Iαb−(L

q), 0 < α < 1, 1 ≤ p < ∞, and 1 ≤ q < ∞,
with 1/p + 1/q ≤ 1 + α. The following statements about the Hölder continuous
functions are used in some of the discussions in this paper: Let f be a real-
valued Hölder continuous function of order λ ∈ (0, 1] on the interval [a, b]. Then,
f − f(a) ∈ Iαa+(L

p) and f − f(b) ∈ Iαb−(L
p) hold for α ∈ (0, λ) and p ∈ [1,∞).

Lemma 2.1 is a backward version of [18, Proposition 2.2].

Lemma 2.1. Let f be a real-valued Hölder continuous function of order λ ∈ (0, 1]
on the interval [a, b]. Then, for x, y ∈ [a, b] with x < y and α ∈ (1− λ, 1),

f(y)− f(x) = (−1)−α
∫ b

a

Dα
b−1[x,y)(t)D

1−α
a+ (f − f(a))(t) dt, (2.6)

where 1[x,y) denotes the indicator function of the interval [x, y).

Proof. From the Hölder continuity of f and (2.2),

f(y)− f(x) = (f(y)− f(a))− (f(x)− f(a))
= I1−αa+ D1−α

a+ (f − f(a))(y)− I1−αa+ D1−α
a+ (f − f(a))(x)

=
1

Γ(1− α)

∫ y

a

(y − s)−αD1−α
a+ (f − f(a))(s) ds

− 1

Γ(1− α)

∫ x

a

(x− s)−αD1−α
a+ (f − f(a))(s) ds

=
1

Γ(1− α)

∫ b

a

(
1[a,y)(s)

(y − s)α
−

1[a,x)(s)

(x− s)α

)
D1−α

a+ (f − f(a))(s) ds.

It therefore suffices to show that

Dα
b−1[x,y)(t) =

(−1)α

Γ(1− α)

(
1[a,y)(t)

(y − t)α
−

1[a,x)(t)

(x− t)α

)
(2.7)
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for t ∈ (a, b). Let φ(t) denote the right-hand side of (2.7). Note that φ ∈ Lp(a, b)
if and only if αp < 1. For t ∈ [a, x),

Iαb−φ(t)

=
1

Γ(α)Γ(1− α)

(∫ y

t

(s− t)α−1(y − s)−α ds−
∫ x

t

(s− t)α−1(x− s)−α ds
)

=
1

Γ(α)Γ(1− α)
(B(α, 1− α)−B(α, 1− α)) = 0,

where B denotes the beta function. Similarly, for t ∈ [x, y),

Iαb−φ(t) =
1

Γ(α)Γ(1− α)

∫ y

t

(s− t)α−1(y − s)−α ds = B(α, 1− α)
Γ(α)Γ(1− α)

= 1.

Obviously, Iαb−φ(t) = 0 for t ∈ [y, b]. Therefore, Iαb−φ(t) = 1[x,y)(t) for t ∈ [a, b].
Hence, from (2.3), we obtain (2.7). The proof is therefore finished. □

2.4. Rough integrals via fractional calculus. To describe our integration, we
introduce a slight generalization of Weyl–Marchaud fractional derivatives. Let
a, b ∈ R with 0 ≤ a < b ≤ T . Let Ψ ∈ Cλ(△a,b, V ) with λ ∈ (0, 1] and α ∈ (0, λ).
We define Dα

s+Ψ with s ∈ [a, b) and Dα
t−Ψ with t ∈ (a, b] by

Dα
s+Ψ(s) := 0,

Dα
s+Ψ(u) :=

1

Γ(1− α)

(
Ψs,u

(u− s)α
+ α

∫ u

s

Ψv,u

(u− v)α+1
dv

)
for u ∈ (s, b] and

Dα
t−Ψ(t) := 0,

Dα
t−Ψ(u) :=

(−1)1+α

Γ(1− α)

(
Ψu,t

(t− u)α
+ α

∫ t

u

Ψu,v

(v − u)α+1
dv

)
for u ∈ [a, t). If Ψ ∈ Cλ(△a,b, V ) is of the form Ψ = δψ for some ψ ∈ Cλ([a, b], V ),
Dα

s+Ψ = Dα
s+(ψ−ψs) and Dα

t−Ψ = Dα
t−(ψ−ψt) hold, by definition, for α ∈ (0, λ).

The following estimates are used in some of the discussions in this paper:

∥Dα
s+Ψ(u)∥V ≤

1

Γ(1− α)
λ

λ− α
∥Ψ∥λ;[s,u](u− s)λ−α (2.8)

for u ∈ [s, b] and

∥Dα
t−Ψ(u)∥V ≤

1

Γ(1− α)
λ

λ− α
∥Ψ∥λ;[u,t](t− u)λ−α (2.9)

for u ∈ [a, t]. These can be proved through a straightforward computation. We
now introduce our definition of the integral of (Y, Y ′) along (X,X). Note that
I(X,X)(Y, Y

′)s,t in Definition 2.2 was introduced by Hu and Nualart [6] and the
author [10]. Recall that β is a real number with 1/3 < β ≤ 1/2, and γ is a real
number with (1− β)/2 < γ < β.
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Definition 2.2. Let a, b ∈ R with 0 ≤ a < b ≤ T . Let (X,X) ∈ Ωβ([a, b], E) and

(Y, Y ′) ∈ Qβ
X([a, b], L(E,F )). For (s, t) ∈ △a,b, we define I(X,X)(Y, Y

′)s,t ∈ F by

I(X,X)(Y, Y
′)s,t := Ys(Xt −Xs) + Y ′sXs,t

+ (−1)1−γ
∫ t

s

D1−γ
s+ RY (u)Dγ

t−(X −Xt)(u) du

+ (−1)1−2γ
∫ t

s

D1−2γ
s+ (Y ′ − Y ′s )(u)D

γ
t−(D

γ
t−X)(u) du.

For (s, t) ∈ △a,b, we define J(X,X)(Y, Y
′)s,t ∈ F by

J(X,X)(Y, Y
′)s,t

:= Yt(Xt −Xs) + Y ′t (Xs,t − (Xt −Xs)⊗ (Xt −Xs))

+ (−1)γ−1
∫ t

s

D1−γ
t− (RY − δY ′δX)(u)Dγ

s+(X −Xs)(u) du

+ (−1)2γ−1
∫ t

s

D1−2γ
t− (Y ′ − Y ′t )(u)D

γ
s+(D

γ
s+(X− δX ⊗ δX))(u) du.

It follows from (1−β)/2 < γ < β that the fractional derivatives in Definition 2.2
are well-defined; in fact, D1−γ

s+ RY and D1−γ
t− (RY − δY ′δX) are well-defined from

1−γ < 2β, D1−2γ
s+ (Y ′−Y ′s ) and D

1−2γ
t− (Y ′−Y ′t ) from 1−2γ < β, and Dγ

t−(X−Xt)
and Dγ

s+(X −Xs) from γ < β. For Dγ
t−(D

γ
t−X) and D

γ
s+(D

γ
s+(X− δX ⊗ δX)), see

(2) of Remark 2.3.

Remark 2.3. Let us make some comments about Definition 2.2.

(1) If Y ∈ C2β([a, b], L(E,F )) and Y ′ ≡ 0, i.e., Y ′ is identically zero, then, for
(s, t) ∈ △a,b,

I(X,X)(Y, Y
′)s,t = Ys(Xt −Xs) + (−1)1−γ

∫ t

s

D1−γ
s+ (Y − Ys)(u)Dγ

t−(X −Xt)(u) du

and

J(X,X)(Y, Y
′)s,t = Yt(Xt −Xs) + (−1)γ−1

∫ t

s

D1−γ
t− (Y − Yt)(u)Dγ

s+(X −Xs)(u) du.

The right-hand sides of these equalities belong to the category of the in-
tegration theory by Zähle [18]. The former (resp. the latter) is called the
forward integral (resp. backward integral) of Y with respect to X.

(2) We note that Dγ
t−(D

γ
t−X) and D

γ
s+(D

γ
s+(X−δX⊗δX)) are well-defined be-

cause Dγ
t−X is β-Hölder continuous on [a, t] and Dγ

t−X(t) = 0, and Dγ
s+(X−

δX ⊗ δX) is β-Hölder continuous on [s, b] and Dγ
s+(X− δX ⊗ δX)(s) = 0.

For proofs, see, e.g., [6, Lemma 6.3] and (2.16). Furthermore, it follows
from [10, Lemma 3.6] that

Dγ
t−(D

γ
t−X)(u) = D

2γ
t−X(u)−D

γ
t−(δX ⊗D

γ
t−(X −Xt))(u) (2.10)
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holds for u ∈ [a, t]. Here,

Dγ
t−(δX ⊗D

γ
t−(X −Xt))(u) :=

(−1)1+γγ

Γ(1− γ)

∫ t

u

δXu,v ⊗Dγ
t−(X −Xt)(v)

(v − u)γ+1
dv.

Similarly,

Dγ
s+(D

γ
s+(X− δX ⊗ δX))(u) = D2γ

s+(X− δX ⊗ δX)(u) (2.11)

−Dγ
s+(δX ⊗D

γ
s+(X −Xs))(u)

holds for u ∈ [s, b]. Here,

Dγ
s+(δX ⊗D

γ
s+(X −Xs))(u) :=

γ

Γ(1− γ)

∫ u

s

δXv,u ⊗Dγ
s+(X −Xs)(v)

(u− v)γ+1
dv.

(3) From (2.8), (2.9), (2.10), and (2.11), it is easy to see that there exists a
positive constant C, depending only on β and γ, such that, for (s, t) ∈ △a,b,

|I(X,X)(Y, Y
′)s,t − (Ys(Xt −Xs) + Y ′sXs,t)|

≤ C{∥RY ∥2β∥X∥β + ∥Y ′∥β(∥X∥2β + ∥X∥2β)}(t− s)3β

and

|J(X,X)(Y, Y
′)s,t − (Yt(Xt −Xs) + Y ′t (Xs,t − (Xt −Xs)⊗ (Xt −Xs)))|

≤ C{∥RY ∥2β∥X∥β + ∥Y ′∥β(∥X∥2β + ∥X∥2β)}(t− s)3β.

2.5. Main Theorems. We here introduce the main theorems of this paper (The-
orems 2.5 and 2.6). Using Lemma 2.4, we prove Theorem 2.5. See Section 2.2 for

the definitions of (
←−
X,
←−
X ) ∈ Ωβ([a, b], E) and (

←−
Y ,
←−
Y ′) ∈ Qβ

←−
X
([a, b], F ).

Lemma 2.4. Let a, b ∈ R with 0 ≤ a < b ≤ T . Set u′ = a + b− u for u ∈ [a, b].

Let (X,X) ∈ Ωβ([a, b], E) and (Y, Y ′) ∈ Qβ
X([a, b], F ). Then,

D1−2γ
t− (Y ′ − Y ′t )(u) = (−1)1−2γD1−2γ

t′+ (
←−
Y ′ −

←−
Y ′t′)(u

′), (2.12)

D1−γ
t− (RY − δY ′δX)(u) = (−1)1−γD1−γ

t′+ R
←−
Y (u′) (2.13)

hold for t ∈ (a, b] and u ∈ [a, t], and

Dγ
s+(X −Xs)(u) = (−1)−γDγ

s′−(
←−
X −

←−
X s′)(u

′), (2.14)

Dγ
s+(D

γ
s+(X− δX ⊗ δX))(u) = (−1)−2γDγ

s′−(D
γ
s′−
←−
X )(u′) (2.15)

hold for s ∈ [a, b) and u ∈ [s, b].
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Proof. We first prove (2.12) and (2.13). Fix u ∈ [a, t]. By using Y ′u =
←−
Y ′u′ and

the change of variable v′ = a+ b− v in the definition of D1−2γ
t− (Y ′ − Y ′t )(u),

D1−2γ
t− (Y ′ − Y ′t )(u)

=
(−1)1−2γ

Γ(1− (1− 2γ))

( ←−
Y ′u′ −

←−
Y ′t′

(u′ − t′)1−2γ
+ (1− 2γ)

∫ u′

t′

←−
Y ′u′ −

←−
Y ′v′

(u′ − v′)(1−2γ)+1
dv′

)
= (−1)1−2γD1−2γ

t′+ (
←−
Y ′ −

←−
Y ′t′)(u

′).

Similarly, by using the relation RY
u,t − δY ′u,tδXu,t = −R

←−
Y
t′,u′ and the change of

variable v′ = a+ b− v in the definition of D1−γ
t− (RY − δY ′δX)(u),

D1−γ
t− (RY − δY ′δX)(u)

=
(−1)(1−γ)+1

Γ(1− (1− γ))

( −R
←−
Y
t′,u′

(u′ − t′)1−γ
+ (1− γ)

∫ u′

t′

−R
←−
Y
v′,u′

(u′ − v′)(1−γ)+1
dv′

)
= (−1)1−γD1−γ

t′+ R
←−
Y (u′).

Next, we prove (2.15) and omit the proof of (2.14) because it is similar to (2.12).

Fix u ∈ [s, b]. By using Xs,u − δXs,u ⊗ δXs,u = −
←−
X u′,s′ , the change of variable

v′ = a+b−v in the definition of Dγ
s+(X−δX⊗δX)(u), and −1 = (−1)−γ(−1)1+γ,

Dγ
s+(X− δX ⊗ δX)(u) = (−1)−γDγ

s′−
←−
X (u′). (2.16)

Therefore, using the same arguments as above,

Dγ
s+(D

γ
s+(X− δX ⊗ δX))(u)

=
(−1)−γ

Γ(1− γ)

(Dγ
s′−
←−
X (u′)

(s′ − u′)γ
+ γ

∫ s′

u′

Dγ
s′−
←−
X (u′)−Dγ

s′−
←−
X (v′)

(v′ − u′)γ+1
dv′

)
= (−1)−2γDγ

s′−(D
γ
s′−
←−
X )(u′).

In the last equality, we used (−1)−γ = (−1)−2γ(−1)γ. The proof is thus finished.
□

Theorem 2.5. Let a, b ∈ R with 0 ≤ a < b ≤ T . Let (X,X) ∈ Ωβ([a, b], E) and

(Y, Y ′) ∈ Qβ
X([a, b], L(E,F )). Then, for (s, t) ∈ △a,b,

J(X,X)(Y, Y
′)s,t = −I(←−X,

←−
X )
(
←−
Y ,
←−
Y ′)a+b−t,a+b−s (2.17)

and

I(X,X)(Y, Y
′)s,t = −J(←−X,

←−
X )
(
←−
Y ,
←−
Y ′)a+b−t,a+b−s. (2.18)
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Proof. Set t′ = a + b − t and s′ = a + b − s. Then, by using Lemma 2.4 and the
change of variable u′ = a+ b− u in the definition of J(X,X)(Y, Y

′)s,t,

J(X,X)(Y, Y
′)s,t

= −
←−
Y t′(
←−
X s′ −

←−
X t′)−

←−
Y ′t′
←−
X t′,s′

+ (−1)γ−1
∫ s′

t′
(−1)1−γD1−γ

t′+ R
←−
Y (u′)(−1)−γDγ

s′−(
←−
X −

←−
X s′)(u

′) du′

+ (−1)2γ−1
∫ s′

t′
(−1)1−2γD1−2γ

t′+ (
←−
Y ′ −

←−
Y ′t′)(u

′)(−1)−2γDγ
s′−(D

γ
s′−
←−
X )(u′) du′

= −I
(
←−
X,
←−
X )
(
←−
Y ,
←−
Y ′)t′,s′ .

Hence, (2.17) holds. From (X,X) = (
←−←−
X,
←−←−
X ), (Y, Y ′) = (

←−←−
Y ,
←−←−
Y ′), and (2.17),

I(X,X)(Y, Y
′)s,t = I

(
←−←−
X,
←−←−
X )
(
←−←−
Y ,
←−←−
Y ′)a+b−s′,a+b−t′ = −J(←−X,

←−
X )
(
←−
Y ,
←−
Y ′)t′,s′ .

Therefore, (2.18) holds. The proof is finished. □

Theorem 2.6 justifies the interpretation of I(X,X)(Y, Y
′) and J(X,X)(Y, Y

′) as the
integrals of (Y, Y ′) along (X,X).

Theorem 2.6. Let (X,X) ∈ Ωβ([0, T ], E) and (Y, Y ′) ∈ Qβ
X([0, T ], L(E,F )).

Then, I(X,X)(Y, Y
′) and J(X,X)(Y, Y

′) coincide with the rough integral of (Y, Y ′)
along (X,X). Specifically, for (s, t) ∈ △0,T ,

I(X,X)(Y, Y
′)s,t = lim

|Ps,t|→0

n−1∑
i=0

Yti(Xti+1
−Xti) + Y ′tiXti,ti+1

(2.19)

and

J(X,X)(Y, Y
′)s,t = lim

|Ps,t|→0

n−1∑
i=0

Yti(Xti+1
−Xti) + Y ′tiXti,ti+1

, (2.20)

where the limits are taken over all finite partitions Ps,t = {t0, t1, . . . , tn} of the
interval [s, t] such that s = t0 < t1 < · · · < tn = t and |Ps,t| = max0≤i≤n−1|ti+1−ti|.

Proof. We omit the proof of (2.19) becasue it follows from [10, Theorem 2.5].
Using (2.19) and (2.17), we prove (2.20). (In Section 3, we provide another proof
of (2.20) without using (2.19).) We fix (s, t) ∈ △0,T with s < t because (2.20)
obviously holds when s = t. For x, y ∈ [s, t] with x < y, we set x′ = T − x and
y′ = T − y. We then have

←−
Y x(
←−
X y −

←−
X x) +

←−
Y ′x
←−
X x,y + Yy′(Xx′ −Xy′) + Y ′y′Xy′,x′

= −RY
y′,x′δXy′,x′ − δY ′y′,x′(Xy′,x′ − δXy′,x′ ⊗ δXy′,x′)
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and therefore,

|
←−
Y x(
←−
X y −

←−
X x) +

←−
Y ′x
←−
X x,y + Yy′(Xx′ −Xy′) + Y ′y′Xy′,x′|

≤ (∥RY ∥2β∥X∥β + ∥Y ′∥β(∥X∥2β + ∥X∥2β))(y − x)3β. (2.21)

By using (2.17), (2.19), (2.21) with x = sj and y = sj+1, and 3β > 1, we have

J(X,X)(Y, Y
′)s,t = −I(←−X,

←−
X )
(
←−
Y ,
←−
Y ′)t′,s′

= − lim
|Pt′,s′ |→0

m−1∑
j=0

←−
Y sj(
←−
X sj+1

−
←−
X sj) +

←−
Y ′sj
←−
X sj ,sj+1

= lim
|Pt′,s′ |→0

m−1∑
j=0

Ys′j+1
(Xs′j

−Xs′j+1
) + Y ′s′j+1

Xs′j+1,s
′
j
,

where the limits are taken over all finite partitions Pt′,s′ = {s0, s1, . . . , sm} of the
interval [t′, s′] such that t′ = s0 < s1 < · · · < sm = s′. Because {s′0, s′1, . . . , s′m} is
a partition of the interval [s, t] such that s = s′m < s′m−1 < · · · < s′0 = t, we obtain
the statement of (2.20). The proof is thus finished. □
Using Theorems 2.5 and 2.6, we describe the backward representation (1.1) as

follows: Under the assumptions and the notation of Theorem 2.6, for s ∈ [0, T ),∫ T

s

(Y, Y ′) d(X,X) = J(X,X)(Y, Y
′)s,T

= −I
(
←−
X,
←−
X )
(
←−
Y ,
←−
Y ′)0,T−s

= −
∫ T−s

0

(
←−
Y ,
←−
Y ′) d(

←−
X,
←−
X )

and for Ps,T = {t0, t1, . . . , tn} such that s = t0 < t1 < · · · < tn = T ,

n−1∑
i=0

{
Yti+1

(Xti+1
−Xti) + Y ′ti+1

(Xti,ti+1
− (Xti+1

−Xti)⊗ (Xti+1
−Xti))

}

= −
n−1∑
i=0

{
←−
Y t′i+1

(
←−
X t′i
−
←−
X t′i+1

) +
←−
Y ′t′i+1

←−
X t′i+1,t

′
i

}
→ −I

(
←−
X,
←−
X )
(
←−
Y ,
←−
Y ′)0,T−s

as |Ps,T | → 0. Therefore, we obtain the equalities of (1.1).

3. Another proof of Theorem 2.6

In this section, we provide another proof for (2.20) without using (2.19). The
outline of the proof is based on that of (2.19), described in the author’s previous
study [10]. Lemma 3.1, Propositions 3.2, and 3.3 below are regarded as backward
versions of Lemmas 3.5, 3.7, and Proposition 2.4, respectively, in [10]. Recall that
1[x,y) is the indicator function of the interval [x, y) ⊂ R.
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Lemma 3.1. Let (X,X) ∈ Ωβ([0, T ], E) and (s, t) ∈ △0,T with s < t. Then, for
x, y ∈ [s, t] with x < y,

Xx,y = (−1)γ−1
∫ t

s

D1−γ
t− 1[x,y)(u)(Xu −Xx)⊗Dγ

s+(X −Xs)(u) du (3.1)

+ (−1)2γ−1
∫ t

s

D1−2γ
t− 1[x,y)(u)D

γ
s+(D

γ
s+(X− δX ⊗ δX))(u) du.

Proof. From the definition of (X,X) and (2.6),

Xx,y = Xs,y − Xs,x − (Xx −Xs)⊗ (Xy −Xx)

= (−1)γ−1
∫ t

s

D1−γ
t− 1[x,y)(u)D

γ
s+(Xs, − Xs,s)(u) du

− (−1)γ−1
∫ t

s

D1−γ
t− 1[x,y)(u)(Xx −Xs)⊗Dγ

s+(X −Xs)(u) du.

From Xs,s = 0 and (2.1), for u ∈ [s, T ],

Dγ
s+(Xs, − Xs,s)(u)

=
1

Γ(1− γ)

(
Xs,u − Xs,s

(u− s)γ
+ γ

∫ u

s

Xs,u − Xs,v

(u− v)γ+1
dv

)
= Dγ

s+X(u) +
γ

Γ(1− γ)

∫ u

s

(Xv −Xs)⊗ (Xu −Xv)

(u− v)γ+1
dv

= Dγ
s+X(u)−D

γ
s+(δX ⊗ δX)(u) + (Xu −Xs)⊗Dγ

s+(X −Xs)(u).

Therefore, from (2.4) and (2.5) with α = γ, 1/γ ≤ p <∞, and 1 ≤ q < 1/(1− γ),

Xx,y = (−1)γ−1
∫ t

s

D1−γ
t− 1[x,y)(u)

× ((Xu −Xs)− (Xx −Xs))⊗Dγ
s+(X −Xs)(u) du

+ (−1)γ−1
∫ t

s

D1−γ
t− 1[x,y)(u)Dγ

s+(X− δX ⊗ δX)(u) du

= (−1)γ−1
∫ t

s

D1−γ
t− 1[x,y)(u)(Xu −Xx)⊗Dγ

s+(X −Xs)(u) du

+ (−1)2γ−1
∫ t

s

D1−2γ
t− 1[x,y)(u)D

γ
s+(D

γ
s+(X− δX ⊗ δX))(u) du.

We note that the conditions for the uses of (2.4) and (2.5) are satisfied, from (a)
Dγ

s+(X−δX⊗δX) is β-Hölder continuous on the interval [s, T ] and Dγ
s+(X−δX⊗

δX)(s) = 0, and (b) 1[x,y) ∈ I1−γt− (Lq) if and only if (1 − γ)q < 1. The proof is
thus finished. □
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Proposition 3.2. Let (X,X) ∈ Ωβ([0, T ], E) and (Y, Y ′) ∈ Qβ
X([0, T ], L(E,F )).

Then, for (s, t) ∈ △0,T with s < t,

J(X,X)(Y, Y
′)s,t = (−1)γ−1

∫ t

s

D̂1−γ
t− (RY − δY ′δX)(u)Dγ

s+(X −Xs)(u) du

+ (−1)2γ−1
∫ t

s

D1−2γ
t− Y ′(u)Dγ

s+(D
γ
s+(X− δX ⊗ δX))(u) du,

where

D̂1−γ
t− (RY − δY ′δX)(u)

:=
(−1)(1−γ)+1

Γ(1− (1− γ))

(
−Yu

(t− u)1−γ
+ (1− γ)

∫ t

u

RY
u,v − δY ′u,vδXu,v

(v − u)(1−γ)+1
dv

)
for u ∈ [0, t).

Proof. From (2.6) and (3.1) with x = s and y = t, we have

Yt(Xt −Xs) + Y ′t (Xs,t − (Xt −Xs)⊗ (Xt −Xs))

= (−1)γ−1
∫ t

s

D1−γ
t− ((Yt + Y ′t (Xu −Xt))1[s,t))(u)D

γ
s+(X −Xs)(u) du

+ (−1)2γ−1
∫ t

s

D1−2γ
t− (Y ′t 1[s,t))(u)D

γ
s+(D

γ
s+(X− δX ⊗ δX))(u) du.

Therefore, from the definition of J(X,X)(Y, Y
′)s,t, we have

J(X,X)(Y, Y
′)s,t

= (−1)γ−1
∫ t

s

(D1−γ
t− (RY − δY ′δX)(u) +D1−γ

t− ((Yt + Y ′t (Xu −Xt))1[s,t))(u))

×Dγ
s+(X −Xs)(u) du

+ (−1)2γ−1
∫ t

s

(D1−2γ
t− (Y ′ − Y ′t )(u) +D1−2γ

t− (Y ′t 1[s,t))(u))

×Dγ
s+(D

γ
s+(X− δX ⊗ δX))(u) du.

From the equality

D1−kγ
t− 1[s,t)(u) =

(−1)1−kγ

Γ(1− (1− kγ))
1

(t− u)1−kγ

for k = 1, 2 and u ∈ (s, t) (see (2.7) with x = a and y = b),

D1−γ
t− (RY − δY ′δX)(u) +D1−γ

t− ((Yt + Y ′t (Xu −Xt))1[s,t))(u)

= D̂1−γ
t− (RY − δY ′δX)(u),

D1−2γ
t− (Y ′ − Y ′t )(u) +D1−2γ

t− (Y ′t 1[s,t))(u) = D1−2γ
t− Y ′(u)

hold for u ∈ (s, t). Therefore, we obtain the statement of the proposition. □
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Proposition 3.3. Let X ∈ Cβ([0, T ], E) and (Y, Y ′) ∈ Qβ
X([0, T ], F ). Then, for

(s, t) ∈ △0,T with s < t,

lim
|Ps,t|→0

∫ t

s

|D1−γ
t− (

n−1∑
i=0

(Yti + Y ′ti(Xu −Xti))1[ti,ti+1))(u) (3.2)

− D̂1−γ
t− (RY − δY ′δX)(u)| du = 0

and

lim
|Ps,t|→0

∫ t

s

|D1−2γ
t− (

n−1∑
i=0

Y ′ti1[ti,ti+1))(u)−D
1−2γ
t− Y ′(u)| du = 0. (3.3)

Proof. We omit the proof of (3.3) because it is similar to (3.2). In fact, formally
taking Y ′ ≡ 0 and α = 1− 2γ in the proof of (3.2) provides a proof of (3.3). Set
α = 1− γ. Note that α < 2β. For u ∈ (s, t), we set

(Dα
t−(

n−1∑
i=0

(Yti + Y ′ti(Xu −Xti))1[ti,ti+1))(u)− D̂α
t−(R

Y − δY ′δX)(u))

× (−1)−αΓ(1− α)

= (
n−1∑
i=0

(Yti + Y ′ti(Xu −Xti))1[ti,ti+1)(u)− Yu)(t− u)−α + α

∫ t

u

ΨPu,v
(v − u)α+1

dv

=: S1
P(u) + S2

P(u).

Here,

ΨPu,v :=
n−1∑
i=0

(Yti + Y ′ti(Xu −Xti))(1[ti,ti+1)(u)− 1[ti,ti+1)(v)) +RY
u,v − δY ′u,vδXu,v

for (u, v) ∈ △s,t. It therefore suffices to show that

lim
|Ps,t|→0

∫ t

s

|Sl
P(u)| du = 0 (3.4)

holds for l = 1, 2. First, from the equality

(Yti + Y ′ti(Xu −Xti))1[ti,ti+1)(u)− Yu = −RY
ti,u
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for u ∈ [ti, ti+1), we have∫ t

s

|S1
P(u)| du =

n−1∑
i=0

∫ ti+1

ti

|S1
P(u)| du

=
n−1∑
i=0

∫ ti+1

ti

|RY
ti,u
|(t− u)−α du

≤ ∥RY ∥2β
n−1∑
i=0

∫ ti+1

ti

(u− ti)2β(t− u)−α du

≤ ∥RY ∥2β|Ps,t|2β
n−1∑
i=0

∫ ti+1

ti

(t− u)−α du

= ∥RY ∥2β|Ps,t|2β(1− α)−1(t− s)1−α.

Therefore, (3.4) holds for l = 1. Next, using the equality

S2
P(u) = α

∫ ti+1

u

ΨPu,v
(v − u)α+1

dv + α
n−1∑

j=i+1

∫ tj+1

tj

ΨPu,v
(v − u)α+1

dv

for u ∈ [ti, ti+1), we have∫ t

s

|S2
P(u)| du =

∫ tn

tn−1

|S2
P(u)| du+

n−2∑
i=0

∫ ti+1

ti

|S2
P(u)| du

≤ α
n−1∑
i=0

∫ ti+1

ti

∫ ti+1

u

|ΨPu,v|
(v − u)α+1

dv du

+ α
n−2∑
i=0

∫ ti+1

ti

n−1∑
j=i+1

∫ tj+1

tj

|ΨPu,v|
(v − u)α+1

dv du

=: A1 + A2.

When ti ≤ u ≤ v < ti+1, Ψ
P
u,v = RY

u,v − δY ′u,vδXu,v. Therefore,

A1 ≤ (∥RY ∥2β + ∥Y ′∥β∥X∥β)α
n−1∑
i=0

∫ ti+1

ti

∫ ti+1

u

(v − u)2β−α−1 dv du

= (∥RY ∥2β + ∥Y ′∥β∥X∥β)α(2β − α)−1(2β − α + 1)−1
n−1∑
i=0

(ti+1 − ti)2β−α+1

≤ (∥RY ∥2β + ∥Y ′∥β∥X∥β)α(2β − α)−1(2β − α + 1)−1|Ps,t|2β−α(t− s).

When ti ≤ u < ti+1 ≤ tj ≤ v < tj+1,

ΨPu,v = (Yti + Y ′ti(Xu −Xti))− (Ytj + Y ′tj(Xu −Xtj)) +RY
u,v − δY ′u,vδXu,v

= −RY
ti,u

+RY
tj ,v
− (Y ′v − Y ′tj)(Xv −Xu).
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Therefore,

A2 ≤ ∥RY ∥2βα
n−2∑
i=0

n−1∑
j=i+1

∫ ti+1

ti

∫ tj+1

tj

(u− ti)2β(v − u)−α−1 dv du

+ ∥RY ∥2βα
n−2∑
i=0

n−1∑
j=i+1

∫ ti+1

ti

∫ tj+1

tj

(v − tj)2β(v − u)−α−1 dv du

+ ∥Y ′∥β∥X∥βα
n−2∑
i=0

n−1∑
j=i+1

∫ ti+1

ti

∫ tj+1

tj

(v − tj)β(v − u)β−α−1 dv du

=: A21 + A22 + A23.

Through a straightforward computation,

A21 = ∥RY ∥2βα
n−2∑
i=0

∫ ti+1

ti

(u− ti)2β
∫ t

ti+1

(v − u)−α−1 dv du

≤ ∥RY ∥2β
n−2∑
i=0

∫ ti+1

ti

(u− ti)2β(ti+1 − u)−α du

= ∥RY ∥2βB(2β + 1, 1− α)
n−2∑
i=0

(ti+1 − ti)2β−α+1

≤ ∥RY ∥2βB(2β + 1, 1− α)|Ps,t|2β−α(t− s),

where B denotes the beta function. For A22 and A23, we provide the following
estimate. For λ ∈ (0,∞) and µ ∈ (0, 1) with λ+ µ > 1,

n−2∑
i=0

n−1∑
j=i+1

∫ ti+1

ti

∫ tj+1

tj

(v − tj)λ(v − u)µ−2 dv du

≤
n−1∑
j=1

j−1∑
i=0

(tj+1 − tj)λ
∫ ti+1

ti

∫ tj+1

tj

(v − u)µ−2 dv du

=
n−1∑
j=1

(tj+1 − tj)λ(1− µ)−1µ−1{(tj+1 − tj)µ + (tj − s)µ − (tj+1 − s)µ}

≤ (1− µ)−1µ−1|Ps,t|λ+µ−1(t− s).

Letting (λ, µ) = (2β, 1− α), (β, 1 + β − α)),

A22 + A23 ≤ {∥RY ∥2β(1− α)−1

+ ∥Y ′∥β∥X∥βα(α− β)−1(1 + β − α)−1}|Ps,t|2β−α(t− s).

Hence, from the estimates of A1 and A2, (3.4) holds for l = 2. Therefore, we
obtain the statement of (3.2). □

We now provide another proof of (2.20) in Theorem 2.6.
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Proof. We fix (s, t) ∈ △0,T with s < t because (2.20) obviously holds when s = t.
From (2.6) and (3.1) with x = ti and y = ti+1,

n−1∑
i=0

Yti(Xti+1
−Xti) + Y ′tiXti,ti+1

= (−1)γ−1
∫ t

s

D1−γ
t− (

n−1∑
i=0

(Yti + Y ′ti(Xu −Xti))1[ti,ti+1))(u)D
γ
s+(X −Xs)(u) du

+ (−1)2γ−1
∫ t

s

D1−2γ
t− (

n−1∑
i=0

Y ′ti1[ti,ti+1))(u)D
γ
s+(D

γ
s+(X− δX ⊗ δX))(u) du.

Therefore, from Proposition 3.2,

|
n−1∑
i=0

Yti(Xti+1
−Xti) + Y ′tiXti,ti+1

− J(X,X)(Y, Y
′)s,t|

≤
∫ t

s

|D1−γ
t− (

n−1∑
i=0

(Yti + Y ′ti(Xu −Xti))1[ti,ti+1))(u)− D̂
1−γ
t− (RY − δY ′δX)(u)| du

× ∥Dγ
s+(X −Xs)∥∞

+

∫ t

s

|D1−2γ
t− (

n−1∑
i=0

Y ′ti1[ti,ti+1))(u)−D
1−2γ
t− Y ′(u)| du

× ∥Dγ
s+(D

γ
s+(X− δX ⊗ δX))∥∞,

where ∥·∥∞ denotes the supremum norm on [s, t]. Therefore, from Proposition 3.3,
we obtain the statement of (2.20). □

Acknowledgements. The author thanks Professor Masanori Hino for his valu-
able advice, which was one of the main factors behind this study. This work was
supported by JSPS KAKENHI Grant Numbers JP18K13431 and JP21H00988.

References
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