$$ \newcommand{\pv}{\mbox{p.v.}} \newcommand{\nm}{\noalign{\smallskip}} %\newcommand{\qed}{ $\Box$} \newcommand{\ds}{\displaystyle} %\newcommand{\pf}{\noindent {\sl Proof}. \ } \newcommand{\p}{\partial} \newcommand{\pd}[2]{\frac {\p #1}{\p #2}} \newcommand{\eqnref}[1]{(\ref {#1})} \newcommand{\Abb}{\mathbb{A}} \newcommand{\Cbb}{\mathbb{C}} \newcommand{\Hbb}{\mathbb{H}} \newcommand{\Ibb}{\mathbb{I}} \newcommand{\Nbb}{\mathbb{N}} \newcommand{\Kbb}{\mathbb{K}} \newcommand{\Rbb}{\mathbb{R}} \newcommand{\Sbb}{\mathbb{S}} \renewcommand{\div}{\mbox{div}\,} \newcommand{\la}{\langle} \newcommand{\ra}{\rangle} \newcommand{\Acal}{\mathcal{A}} \newcommand{\Bcal}{\mathcal{B}} \newcommand{\Ccal}{\mathcal{C}} \newcommand{\Ecal}{\mathcal{E}} \newcommand{\Fcal}{\mathcal{F}} \newcommand{\Hcal}{\mathcal{H}} \newcommand{\Lcal}{\mathcal{L}} \newcommand{\Kcal}{\mathcal{K}} \newcommand{\Ncal}{\mathcal{N}} \newcommand{\Dcal}{\mathcal{D}} \newcommand{\Pcal}{\mathcal{P}} \newcommand{\Qcal}{\mathcal{Q}} \newcommand{\Rcal}{\mathcal{R}} \newcommand{\Scal}{\mathcal{S}} \newcommand{\Tcal}{\mathcal{T}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % define bold face %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\Ba{{\bf a}} \def\Bb{{\bf b}} \def\Bc{{\bf c}} \def\Bd{{\bf d}} \def\Be{{\bf e}} \def\Bf{{\bf f}} \def\Bg{{\bf g}} \def\Bh{{\bf h}} \def\Bi{{\bf i}} \def\Bj{{\bf j}} \def\Bk{{\bf k}} \def\Bl{{\bf l}} \def\Bm{{\bf m}} \def\Bn{{\bf n}} \def\Bo{{\bf o}} \def\Bp{{\bf p}} \def\Bq{{\bf q}} \def\Br{{\bf r}} \def\Bs{{\bf s}} \def\Bt{{\bf t}} \def\Bu{{\bf u}} \def\Bv{{\bf v}} \def\Bw{{\bf w}} \def\Bx{{\bf x}} \def\By{{\bf y}} \def\Bz{{\bf z}} \def\BA{{\bf A}} \def\BB{{\bf B}} \def\BC{{\bf C}} \def\BD{{\bf D}} \def\BE{{\bf E}} \def\BF{{\bf F}} \def\BG{{\bf G}} \def\BH{{\bf H}} \def\BI{{\bf I}} \def\BJ{{\bf J}} \def\BK{{\bf K}} \def\BL{{\bf L}} \def\BM{{\bf M}} \def\BN{{\bf N}} \def\BO{{\bf O}} \def\BP{{\bf P}} \def\BQ{{\bf Q}} \def\BR{{\bf R}} \def\BS{{\bf S}} \def\BT{{\bf T}} \def\BU{{\bf U}} \def\BV{{\bf V}} \def\BW{{\bf W}} \def\BX{{\bf X}} \def\BY{{\bf Y}} \def\BZ{{\bf Z}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Abbreviate definitions of greek symbols %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\Ga}{\alpha} \newcommand{\Gb}{\beta} \newcommand{\Gd}{\delta} \newcommand{\Ge}{\epsilon} \newcommand{\Gve}{\varepsilon} \newcommand{\Gf}{\Gvf} \newcommand{\Gvf}{\varphi} \newcommand{\Gg}{\gamma} \newcommand{\Gc}{\chi} \newcommand{\Gi}{\iota} \newcommand{\Gk}{\kappa} \newcommand{\Gvk}{\varkappa} \newcommand{\Gl}{\lambda} \newcommand{\Gn}{\eta} \newcommand{\Gm}{\mu} \newcommand{\Gv}{\nu} \newcommand{\Gp}{\pi} \newcommand{\Gt}{\theta} \newcommand{\Gvt}{\vartheta} \newcommand{\Gr}{\rho} \newcommand{\Gvr}{\varrho} \newcommand{\Gs}{\sigma} \newcommand{\Gvs}{\varsigma} \newcommand{\Gj}{\Phi^*} \newcommand{\Gu}{\upsilon} \newcommand{\Go}{\omega} \newcommand{\Gx}{\xi} \newcommand{\Gy}{\psi} \newcommand{\Gz}{\zeta} \newcommand{\GD}{\Delta} \newcommand{\GF}{\Phi} \newcommand{\GG}{\Gamma} \newcommand{\GL}{\Lambda} \newcommand{\GP}{\Pi} \newcommand{\GT}{\Theta} \newcommand{\GS}{\Sigma} \newcommand{\GU}{\Upsilon} \newcommand{\GO}{\Omega} \newcommand{\GX}{\Xi} \newcommand{\GY}{\Psi} %%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newcommand{\BGG}{{\bf \GG}} \newcommand{\BGf}{\mbox{\boldmath $\Gf$}} \newcommand{\BGvf}{\mbox{\boldmath $\Gvf$}} \newcommand{\Bpsi}{\mbox{\boldmath $\Gy$}} \newcommand{\wBS}{\widetilde{\BS}} \newcommand{\wGl}{\widetilde{\Gl}} \newcommand{\wGm}{\widetilde{\Gm}} \newcommand{\wGv}{\widetilde{\Gv}} \newcommand{\wBU}{\widetilde{\BU}} %%%%%%%%%% \newcommand{\Jfrak}{\mathfrak{J}} %%%%%%%%%% \newcommand{\beq}{\begin{equation}} \newcommand{\eeq}{\end{equation}} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \def\ol{\overline} \def\bs{\backslash} \def\wt{\widetilde} \newcommand{\hatna}{\widehat{\nabla}} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\divergence}{div} \DeclareMathOperator{\Real}{Re} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\dist}{dist} \DeclareMathOperator{\supp}{supp} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $$ 森光太朗氏の修士論文の主結果

森光太朗氏の修士論文の主結果

pdfバージョンはこちらから 元のページに戻る

で得られた結果を概説する.

では, \(L>0\), \(d>0\), \(T>0\) として次の領域 \begin{align} &\Omega \equiv \{(x,y)\in \mathbb{R}^2\mid 0 < x < L, \ -d < y < 0\},\\ &\Gamma_1 \equiv \{(x,y)\in \mathbb{R}^2\mid 0\le x\le L, \ y=0\},\\ &\Gamma_2 \equiv \{(x,y)\in \mathbb{R}^2\mid 0\le x\le L, \ y=-d\}, \end{align} を定め, 以下の初期値境界値問題を考察する: \[ \Phi(t;\cdot,y) \in C^2_\#(0,L), t\in[0,T],\ y\in[-d,0], \tag{1} \] \[ \Delta \Phi(t;x,y)=0, (x,y)\in \Omega,\ t \in (0,T), \tag{2} \] \[ \frac{\partial^2 \Phi}{\partial t^2}(t;x,y) + g \frac{\partial \Phi}{\partial y}(t;x,y) = 0, (x,y)\in \Gamma_1,\ t \in (0,T), \tag{3} \] \[ \frac{\partial \Phi}{\partial y}(t;x,y) + M\frac{\partial}{\partial x} \left( \frac{\partial \Phi}{\partial x}(t;x-\delta,y) \right)^m=0, (x,y)\in \Gamma_2,\ t \in (0,T), \tag{4} \] \[ \Phi(0;x,y)=f(x,y), (x,y)\in\Omega, \tag{5} \] \[ \frac{\partial \Phi}{\partial t}(0;x,y)=h(x,y), (x,y)\in\Omega. \tag{6} \] ただし, 初期値 \(f\), \(h\) は次の整合条件を満たすものとする: \(f,h\in C^2(\overline{\Omega})\) は \(\Omega\) 上の調和関数であり, \begin{align*} &f(\cdot,y), h(\cdot,y) \in C^{2}_{\#}(0,L), & &y\in[-d,0],\\ &\frac{\partial f}{\partial y} + M \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x}(x-\delta,y) \right)^m =0, & &(x,y)\in \Gamma_2,\\ &\frac{\partial h}{\partial y} + M\frac{\partial}{\partial x} \left( \frac{\partial h}{\partial x}(x-\delta,y) \right)^m =0, & &(x,y)\in \Gamma_2 \end{align*} を満たす.

境界条件 (4) が非線型でかつ位置 \(x\) について \(\delta\) だけずれが生じているため, 初期値境界値問題 (1)--(6) の直接的な解析は極めて困難である. そこで では, \(m = 1\), \(\delta = 0\) の場合に限って解析を行い, 次の結果を得た: (1)--(6) を \(x\) 変数に Fourier 級数展開すると, \[ \frac{\partial^2 \Phi_n}{\partial y^2}(t,y) = \mu_n^2 \Phi_n(t,y), t\in(0,T),\ y\in(-d,0), \tag{7} \] \[ \frac{\partial^2 \Phi_n}{\partial t^2}(t,y) + g \frac{\partial \Phi_n}{\partial y}(t,y)=0,t\in(0,T),\ y=0, \tag{8} \] \[ \frac{\partial \Phi_n}{\partial y}(t,y) - G\mu_n^2 \Phi_n(t,y)=0, t\in(0,T),\ y=-d, \tag{9} \] \[ \Phi_n(0,y) = f_n(y), y\in(-d,0), \tag{10} \] \[ \frac{\partial \Phi_n}{\partial t}(0,y) = h_n(y), y\in(-d,0) \tag{11} \] となる. ただし, \begin{align*} &X_n(x) = \frac{1}{\sqrt{L}}e^{i\mu_n x},\quad \mu_n = \frac{2n\pi}{L},\\ &\Phi_n(t,y) = \int_0^L \Phi(t;x,y)\overline{X_n(x)}\,dx,\\ &f_n(y) = \int_0^L f(x,y)\overline{X_n(x)}\,dx,\\ &h_n(y) = \int_0^L h(x,y)\overline{X_n(x)}\,dx \end{align*} とおいた. また \(f_n\), \(h_n\) の満たす整合条件は \[ \frac{d^2 f_n}{dy^2}(y)=\mu_n^2 f_n(y),\, y\in(-d,0), \tag{12} \] \[ \frac{d^2 h_n}{dy^2}(y)=\mu_n^2 h_n(y),\, y\in(-d,0), \tag{13} \] \[ \frac{d f_n}{dy}(-d) - G\mu_n^2 f_n(-d)=0, \tag{14} \] \[ \frac{d h_n}{dy}(-d) - G\mu_n^2 h_n(-d)=0 \tag{15} \] と書き下される. 初期値境界値問題 (7)--(11) について, 次の定理が証明された.

\(n\in\mathbb{Z}\) に対して \(f_n(y),h_n(y)\) が整合条件 (12)--(15) を満たす時, 次が成り立つ.

  1. \(n = 0\) の時, \(f_0(y)\), \(h_0(y)\) に対してある定数 \(F_0\), \(H_0\) が存在して, \(f_0(y) = F_0\), \(h_0(y) = H_0\) と表すことができる. また, 初期値境界値問題 (7)--(11) を満たす関数は $$ \Phi_0(t,y) = F_0 + H_0 t $$ で与えられる.
  2. \(n \neq 0\) の時, \(f_n(y)\), \(h_n(y)\) に対してある定数 \(F_n\), \(H_n\) が存在して, \(f_n(y) = F_n Y_n(y)\), \(h_n(y) = H_n Y_n(y)\) と表すことができる. また, 初期値境界値問題 (7)--(11) を満たす関数は $$ \Phi_n(t, y) = (F_n \cos (\omega_n t) + \frac{H_n}{\omega_n} \sin (\omega_n t)) Y_n(y) $$ で与えられる. ただし, \begin{align} Y_n(y) =& \cosh(\mu_n y)+\theta_n\sinh(\mu_n y), \label{eq:Yn}\\ \theta_n =& \frac{\sinh(\mu_n d)+G\mu_n\cosh(\mu_n d)}{\cosh(\mu_n d)+G\mu_n\sinh(\mu_n d)}, \label{eq:thetan}\\ \omega_n =& \sqrt{g\mu_n \theta_n} \label{eq:omegan} \end{align} である.

一般に, \(m = 1\), \(\delta = 0\) の場合, (1)--(6) を満たす解は, 定理1. で求めた Fourier モード解の線形結合, すなわち \[ \Phi(t; x, y) = (F_0 + H_0t) X_0(x) + \sum_{n \in \mathbb{Z}, n \neq 0} \left(F_n\cos(\omega_n t)+\frac{H_n}{\omega_n}\sin(\omega_n t)\right) Y_n(y) X_n(x) \tag{16} \] で表されると予想される. しかしこの無限和がどの位相で収束し, その極限が (1)--(6) を満たすかどうかを議論することは困難である.


参考文献

  1. Kennedy J. F., The mechanics of dunes and antidunes in erodible bed channels, J. Fluid Mech., Vol.16, pp.521--544, 1963.
  2. 森 光太朗, ポテンシャル流を用いた反砂堆現象の数理モデルとその解析, 京都大学大学院情報学研究科修士論文, 2021.